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1o Summarz

The connection between one-~parameter mixtures and generalizations
") convolutions, with stochastic y) given by GURLAND (1957)

is used to derive some simple properties of both, partly found with different

(i.e. y-fold
proofs in TEICHER (1960)., The one-parameter mixture is compared with one of

its components.

Examples are given in an appendix.

2., Definitions

A compound Poisson distribution 1is a Poisson distribution with a random

parameter: its parameter is not a positive constant but a random variable

assuming positive real values. A generalized Poisson distribution is the

n-fold convolution of an arbitrary disfribution, where n has a Poisson
distribution. These definitions introduced by FELLER (1943) have been extended
by GURLAND (1957’) and TEICHER (1960) to the Definitions 1 and 2 given below,
As some authors, e.g. FELLER (1957), use "compound" for what is here called
"generalized", we shall henceforth replace "compound" by the less ambiguous

"mixed",

Definition 1., If Fe is a distribution function for each parameter value

6eT c R1, and H is a distribution function which assigns probability 1 to T,

then the H-mixture of F, is the distribution function Feas\H given by

(1) (Fyv-H)(x) = / Fo(x) an(e).

1)

Random variables are underlined.



We shall denote by Xg the random variable with distribution function F

o)

and by x, the random variable with distribution function Feﬁ}Ih

This is a special case of TEICHER's definition of m-parameter mixtures,
In this report the distribution function H is always one-dimensional, though
Fo may have more than one parameter, The extra ® under the sign """ is
convenient in this case. Sometimes we shall write Fcejg‘-H9 though we could
have included the constant c¢ in the distribution function H. The symbol
Jg-is also used between names of distributions., Several well-known mixtures

are listed in Appendix 1. Two examples of mixtures are

Binomial (n,p) VoS Poisson (W) = Poisson (up);

(2)

Poisson (ku) /N Poisson (A) = Neyman A(A,u),
If H is a degenerate distribution function the mixture is just one Fgs
and if all Fe are degenerate it is just a trivial modification of H.
If we want to exclude these cases we shall call a mixture non-trivial,
Tt is obvious thst for example the characteristic function and the
moments about zero (if e%isting) are mix-linear with respect to (w.r.t.)F < Hs

)

i.e, if % is characteristic function of Fq and ¢ of Fo/vHy then

8(t) = [ ¢4(t) au(e);
(3) . .
Exg = [ €x5 an(e)s

Definition 2, If the random varihblelﬁ has distribution function F and the

non-negative integer-valued random variable y has distribution function G,
we define the G-generalized F=distribution, with distribution function
denoted by FG*, as the distribution of

2) GURLAND uses FAH and x4 6. We have preferred to use another notation,
mrre suggestive of the underlying idea and avoiding the possibly confusing
suggestion of symmetry.
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where x, are independent and have distribution function F, If the
characteristic function ¢ of F is such that {¢(t)}y is a characteristic

3) of G, we extend the definition
to arbitrary distribution functions G with G(0=) = 0 and define 5;% and

e by their characteristic function

function for all values y in the carrier

(5) g(o(t)) €T [ {o()}¥ aaly).

This clearly includes the definition by (4). GURLAND (1957) uses the
notation y v x, and G v F, and defines it, for non-negative x and y, by
stating that its generating function is g(f(z)), where £(z) = & z% and
g(z) = £ 2L, In GURLAND's examples,where F is infinitely divisible, g(f(z))

is always a generating function; it does not seem quite clear whether this is
true in all cases with F(0-) = 0 and G(0=) = 0, Compared with GURLAND's,

our definition includes negative values for x but excludes the cases where
{¢(t)}y is not a characteristic function for some y in the carrier of G,

In the list of examples in the appendix we have always a nonnegative integer-
valued y or an infinitely divisible x with a nonnegative y; in both cases
§¥f is defined,

3. Simple properties

Lemma 1, Generalizing and mixing are associative operations, i.e.

Gy P (%

¢
(H = H and (FeJe\Gn)Jr}-H = Fefe\ (GnJr} H)

in all cases where the distributions are defined.

3) The carrier of a distribution function G is the set of all values y for
which € > 0 implies G(y + €) = G(y = €) > 0,



Proof., If both sides of the first formula are meaningful, then F(0-=) = 0

and G(0=) = 0 and f(g(z)) must be a generating function (corresponding to
GF%)O Now if ¢(t) is the characteristic function of H, then by (5) both sides
have characteristic function f(g(¢(t))).

For the second formula, one finds from TULCEA's theorem (LOEVE (1963), p. 137)

(6) [I Ty (x) ac (0) a(n) = [ Fy (x) a4 f 6, (0) aH(n),

Remark. It is trivial that for a two-parameter family {Fe n} we have
9

(1) - (Fe n/?»G)«qu = (F, n«ﬁBH)Ja»GO

9 9

This might be extended by splitting any two=dimensional distribution of 6 and

n in the two possible ways in a conditional and a marginal distribution.

Definition 3, The family {Fe | oe T} of distribution functions is additively

closed (wor.t., 6) if we have, for all 6, neT:

(8) 6 + ne T and FG(X) * Fn(x) = F. (x).

6+n

It is strongly additively closed if there exists a characteristic function

¢1(t) independent of 6 such that for each 6& T the characteristic function
by of Fy is o.(t) = {¢1(t)}9°

If T consists of the positive integers or rationals the two notions
coincidey if T = (0,») an additively closed family is strongly additively
closed if ¢e(t) is a continuous function of 6 or if ¢e(t) is real-valued
for real t (see TEICHER (1954), where also additively closed families in
more than one parameter are investigated). PYKE (1960) has shown for
additively closed families with T = [0,=) that 9g(t) = {¢1(t)}e exp {ite(0)},
where the real-valued function c(6) on [0,®) has c¢(8) = 0 for all rational
6 and c(6) + c(n) = ¢(® + n)for all 6 > 0 and n > O, For a strongly
additively closed family with for T the positive reals or rationals ¢1 is

of course infinitely divisible.,



If ¢1 is not degenerate, the parameter of a strongly additively closed

family can assume only nonnegative values, as we have i¢e(t)| = |¢1(t)|e <1
for all 6 and t.
A few examples of strongly additively closed families are h):

Normal (0902) WoToto 0O (o > 0)3

Normal (uegoge) Woroto 8 (8 > 0)3

Poisson (8) wer.t. 6 (6 > 0);

Binomial (n,p) wor.t. n (integer n > 0);

Pascal (Y,p) woret. ¥ (Y > O, or integer Y > 0);

in all cases the parameter value O corresponds to the degenerate distribution

in 0 and may be included.

The following basic theorem is a slightly modified form of a theorem by
GURLAND (1957)3
Lemma 2, If {F eetr} is strongly additively closed and H assigns probability
1 to T, then

o |

Hse
(9) FogoH =F

Proof., On both sides the characteristic function is f {¢1(t)}6 dau(e).,

It is not necessary to assume 1€ T, as ¢1 and F, are defined by Definition 3.

1
Several relations of the type (9) are found in Appendix 1,

As an example we mention

-1
Pascal (y,p) = Poisson (A).-Gamma (pq=19Y) = {Poisson (1)}Gamma (pq 9Y)*°

Lemma 3, If {Fe} is strongly additively closed, the operations F

36

J"o and
G )
o may be interchanged.

Gl

Proof, By lemmas 1 and 2 we have

A specification of the distributions is given in Appendix 2,
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By lemma 2, each mixed Poisson distribution Poisson (8)-H is also
. H . . . . . Poisson*
{Poisson (1)} . Some generalized Poisson distributions G are at the
same time mixed Poisson (e.g. Neyman A and Pascal),
MACEDA (1948) proves that all distributions of the form (Poissondn_H)P°1ss°n*
are both generalized Poisson and mixed Poisson.

This is now a consequence of lemma 3, as we have

Poisson* Poisson*)

o

(11) (Poisson /\H) = Poisson . (H

Lemma L4, One-sided distributivity of generalizing and mixing with respect to

convolution holds in the following sense: whenever both sides are defined

we have
* P G
(12) B0 o (1) w (1),
and
(13) Feaa-(H * G) = (FeJ@-H) *(FG-GEG) if {Fe} is strongly additively

closed.

Proof. If H has characteristic function ¢ , both sides of (12) have
characteristic function f(¢(t)) g(¢(t)). From (12) and lemma 2 follows (13).

(13) was already proved by TEICHER (1960), by writing out the integrals.
For F, = Poisson (8) it is mentioned by FELLER (1943) and MACEDA (19L48). The

last author proves also

Poisson (u)*} AH1 * uH2

= A+ u

.-

Only the special form of the Poisson characteristic function makes this

o

{H Poisson (A)*}

} Poisson (X + )
1

L {H2

extension of (12) to different Hi possible,

One can easily see that the other two distributive laws



() = (67 = (1 = &)™ ana (Fg % F ) AH = (Fgn H) * (F_AH)

hold only in the trivial cases where at least one of the distributions is

degenerate,

Lemma 5. If G is infinitely divisible, then so is 5% for each H and

Fecghﬁ'for each strongly additively closed family {Fe}o
qv

Proof, For each positive integer n there is a distribution function Gn such
¢
that Gnn = G, Thus by lemmas b4 and 2

G* (Gnn#)% Gﬁ% n*

(14) H =H =(H ")
and

G G = 3¢ . 3%

n ,n n
= = = N
(15) FogG=F, (Fy 7)) (Fo5-CGy) ™ -
The second half of lemma 5 is stated by TEICHER (1960), with a different

proof,

i, Moments of mixtures

For the investigation of the moments of Xq Ve introduce
def
m, = &x =fxdF(x);
2 def 2 _ 2
sg = O (x5) = [ (x = me) dFe(x)o
By well=known formulae we have

£x, = E1E(x, 190} = Emg

(17)

P(xy) = o° | £ (xl0)} + £ Pz, [8)} = oPlmy) + gsé'eo

= 0, then £3£e =é£ and

o

Let us assume that Fe has expectation mgy



02(56) = 02(2) + E.S2eo If Fe is non-degenerate for some set of g-values

assumed with positive probability, then the variance of X is larger than

the variance of 6. In the special case F, = Poisson (6) we have also

6
52e = 6 and, as proved by FELLER (1943), 02(59) = oz(g) + é‘ze: the variance

of a non-trivial mixture of Poisson distributlons is always larger than its

expectation.

Another special case is Fb«QvPoisson (A\). Here it is not very realistic

to assume my =6, as in most mixtures the expectation of Fb will not be

integer-valued for all 6, If my = k9 for some constant k and integer 6, then

2(_:56) = x2° 4 £s2e >\ =& X5

provided we have kX > 1, This condition 5.56 > 1 is not necessary for a

Poisson=mixture of distributions Fe with expectation k6 to have larger

5)

variance than expectation. The Poisson Binomial distribution

Binomial (ne,p)Ja-Poisson (1) has expectation Anp and variance An2p2 + Anpq;

for n > 1 the variance exceeds the expectation even in the case Z: 1o

x <

If flg = [ 8 dH (8) exists and ds an udmissible parameter value, it is
interesting to compare the mixture FopeH with the single component FE()O

When the expectation m, of Fe is proportional to 6, this amounts to a

8
comparison of the mixture to the component with the same expectation,

Starting=point is the following result by FELLER (1943):

Lemma 6, For each non-trivial mixture Poisson (e)Ja—H,oz(E) is larger,
P Lﬁ = 0} is larger and P {§_= 1} / P {§_= 0} is smaller than the correspon-

ding quantity for the Poisson distribution with the same expectation,

5) This distribution was first mentioned by NEYMAN (1939), later by FELLER
(1943) and SKELLAM (1952)., It probably got its name, which is commonly
accepted now, from McGUIRE et al.(1957). Some authors use "Poisson Binomial"
for the distribution of the number of successes in n independent experiments
with different probabilities for succes.



Two possible extensions are stated in the following lemmas.,

Lemma 7. For a non-trivial mixture Fe./e\ H where 59_ is an admissible
parameter velue and the expectation of L is a linear function of 6

(me = k6, k # 0) each of the following conditions is sufficient for

2 2
o (59_) >0 (Eie)"
2 . ' 6) .
(a) =f (x - mq ) dFe(x) is 'a convex function of 6
(b) F is Binomial (n,08) for fixed n > 1,

S

Proof, In case (a) we have

2(.

o _}Ee)=02(me)+£see=k0(9)+£2 >s

g9’

by Jensen's inequality and the fact that the first term is positive.

In case (b) k = n, 52e = n6(1 - 8), and
202(3) + n£_e_ - nfﬁ_z > ngi - n(& 2_)2 =s

~
1]

2

£e°

because (n2 - n)oz(g) > 0,

Remark. The lemma holds for Binomial (n,6) though its variance is a strictly

concave function of 8, Cases (a) and (b) together cover all mixtures listed

in the appendix.

Definition 4., A functional v mapping a class of distribution functions into

= H, if it is defined at least for

the real numbers 1s mix-concave Woro.t. F

Fng-H and all Fes and satisfies

)

(18) H) > [ v(Fy) an(e).

S\
v(Fe 3

6) As usual "convex" includes "linear"; a function f is called "strictly
convex" when f(Ax + (1 = \)y) < Af(x) + (1 = A)f(y) for all x and y in the
interval where f is defined and all A eg(0,1).
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It is strictly mix-concave if we have inequality and mix-linear if we have

equality in (18),

Examples. For all mixtures and all real a and b functionals like v(F) =

=P {5 = a l F} and v(F) =P {a <x<b ! F} are mix=linear., The expectation
is mix-linear; as we have proved 02(56) = 02(m6) + 2:5269 the variance is
always mix-concave, and strictly mix-concave unless me does not depend on 6,
If v is mix-=linear, not constant, and assumes only positive values, then

1 . .
= 1s strictly convex.

Lemma 8, Let Fed?’H be a non-trivial mixture and 2,3 an admissible parameter

value, If the functional v is mix=concave Woroto FBJEfHQ and v(Fe) is a
convex function of 6, then v(FeaarH) > v(Fge)o The last inequality is strict

as soon as v is strictly mix-concave or strictly convex in 6.
Proof, v(Fy/H) > [ v(F,) aH(e) > V(Féi)o
Example 1, Pascal (Y,p) = Poisson (9)«®-Gamma (pq’jg‘y)o

The variance sg = 0 is linear in 8, so lemma 7 holds, In fact the variance

qu°2 for Pascal (y,p) is larger than the variance of Poisson (&€6), which
. -1
1s 5_9_= Yra o
=6 . . . . .
v(Fe) =P {E =0 | Fe} = e 1is strictly convex in 6 and mix=-linear, so

Y

lemma 8 is applicable, In fact P {5 = 0} is q' for Pascal (y,p); this is

larger than exp (quqm1) for Poisson (€ 8) as we have y log (1 = p) >

=1
>’°YP(‘!’P) °
v(F) =P {i =1 | F} /P {5 = 0 | F} can be shown to be strictly mix-convex
and v(Fe) = 0 is linear, so by an obvious modification of lemma 8

v(Fg o) = [ v(Fy) an(e) > v(F,n H),
namely

Yyra = £ > YPo
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Example 2, Polya (n,r,s) = Binomial (n,p)/;-Beta (rys).

By lemma T, the variance of the Polya distribution must exceed for n > 1

that of Binomial (n,r / (r + s)). In fact we have

nrs(n + r + s) 5 nrs

(r + s)2(r +s+ 1) (r + s)2

o

v(Fp) =P {x=0| Fp} = (1 - p)" is convex in p (strictly so for n > 1),

and mix-linear. In fact P {£.= o} is

(S+n-1)(s+n"2)ooos nd
(r+s+n-1(r+s+n-=2) ..o (r+s) 2 r+ s

for Polya (n,r,s) and Binomial (n,r / (r + s)) respectively. They are clearly

equal for n = 1 and for n > 1 the Polya distribution has larger P [.5 =0 10

The possibility is considered of extending this study, for example by
considering the moments of 52* for which we have S_JEI* = 5_:5 o fz and
2 2 22 '
o (L) = € yo©(x) + (& x)%6(y).

I want to thank Professor Hemelrijk and Dr. van Zwet, who have read the

manuscript and have suggested various improvements.
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Appendix 1
List of mixtures and generalizations

For the definitions of the distributions see appendix 2.
This list gives some well-known examples; it is far from being complete.
As usual, q denotes 1 = po

()] Poisson (A)s _

Poisson (ku)yﬁuPoisson (x) = [Poisson

[Binomial (n,p),ngoisson (up ~

Neyman A(X,u)

1)] Poisson (A)s*

-

(1)]G51nma (Pq-1 9Y)*

Pascal (y,p) = Poisson (k)aQbGamma (pq_1,Y) = [Poisson

-1)]Gamma (1,y)* "= [Log (p)]Poisson (=y log q)*

[Poisson (paq

Poisson Pascal (A,y,p) = Pascal (ky,p)JQ.Poisson (1) = [Pascal (Y,p)]P°1SS°n (A)

Poisson Binomial (A,n,p) = Binomial (kn,p),ﬁFPoisson (A) =
= [Binomial (n,p)JPOISson (A)=
_ =cB log gq \*
Pascal (cy,p)f?,Gamma (B,y) = [Log (P)]Pascal (Y’1-cBlog 3 )

Gamma (B,y)s

[Pascal (c,p)]

Poisson (up) = Binomial (n,p)gﬁnPoisson (u) = [Binomial (1,pf]POISs°n (u)se

Polya (n,r,s) = Binomial (nap)JS\Beta (rys)

Gamma (1,y) = Gamma (a"1gy + j)«g\Pascal (yy1 = a-1)

Gurland (a,B,u) = Poisson (up),S&Beta (agB) = Polya (n,a,B)JQ,Poisson (n) =
= (Binomial (n,p){g,Beta (a,B))ngPoisson (u)

Laplace(1)=Normal(0902)e/”g Gamma (1,1)
1
3o
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Apyendix 2

List of distributions

It will be obvious what is meant by Binomial (n,p), Degenerate in a,

Normal (u¢02) or Poisson (A), The other distributions used are listed here.,

NAME DENSITY OR PROBABILITIES 7)
RESTRICTIONS
xr—1(1_x)s~1
<
Beta (r,s) 5lros) (0 <x < 1)

r>0,s>0

=x/B Y=1
Gamme. (B,Y) - (x > 0)
B>0,Y>0 BT (™)
Gurland (QQB,‘J) 9) (x = O’ 1, ooo)
>0, B>0, >0
Laplace (B) %E exp { - l%l }

B >0

EXPECTATION; VARIANCE;
CHARACTERISTIC FUNCTION

r . rs
r+s 7 bet1) (r4s)2
8)
BY; B2Y;
(1-8it)~Y
ap - au a8u2
o0+B 7 o8 i) (atB)?

[P, (a,048,u(e*"-1))

0; 262;
(1 2,2\=

+B87t7) 1

(p+lo f
=1 000 s ;
Log (p) x| 1og q| (x 5 2s ) aflog qf ° q2i108 Q|2 ’

0 <p <1

Neyman A (A,u)
A>0,u>0

7)

For arguments not mentioned the value is zero.

8) I'(pta) o T(p+i)(it)d
rEp§ jzo T(pta+3 ) T(3+1)

9)

log (1-pe*?)/1og q
Aug Au(u+1)s

t
exp (A{eu(el ’1)-1})

Recurrence relations for PEE = x] are given by GURLAND (1958),
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NAME DENSITY OR PROBABILITIES 7) EXPECTATION; VARIANCE;
RESTRICT¥ONS CHARACTERISTIC FUNCTION
Pascal (y,p) 10) P(y+x) x ¥ (x =0, 1 ) v -1, Y -2,
YsP qu 9 '9 ocoo Pa 3 j’_zq H
Y >0, 0<pc<1 qa'(1=pe™*)~Y
) N A v A nk . x nkex 22
Poisson Binomial (A,n,p) e~ ) = ( x ) q Anp; An"p~ + Anpgs
. k=0 *° .
A > >0
0, integer n 9 (x = 0. 1 ) exp(k{(pelt+q)n-1})
0 < p < 1 X = ] ) ocoo
. 11) _ -1 =2
Poisson Pascal (A,y,p) (x =05 15 000) Yipa 3 YApqa (Yp+1);
< 1t =
+ +
Polya (n,r,s) (%) B(r ;zi+:)X) iis ; an(an+s)
J ’ (r+s) " (r+s+1)
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