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1. Summarf 

The connection between one-parameter mixtures and generalizations 

(i.e. z.-fold 1) convolutions, with stochastic z.) given by GURLAND (1957) 

is used to derive some simple properties of both, partly found with different 

proofs in TEICHER (1960). The one-parameter mixture is compared with one of 

its components. 

Examples are given in an appendix. 

2. Definitions 

A compound Poisson distribution is a Poisson distribution with a random 

parameter: its parameter is not a· positive constant but a random variable 

assuming positive real values. A generalized Poisson distribution is the 

E_-fold convolution of an arbitrary distribution, where.!!. has a Poisson 

distribution. These definitions introduced by FELLER (1943) have been extended 

by GURLAND (1957) and TEICHER (1960) to the Definitions 1 and 2 given below. 

As some authors, e.g. FELLER (1957), use "compound" for what is here called 

"generalized", we shall henceforth replace "compound" by the less ambiguous 

"mixed". 

Definition 1. If F8 is a distribution function for each para.meter value 

e~T c R1, and His a distribution function which assigns probability 1 to T, 

then the H-mixture of F8 is the distribution function F8~H given by 

( 1 ) 

1) Random variables are underlined. 
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We shall denote by ,!a the random variable with distribution function Fa 

and by ,!a the random variable with distribution function Fa~Ho 2 ) 

This is a special case of TEICHER's definition of m-parameter mixtures~ 

In this report the distribution function His always one-dimensional, though 

Fa may have more than one parameter o The extra a under the sign '!I\." is 

convenient in this caseo Sometimes we shall write Fca1-H, though we could 

have included the constant c in the distribution function Ho The symbol 

../}is also used between names of distributionso Several well-known mixtures 

are listed in Appendix 1c Two examples of mixtures are 

(2) 
Binomial (n,p) -"ri" Poisson {l-1) = Poisson (l-lp); 

Poisson (kl-I) ~ Poisson {),) = Neyman AP.,l-l)o 

If His a degenerate distribution function the mixture is just one Fa, 

and if all Fa are degenerate it is just a trivial modification of Ho 

If we want to exclude these cases we shall call a mixture non-trivialo 

It is obvious that :for example the characteristic function and the 

moments about zero (if existing) are mix-linear with respect to (woroto)Fa~H, 

ioeo if ~a is characteristic function of Fa and~ of Fa""'e'-H, then 

~(t> = I 
(3) 

~t~ = f 

~a(t) dH{a); 

k 
t.!a dH{a)o 

Definition 2. If the random variable.! has distribution function F and the 

non-negative integer-valued random variable z has distribution function G, 

we define the G-generalized F-distribution, with distribution function 

denoted by F(}M-, as the distribution of 

2) GURLAND uses F" H and x A a. We have preferred to use another notation, 
mere suggestive of the underlying idea and avoiding the possibly confusing 
suggestion of symmetryo 
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(4) ~ def 
:t- = .!.1 + ~ + 0 0 0 + ~ ' 

where x. are independent and have distribution function Fa If the 
-1 

characteristic function~ of Fis such that {Jfi(t)}Y is a characteristic 

function for all values yin the carrier 3) of G, we extend the definition 

to arbitrary distribution functions G with G(O-) = 0 and define~ and 

FGM- by their characteristic function 

(5) g(~(t)) d~f f {~(t)}Y dG(y)o 

'!'his '?learly includes the definition by ( 4 }o GURLAND ( 1957) uses the 

notation 'l.. v .!• and G v F, and defines it, for non-negative.! and z, by 

stating that its generating function is g(f(z)), where f(z) = t z.! and 

g(z) = lz'l..o In GURLAND's examples,where Fis infinitely divisible, g(f(z)) 

is always a generating function; it does not seem quite clear whether this is 

true in all cases with F(O-) = 0 and G(O-) = Oo Compared with GURLAND's, 

our definition includes negative values for.! but excludes the cases where 

{~(t)}Y is not a characteristic function for some yin the carrier of Go 

In the list of examples in the appendix we have always a nonnegative integer­

valued 'l.. or an infinitely divisible x with a nonnegative 'l.,; in both cases 

.;t!4' is definedo 

3o Simple properties 

Lemma 1o Generalizing and mixing are associative operations, ioeo 

in all cases where the distributions are definedo 

3) The carrier of a distribution function G is the set of all values y for 
which e > 0 implies G(y + e) - G(y - e) > Oo 



4 

Proofo If both sides of the first formula are meaningful, then F(O-) = 0 

and G{O=) = 0 and f(g(z)) must be a generating function (corresponding to 

GF*)o Now if ¢(t) is the characteristic function of Hi then by (5) both sides 

have characteristic function f(g(¢(t)))o 

For the second forrnulai one finds from TULCEAvs theorem (LOtVE (1963)~ Po 137) 

(6) ff F8 (x) dGn(e) dH(n) = f F8 (x) d8 f Gn (e) dH(n)o 

Remarko It is trivial that for a two-parameter family {F8 } we have 
~n 

( 7) 

This might be extended by splitting any two=dimensional distribution of 8 and 

n in the two possible ways in a conditional and a marginal distributiono 

Definition 3o The family {F8 I e~ T} of distribution functions is additively 

closed (woroto 8) if we have~ for all 8 9 neTg 

(8) 

It is strongly additively closed if there exists a characteristic function 

¢1(t) independent of e such that for each 8~T the characteristic function 

¢8 of F8 is ¢8(t) = {¢ 1(t)} 8
0 

If T consists of the positive integers or rationals the two notions 

coincide, if T "'· (0 9 00 ) an additively closed family is strongly additively 

closed if ¢8(t) is a continuous function of e or if ¢8(t) is real-valued 

for real t (see TEICHER (1954)$ where also additively closed families in 

more than one parameter are investigated)o PYKE (1960) has shown for 

additively closed families with T = [0, 00 ) that ¢8(t) = {¢ 1(t)} 8 exp {itc(e)}, 

where the real-valued function c(e) on ~!l 00 ) has c(e) = 0 for all rational 

8 and c(e) + c(n) = c(8 + n)for all e ~ 0 and n ~ Oo For a strongly 

additively closed family with for T the positive reals or rationals ¢1 is 

of course infinitely divisibleo 
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If $ 1 is not degeneratei the parameter of a strongly additively closed 
8 

family can assume only nonnegative values~ as we have l$8 (t)I = l$ 1(t)I < 

for all 8 and to 

A few examples of strongly additively closed families are 4): 
2 2 Normal (O~o) woroto o (o > O); 

2 Normal (u8;o 8) woroto 8 (8 > O); 

Poisson (8) Woroto 8 (8 > O); 

Binomial (nip) Woroto n (integer n > O); 

Pascal (yip) Woroto Y (y > Oi or integer Y > 0), 

in all cases the parameter value O corresponds to the degenerate distribution 

in O and may be includedo 

The following basic theorem is a slightly modified form of a theorem by 

GURLAND (1957): 

Lemma 2o If {F8 I SET} is strongly additively closed and H assigns probability 

1 to T9 then 

(9) 

Proofo On both sides the characteristic function is J {$ 1(t)} 8 dH(S)o 

It is not necessary to assume 1~Ti as $ 1 and F1 are defined by Definition 3o 

Several relations of the type (9) are found in Appendix 1o 

As an example we mention 

Pascal (yip)= Poisson (\)-1'-Gamma (pq= 1 jy) = {Poisson (1)}Gamma (pq-1~Y)* 0 

Lemma 3o If {F8} is strongly additively closedi the operations F8 -1" o and 
G* , o may be interchangedo 

Proofo By lemmas 1 and 2 we have 

4) A specification of the distributions is given in Appendix 2o 
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By lemma 2. each mixed Poisson distribution Poisson (a)""e"H is also 
~ p . -{Poisson (1)} 0 Some generalized Poisson distributions G oisson are at the 

same time mixed Poisson (e0g0 Neyman A and Pascal)0 

MACEDA (1948) proves that all distributions of the form (Poisson..11.H)Poisson* 

are both generalized Poisson and mixed Poisson0 

This is now a consequence of lemma 3 1 as we have 

( 11) (p . AH)Poisson* p. (HPoisson*) oisson...,"" = oisson .I\. 0 

Lemma 4o One-sided distributivity of generalizing and mixing with respect to 

convolution holds in the following sense: whenever both sides are defined 

we have 

( 12) (FM-G)* ( F*) ( G*) H = H * H 9 

and 

(13) Fa~(H * G) = (Fa~H) *(Fa~G) if {Fa} is strongly additively 

closed0 

Proof0 If H has characteristic function~ , both sides of (12) have 

characteristic function f(~(t)) g(~(t))0 From (12) and lemma 2 follows (13)0 

(13) was already proved by TEICHER (1960) 9 by writing out the integrals0 

For Fa= Poisson (a) it is mentioned by FELLER (1943) and MACEDA (1948)0 The 

last author proves also 

Only the special form of the Poisson characteristic function makes this 

extension of (12) to different H. possible0 
1 

One can easily see that the other two distributive laws 
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(H}i'M,) * (GF'#) = (H * G)F'"- and {Fe * F Tl) ~H = (F e.l\. H) * (F Tl.AH) 

hold only in the trivial cases where at least one of the distributions is 

degenerateo 

Lemma 5o If G is infinitely divisible 0 then so is HGM- for each Hand 

Fe~ for each strongly additively closed family {Fe}o 
q 

Proofo For each positive integer n there is a distribution function G such 
n 

n* 4 that G = Go Thus by lemmas and 2 
n 

(14) 

and 

( 15) 

(G n*)* 
HOM-= H n 

G* 
= (H n )n* 

The second half of lemma 5 is stated by TEICHER (1960), with a different 

proofo 

4o Moments of mixtures 

( 16) 

For the investigation of the moments of .!a we introduce 

me d~f f .!a = J x dFe(x); 

s~ d~f a2{.!,e) = f (x = me)2 dFe(x)o 

By well-known formulae we have 
) 
'\ 

E.!e = £ { t (.!a I.~) } = £ me ; 

( 17) 
a2(~e) = a2 { E (.!el.!!)} + £ { a2(.!e I!)} 

Let us assume that Fe has expectation me = e 9 then f .?:Se = £ 2., and 
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o2(~) = o2(~) + £ s\ o If Fe is non-degenerate for some set of e-values 

assumed with positive-probability, then the variance of~ is larger than 

the variance of ~o In the special case Fe = Poisson (e) we have also 

s2e = e and, as pro_ved by FELLER ( 19~3), o2(~) = o 2(!) + f ~ g the variance 

of a non-trivial mixture of Poisson distributions is always larger than its 

expectationo 

Another special case is F9~Poisson (A)o Here it is not very realistic 

to assume Ille = e , as in most mixtures the expectation of Fe will not be 

integer-valued for all e o If ll1e = k0 for some constant k and integer e , then 

2 2 2 C 2 C 
o (~ ) = k A + c. s e > kA = c. ~ 11 

provided we have kA > 1 o This condition £ .?Ee > 1 is not necessary for a 

Poisson-mixture of distributions Fe with expectation ke to have larger 

variance than expectationo The Poisson Binomial 5) distribution 

Binomial (ne,p)-'e'" Poisson (A) has expectation Anp and variance An2p2 + Anpq; 

for n > 1 the variance exceeds the expectation even in the case [,!:.e 2 1o 

If le = f e dH ( e) exists and tl.s an admissible parameter value, it is 

interesting to compare the mixture Fe--1"' H with the single component Ff e o 

When the expectation me of Fe is proportional toe, this amounts to a -

comparison of the mixture to the component with the same expectationo 

Starting-point is the following result by FELLER (1943): 

Lemma 60 For each non-trivial mixture Poisson (e)-';r-H,o 2(,~) is larger, 

P {!, = o} is larger and P {!. = 1} / P {!, = o} is smaller than the correspon­

ding quantity for the Poisson distribution with the same expectationo 

5) This distribution was first mentioned by NEYMAN (1939) 9 later by FELLER 
(1943) and SKELLAM (1952)0 It probably got its name, which is commonly 
accepted now, from McGUIRE et al. ( 1951) o Some authors use "Poisson Binomial" 
for the distribution of the number of successes inn independent experiments 
with different probabilities for succeso 
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Two possible extensions are stated in the following lemmaso 

Lemma 7. For a non-trivial mixture Fe-'e"H where f! is an admissible 

parameter value and the expectation of Fe is a linear function of e 

(m6 = k6, k # 0) each of the following conditions is sufficient for 

cl(.?Ee) > cr2 (_~f.e)~ 
-2 f - 2 ·. 6) 

(a) s 6 = (x - me) dF6(x) is ·a convex function of 6; 

(b) F6 is Binomial (n,e) for fixed n > 1o 

Proofo In case (a) we have 

2 2 £ 2 cr (.?Ee ) = cr ( m6 ) + s 6 

by Jensen's inequality and the fact that the first term is positiveo 
2 .. 

In case (b) k = n, s 6 = ne(1 - e)i and 

Remarko The lemma holds for Binomial (ni6) though its variance is a strictly 

concave function of e. Cases (a) and (b) together cover all mixtures listed 

in the appendix. 

Definition 4. A functional v mapping a class of distribution functions into 

the real numbers is mix-concave w.r.t. F6~H, if it is defined at least for 

F6-1"" Hand all F6 i and satisfies 

( 18) 

6) As usual "convex" includes "linear"; a function f is called "strictly 
convex" when f(AX + (1 - >.)y) < Af(x) + (1 - >-)f(y) for all x and yin the 
interval where f is defined and all >- ~ ( 0 i 1 ) • 



It is strictly mix~concave if we have inequality and mix-linear if we have 

equality in (18)o 

Exampleso For all mixtures and all real a and b functionals like v(F) = 

= P {,2S = a I F} and v(F) = P {a<.!,~ b I F} are mix-lineara The expectation 
· · · d 2( ) 2( ) t;; 2 . . is mix-linear, as we have prove cr 2Se = cr me + G. s ej the variance is 

always mix-concave~ and strictly mix-concave unless me does not depend one.· 

If vis mix-lineari not constanti and assumes only positive valuesi then 
1 is strictly convexo 
V 

Lemma Bo Let Fe~H be a non-trivial mixture and f! an admissible parameter 

valueo If the functional vis mix-concave warato Fe-1'H~ and v(Fe) is a 

convex function of e~ then v(Fe~H) ~ v(Ffe)o The last inequality is strict 

as soon as vis strictly mix-concave or strictly convex in eo 

h . 2 e . Te variance se = is 

ypq-2 for Pascal (y~p) 
, C -1 is <., f = ypq o 

linear in e~ so lemma 7 holdso In fact the variance 

is larger than the variance of Poisson ( f. !) , which 

v(Fe) =? {,! ~ O I Fe}= e-e is strictly convex in e and mix-linear, so 

lemma 8 is applicableo In fact P {.!, = o} is qy for Pascal (yip), this is 

larger than exp (-ypq= 1 ) for Poisson(€!) as we have y log (1 - p) > 

> - yp(1 - p)-1. 

v(F) = P 1.! = 1 I F} / P {,! = 0 I F} can be shown to be strictly mix-convex 

and v(Fe) = e is linear~ so by an obvious modification of lemma 8 

namely 

ypq = fe > YPo 
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Example 20 Polya {n,r,s) = Binomial (n,p)-"""Beta {r,s)o 
p 

By lemma 7, the variance of the Polya distribution must exceed for n > 1 

that of Binomial {n,r / {r + s)). In fact we have 

nrs(n + r + s) 

{r + s) 2{r + s + 1) 
> nrs 

2 • 
{r + s) 

v{F) = P {x = 0 IF}= {1 - p)n is convex in p {strictly so for n > 1), 
p - p 

and mix-linear. In fact P {,! = o} is 

{s + n - 1){s + n - 2) ooo s 
(r + s + n - 1)(r + s + n - 2) ••• (r + s) and 

for Polya {n,r,s) and Binomial {n,r / {r + s)) respectively. They are clearly 

equal for n = 1 and for n > 1 the Polya distribution has larger P [,! = 0 ]. 

The possibility is considered of extending this study 1 for example by 

considering the moments of ~ for which we have f~ = €.,! • l. z. and 

,l cE, = t. z.,l C,!) + c e .!,2 o2 <z.) • 

I want to thank Professor Hemelrijk and Dr. van Zwet 1 who have read the 

manuscript and have suggested various improvements. 
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Appendix 1 

List of mixtures and generalizations 

For the definitions of the distributions see appendix 2o 

This list gives some well-known examples; it is far from being completeo 

As usual, q denotes 1 - Po 

Neyman A(A,µ) = Poisson (kµ)~Poisson (A)= [Poisson(µ)] Poisson (A)*= 

= [Binomial (n,p)./\.,Poisson (µp - 1)] Poisson (A)* 
n 

Pascal (y,p) = Poisson (A)~Gamma (pq-1
9 y) = [Poisson (1)]Ga.mma (pq-1 ,Y)* = 

= [Poisson (pq-1)]Gamma (1,y)* = [Log (p)]Poisson (-y log q)* 

( ) ( ) () [ (y'p)] Poisson P)* Poisson Pascal A, y 9p = Pascal ky ,P ~ Poisson A = Pascal 

Poisson Binomial (A,n 9 p) = Binomial (kn,p)--£-Poisson (A) = 
= [Binomial (n,p)] Poisson (A)* 

p l ( -cS log q )* 
Pascal (cy,p)...;-\.Gamma (S,y) = [Log (p)J asca y 9 1-cSlog q = 

y 

[p 1 ( )J Gamma ( S. y )* 
= asca c ,P • 

Poisson (µp) = Binomial (n,p)~Poisson (µ) = 
n 

Polya (n,r,s) = Binomial (n 9 p)..;r"\.Beta (r,s) 
p 

Gamma (1,y) = Gamma (a-1,y + j)~Pascal (y 9 1 
J 

Gur1and (a;,8 9 µ) = Poisson (µp) ,A.Beta (a,S) = 
p 

IB , . 1 ( 1 ):,Poisson(µ)* inomia 11 p .J 

- a -1) 

Polya (n 9 a 11 S)...I\ Poisson ( µ) = 
n 

= (Binomial (n,p).A.Beta (a 9 S)).APoisson (µ) p n 
2 Laplace(1 )=Normal(O,o ) ~ Gamma ( 19 1) 

!a 
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Appendix 2 

List of distributions 

It will be obvious what is meant by Binomial (n,p)i Degenerate in a 9 

Normal (p~cl) or Poisson (),)o The other distributions used are listed hereo 

NAME 

RESTRICTIONS 

DENSITY OR PROBABILITIES 7 ) EXPECTATION; VARIANCE; 

CHARACTERISTIC FUNCTION 

Beta (r,s) 

Gamma ( 13 9 Y) 

13 > o, y > 0 

Gurland (a 11 8,µ) 

Cl> 0 9 13 > 0 9 µ > Q 

Laplace ( 13) 

13 > 0 

Log (p) 

0 < p < 

Neyman A (;\ ,µ) 

>. > 0~ µ > 0 

xr-1(,-x)s-1 
B(r 11 s) 

-x/8 Y-1 
e X 

13Yr(y) 
(x ~ 0) 

9) (x = 0 9 1, ooo) 

X 
p (x = 

xilog qi 

-A X co e µ , 
x~ l 

k=O 

7) For arguments not mentioned the value is zeroo 

8) ~ r r(p+j)(it)j 
r(p) j=o r(p+q+j)r(j+1) 

r -r+s 
• rs • 
' (r+s+1)(r+s) 2 ' 

8) 
2 Sy; 13 y; 

(1-8it)-Y 

aµ aµ a8µ 2 
- 0 -+------
a+8, a+8 (a+8+1)(a+8)2 

·t 
log (1-pe1 )/log q 

9) Recurrence relations for P ~ = x] are given by GURLAND ( 1958) o 



NAME 

RESTRICTIONS 
.,~-, 

Pascal (y 9p) 10 ) 

y > o. 0 < p < 1 

Poisson Binomial (A 9 n 9p) 

A> o. integer n > 0 9 

0 < p < 1 

Poisson Pascal (A,Y 11 p) 

A> 0 9 y > 0 9 0 < p < 1 

References 
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DENSITY OR PROBABILITIES 7) EXPECTATION; VARIANCE; 

CHARACTERISTIC FUNCTION 

r(y+x) pxqy (x o, 1 ii 0 0 0 ) r(y)x~ = 

0:, Ak -A I ( n k ) x nk-x e kg p q 
k=O X 

(x = o, 1 ll 0 0 0 ) 

11 ) 

( n) B(r+x~s+n+x) 
J B r,s) 

-1 -2 ypq ; ypq 0 , 
qY(,-peit)-Y 

2 2 Anp; An p + Anpq; 

exp(A{(peit+q)n-1}) 

-1 -2 ) y:\pq ; YApq ( Yp+1 ; 

exp(A{qy(1-peit)-Y-1}) 

nr 
r+s 

nrs(n+r+s) 
2 (r+s) (r+s+1) 
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