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1, Summary

A real-waiued function f is called Ik if its k=th order differences

are nonnegative regardless of the choice of the choice of the k+1

equidistant points involved. It is shown that measurability, boundedness

O

xcept near endpoints, and contlnuity are equivalent properties for Ik
functions (k > 2} defined on an interval. Moreover, continuity and the
Ik property together are egquivalent to convexity of order k as defined
by KARLIN. The results are well known for k=2 (convex functions).

This report is the first of two preliminary reports discussing

properties of I functions that will be needed in research now in pro-

gress at the Mathematisch Centrumﬂﬁmasecoﬂﬁanmaﬁﬂ will appear shortly-

2. Definitions

Throughout this paper, f will be a function with finite real values
defined on an open interval (a,b), where a = -« ® and b = ® are allowed.
The letter h will always denote a positive real number, and k a positive

integer. "Measurable” stands for Lebesgue measurable.

Definition 1. For all x € (a,b-kh)

o K def k-1 K1
(2.%) i f(x) = iy fx+h) = by f(x)
and for all x € (a,b) A 0 fx) def fx).

h
Clearly this implies
k

2.0 =
{2.2.] Ah f(x) j

[ tsi-

()53 (%) £(x + 5n).
0 J

This asymmetric definition of the k~th order difference, where x
denotes the lowest argument and not the middle one, 1s more convenient
for our purposes. We note that nE - (x) is a linear operator on the

h
space of all real valued finite functions.
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Definition 2. The function f is called Ik (increasing of type k) if,

for all h > O and all x € (a,b = kh), we have Alg f(x) > 0. It is

called D (decreasing of type k) if the reversed inequality holds for
all h and x, and M_ (monotone of type k) if it is either I, or D

Of course I, means nondecreasing, while I_ means convex, in the

1 2

sense

xfy) < f(x) + £(y)

" (2.3) £33 el

If f is k times differentiable, I is equivalent to the nonnegativity

of the k-th derivative., It 1is cleir that an Ik function is not
necessarily Ij for J < k.

It is well known that there exists convex functions which are
discontinuous and unbounded on every interval. From any Hamel basis
one can construct many functions f such that f(x+y) = f£(x) + £(¥).
Inserting this equality in (2.2), one finds that these functions dre
not only convex but also Ik for higher k. Unless f is linear thgy afe
not I, as A; f(x) = f(x+h) - f(x) = f(h), and f has sign changes when
it is not linear (and possibly also when it is linear).

To exclude such pathological examples, one could define convexity

by
(2.1) £(ax + (1=0)y) < A £(x). + (1=A)f(y) for 0 < A < 1.

It is known (see e.g. [?] p. 116-117) that an I, function is bounded

and continuous, and satisfies (2.4), as soon as it is assumed to be

measurable. In section 3 a similar result for Ik functions with k > 2

is derived by an adaptation of the proof for k=2, We shall see in
section 4 that the continuous (or measurable) Ik functions are
precisely KARLIN’s convex functions of order k (see definition L4 below).

Definition 3. A function f has k sign changes, if k+1 is the maximal

number of points Xy < Xy

positive for odd k=i and negative for even k=i Ewe call this: k sign

< oo < X such that either f(xi) is
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changes with a plus ending| or f(xi} is pesitive for even k-i and

negative for odd k=i [%ith a minus endiné}o

Definition L. A function f is Gk {convex of order k), if for each poly-

nomial p(x) of degree at most k-1, the function f-~p has at most k

sign changes, and if exactly k then with a plus ending.

Definition 3 is essentially KARLIN’s definition of the number
Vv (f) of (strong) sign changes. Definition L is given by KARLIN and
PROSCHAN [3] with a "plus beginning", i.e. f(x1) positive in our
notation; so f is Ck in our sense iff (-)kf is Ck in the sense of
[3] p. 732. In [4] p. 344 one finds definition b with the restricition
that the leading coefficient of p should be positive. Consideration
of the cases k=1,2 (nondecreasing and convex functions) makes it

desirable to remove this restriction.

3, Measurability, boundedness and continuity

Theorem 1. A measurable M function defined on (a;b) is bounded on

every closed subinterval Sf {aysb)o
Proof. As thercase k=1 is trivial we shall assume k > 2. Suppose f
were unbounded in a neighbourhood of xOE'(agb); there would exist
for € = min (bsxOs xoma,1) and for every N a point Xy € (xo-%sa
x0+%£) with !f(xN)| >25N. We shall show that for each h i‘%ﬂ’* the
inequality lf(mejh) | > N holds either for at least one index
j € {1,2,.000,k} (case A) or for at least one index j &€ 1 =1:1,250c00
k=1} (case B).

If £ is I, and f(xN} < = EKN, it is obvious from

k

0 <Ay

k .
i) = £loy) + ] ()7 () 2Cxy=in) <
J=

(3.1) )
K D
< -2y o+ jZ@ (Dlelz-38) 4

that we are in case A, The same conclusion 1s seen to hold if f 1is Dk



.

and f(xN > 2"N, In the two remaining cases rf is 7% and f(x ) kN9

or f is D, and f(xN) < =2 ﬁ] we consider I f(xwm (k~1)n) and we

find in a similar way that we are in case Bo
For each y 1n g ¢ [x - €/2, xN) we define

dgf

Qo(y) Xy + k(xNﬂr)»

(3.2) aef

Qj(y) Xy ===1;:= (xN-y) (§=1425000 k)

It is obvious that these mappings preserve the measurability of sets;

the relsations

L

u(a,(E)) = k u(E),

(3.3)

B

o b

u(Q(E)) = = u(E) (J=152,000 k),

vhere p denotes Lebesgue measure, hold for all intervals E and by
the uniqueness of the extension for all measurable sets E.
In case A, if we put Ay et 1 {x]| £(x)| > N}, then Ay is

measurable, and we shall show that

(3.4)

ncCw

. 1 Qj(AN) 2 J°
J
In fact for x € J there exists j € {1,2,c..,k} such that xN—j(xN_x)/
k€ A, and this implies by (3.2) '

(305) X = Qj(xN'X)/k) € Qj(AN)o

From (3.4) and u(J) = 3¢ follows that U(Qj(AN)) .i e/(2k) for at least
one j € {19290009 }9 so by \3 3) .
€

i, £ |
(306) u(AN :_k 4 k i 2 ©
ok




=S
In case B we put By dngxN - £/2, Xyt e/(EkX] A x| e(x)]>n].

Then BN 1s measurable and

r

' ) k=1
(3.7) JoooQ. (B)
j=0 I 7

for if there is a j € {* 290c09kn1} with Xy = j(x -x)/k & BN then
x € Q (B ), and if Xy = (»1)(xN-x)/k € By then x € Q (BN)G
As before we find u(B ) > e/(Ek Jo

Now in both cases we have found a set measure at least &/(2k
9 (x e, +a)ﬂ{x”f(x)l > N .
Cyls with u(c ) > e/(2k%) for all I, con-
verges towards € %81 (x o=Es Xgte) N {x'[f(x)[ »}, This leads to

2)

which is contained in CN

The decreasing sequence {

‘

a contradiction as f was assumed to have finite values on (a,b).

Theorem 2. If f is bounded on every closed subinterval of (a,b) and

f is Mk for some k » 2, then f is continuous on (a,b).

Proof. From (2.1) we find, by introduction on n, for all positive

integer j:

n+1

(3.8) Ay flx+jh) = A £(x) + Z oy flxrih);
i=0
J
- (3.9) Ag £(x-jn) = Ay £x) - ) §+1 £{x~ih).

i=1
The proof is now based on the following lemma.

Lemma. If f is bounded on every closed subinterval of (a,b), and

S means: 1im A" f(x+ph) = 0 for all integer p > = 1 and all
m no B =

x € (a,b), then for m > 1 Sm+1 implies Smo

Proof of the lerma. Let Sm+i hold for some m > ' and suppose that

lim sup AT f(y+qh) = ¢ >0

ht 0 h

(3.1
(3.10) for some ¢ >0, some y € (a,b) and some g > = 1.
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Choose ¢ > a and d < b such that y € (¢,d), then there exists a constant
M such that |£(x)] < M for x € [c,d] . Consequently we have, for all

positive integer n, all h > 0 and all x € [c, d=nﬁ] .
(3.7 lap £lo)] < 2™m,

. q +
Choose an integer N > max {gg o ! M} and select

(3.12) h < min jy=-c, —aY

3

N +qg+m+1

such that simultaneously

( mn . 4

(3.13) by f(y+gh) > T

and

(3.14) AE+? f(y+qh+jh) > = mlg for j = 091,0005N20
2N

This is possible because of (3.10) and S With (3.8) we find for

. 2
J=0,;1 000,00 2

m+1°

(15) AR p(yeanesn) > Lo P L
Do L 3} h Y *q. Jf N"' 3 oN 3
2N
and with (3.8) and (3.11)
me-1 2 Me=1 N2 Mo 1
(3.16) By~ Ely+ah+liTh) > = 277 M 4 52 > 20 M,

which contradicts (3.11). We next derive a contradiction from

lim inf AE f(y+qh) = = € < 0
h+0

(3.17)

for some ¢ > 0, some y € (a,b) and some q > ~ 1,
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by rewriting the preceding proof with from (3.13) onward each in-
equality "> C" replaced "< ~C". As both (3.10) and (3.17) lead to a
contradiction, Sm must hold and the lemma is proved.

To prove the theorem, we observe that Skml follows from the
boundedness and the Mk property. For if f is Ik9 then (3.10) for
n=k=1 leads to a contradiction just as in the proof of the lemma: we
have only used S 141 in (3.14), and the nonnegativity of the k-th
, and (3.10) would hold for
m=k-1, then select N as before and h < (y-c)/(N2+1) such that (3.13)

holds. By (3.9), (3.13) and the D

differences is even stronger. If f is D

property we find

k
-1 . ,
(3.18) Ai f(y+gh=jh) > %»for J=Os‘l,a“,N29
and from (3.9), (3.11) and (3.18) follows
k=2 2 k-2 WO | k-2
(3.19) by f(y+gh-N"n) > - 2 M *EmC 2N,

again contradicting (3.11). A contradiction is derived from (3.17)
for Dk f as in th; éemma@ and for Ikkf because we can derive then
(3.19) with < ~ 27 instead of > 2°7°M. Thus §__, must hold.

By repeated application of the lemma we arrivé at S,, i.e. for

p=0 and p=-1

1

N f(x~h) = 0,

(3.20) lim A; f{x) =0 and 1lim A
hi0 ht0

which means continuity from the right and from the left.

From theorems 1 and 2 and the fact that continuous functions are

measurable, we find:

Theorem 3. For Mk functions defined on an interval, measurability,
boundedness on every closed subinterval and continuity are equivalent

provided k > 2.



L. Convexity of order k

Theorem 4., Any Cy function 1is Iko

Proof. Let f be C_ (definition 4) and suppose that
(k1) 0E £le) = = e <0
] h C - = 9

for some € > 0, some h > 0 and some ¢ & (a,b=kh). In the polynomial
of degree at most k=1
k=2 3

Pyt T p. I (x=c=mh) =
j=0

p(x) 9&F

=Dy + p1Cch) + pe(x=c)(x=th)+aoo+pkm1(x-c)ooe(x~c(kw2)h)

we define the coefficients pj successively for j=0,1,...,k=1 by

requiring
. C. k=j=1 .=k .
(4.3)  f(e+jh) = pletjn) = (=) I p7E ¢ (j=0414000,k=1)0
. k=1 n
For any polynomial p(x) = E a X it is clear that
n=0
k . k=1
b p(x) = 1 () T e (xein)™
J=0 Ry
(hok)
k=1 m . -k . .
T == k= k .1
=1 e L Mt () i =0
m=0 i=0 j=0

there are several ways to show that the last sum over j is zero for.
i=0,1,.00,k=13 see e.g. [1], II. 12 problem 16.

F f(c) = A [f(e) = ple)}, and we use {2.2) and (L4.3)

So =g = Ah h

to find

(4,5) flc+kh) - p(c#kh) = - g + oz’ (%) 2-k e = . oK.
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Now f-p has exactly k sign changes, with a minus ending. As this

contradicts the C, property, (4.1) was incorrect and © is T

Theorem 5. A C,_ function is continuous if k > 2,

Proof. Let y bz a discontinuity point of a Ck function f, but suppose
f is continuous in (y=c, y) and (y, y+c) for some c > 0, As C, im-
plies Iks this means by theorem 3 that for 0 < § < ¢/2 there is a
number M such that | £(x)| < M if x € [y-c+s, y-§] or x €[y+s,y+c-4],
while f is unbounded on (y=§, y+8).

We now choose § < ¢/(2k), and suppose first there is an

x € (y-6, y+§) with f(x) < = 2XM. Then by (2.2)

(4.6) Agé £(x-2k8) < - 2%+ (251 < o,
as x = 2j6 €[}hc+6, y-@}for J=15240c0 ke Suppose next there is an
x € (y=6, y+68) with f(x) > 2kMo In a similar way one finds

(4.7) AIZ‘6 £(x-2k6+28) < - k 2%M + (25x)M < O,
as x + 2 8€[y+q, ytc=§] and x + 2§ - 2j6 € [y=c+6,y-=5_] for
j=2,3,..0,k; hence f is bounded on (y=6§, y+§).

So the supposition that y is an isolated discontinuity point of
the Ik function f leads to a contradiction: in each neighbourhood of
each discontinuity point of an Ik function there is a new discontinui=-
ty point.

But for a finite valued function f which is unbounded in any
neigbourhood of an infinite number of discontinuity points, it is
clear that even subtraction of a constant will lead to more than k
sign changes (as soon as we have Lk discontinuities this can easily
be shown explicitly). So the initial supposition of the existence of
a discontinuity point y was inccrrect, and every Ck function 1is

continuous.

Theorem 6. If for some k> 2 f is continuous and I, s then A;,f(°) is

continuous and I for all h > 0.

k=1°
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Proof., Continuity is trivial. For Ik ; Ve use that
(L.8) A, A eee Al £(x)

h, h, hy

is nonnegative for all positive hig as soon as f is Ik and continuous.
This will be shown by VAN ZWET in [53: if all h. are integer multiples

of a fixed h > 0, (4.8) can be rewritten as a sum of Ak ~differences,

h
and the general case follows by continuity. We find by choosing
1. -
= =OOO= A s
h1 h2 hkm1 that hf 1s Ik‘],
Theorem T. If f is continuous and Ik then it is Cko

Proof. The theorem is trivial for k=1; suppose it is true for k=-1.
Choose a polynomial p of degree at most k-1 and put g(x) dgf f(x) =
- p{x). Then g is continuous, so we can divide the domain of
definition (a,b) in "plusintervals" (where g is nonnegative, zerc at
the endpoints and positive in some interior point) and "minusinter -
vals" between them {g nonpositive, zero at endpoints, negative some=
where). On the first and last interval we drop the condition g=0 for

the endpoint a or b.

i

n 8
every plus= or minusinterval, except perhaps for the intervals at

For sufficiently small h, A (.) changes sign at least once on

both ends of (a,b). As g is continuous and I, , we know by theorem 6

and the induction assumption that A;g has atkmost k=1 sign changes,
and if exactly k=1 then with a plus ending. So there are at most k=1
plus~ or minusintervals (the ones with endpoints a or b again excep-
ted), and if exactly k=1 then the last one is a minusinterval (where
Ai g changes from =~ to +). This proves that g has at most k sign
changes, and if k then with a plus ending.

Theorems 4, 5 and 7 are now summarized:

Theorem 8. For k > 2 the Ik property plus continuity (or measur-

ability) is eguivalent to the C, property.

k
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