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A real-valued function f is called Ik if its k=th order differences 

are nonnegative regardless of the choice of the choice of the k+1 

equidistant poim,s involved, It is shown that measurability ~ boundedness 

except near endpoints~ and continuity are equivalent properties for Ik 

funct 10ns ( k ~. 2) defined on an int ervaL Moreover~ continuity and the 

Ik property together are equivalent to convexity of order k as defined 

by KARLIN_ The results are well known for k=2 (convex functions)o 

This report is the first of two preliminary reports discussing 

g ies of Ik functions that will be needed in research now in pro

gress at the Mathematisch CentrumfI'he one~] will appear shortly, 

2u Definitions 

Throughout this paper,, f will be a function with finite real values 

defined on an open interval (a,b), where a= - 00 and b = 00 are allowedo 

The letter h will always denote a positive real number, and k a positive 

integerc 11Measurable 11 stands for Lebesgue measurableo 

Definition 1c For all x t (a,b-kh) 

f(x)d~f k-1 f(x+h) _ L'lk-1 
6h h 

f(x) 

and for all ~ (a,b) lih 
0 f(x) d~f f(x)c X 

Clearly this 

6.k 
k . l-j (~) ( 2. 2,) f(x) \ f(x + jh) o = l \= h 

j=O a 

Th asymmetric definition of the k=th order difference, where x 

denotes the lowest argument and not the middle oneJ is more convenient 
k for our purposes, We note that 6h " (x) 1.s a linear operator on the 

space of all real valued finite functions, 



Definition 2o The function f is called Ik (increasing of type k) if, 

for all h > 0 and all x ( (a,b - kh), we have t,~ f(x) ~ Oo It is 

called Dk (decreasing of type k) if the reversed inequality holds for 

all hand x, and t\c (monotone of t~pe k) if it is either Ik or Dko 

Of course r1 means nondecreasing~ while I 2 means convex, in the 

sense 

{2o3) f(x+y) < f(x) + f(y) 
2 - 2 

If f is k times differentiablei Ik is equivalent to the nonnegativity 

of _the k-th derivativeo It is clear that an Ik function is not 

necessarily lo for j < ko 
J 

It is well known that there exists convex functions which are 

discontinuous and unbounded on every intervalo From any Hamel basis 

one can construct many functions f such that f(x+y) = f(x) + f(y). 

Inserting this equality in (2o2), one finds that these functions are 

not only convex but also Ik for higher ko µnless f is lin·ear they are 

not r 1 ~ as t,~ f{x) = f(x+h) = f(x') = f(h), and f has sign. changes when 

it is not linear (and possibly also when it is linear)o 

To exclu:11:e such pathological examples, one could define convexity 

by 

f(Ax + (1-l)y) ! l f(x1 + (1-l)f(y) for O <A< 1o 

It is known ( see eogo [2] po 116-117) that an r2 function is bounded 

and continuous, and satisfies (2o4), as soon as it is assumed to be 

meas~abl~o In section 3 a similar result for Ik functions with k > 2 

is derived oy an adaptation of the proof for k=2o We shall see in 

section 4 that the continuous (or measurable) Ik functions are 

precisely KARLINus convex functions of order k (see definition 4 below)o 

Definition 3o A function f has k si~n chan~es, if k+1 is the maximal 

number of points x, < x2 < 0 o 0 < ~+1 such that either f(x.) is 
J. 

positive for odd k=i and negative for even k-i [we call this: k sign 



changes with a _Elus ending.j or f'(xi) is positive for even k-i and 

negative for odd k-i [with a minus endin~ o 

Definition 4" A function f is Lik (convex of order k);, if for each poly= 

nomial p{x) of degree at most k-1, the function f-p has at most k 

sign chan5es~ and if exactly k then with a plus endingo 

Definition 3 is essentially KARLIN's definition of the number 

v-(f) of (strong) sign changeso Definition 4 is given by KARLIN and 

PROSCHAN [3] with a "plus beginning"~ ioeo f(x 1 ) positive in our 

notation; so f is Ck in our sense iff (-)kf is Ck in the sense of 

[3] pc 7320 In [ti] Po 3l-1-4 one finds definition 4 with the restricition 

that the leading coefficient of p should be positivec Consideration 

of the cases k=1~2 (nondecreasing and convex functions) makes it 

desirable to remove this restrictiono 

3o Measurability@ boundedness and continui~ 

.~eorem 1 o A measurable Mk fun ct ion defined on (a, b) :is bounded on 

every closed subinterval of (ajb)o 

Proofo As the case k=1 is trivial we shall assume k;: 2o Suppose f 

were unbounded in a neighbourhood of x0 € (at b) ; there would exist 

for t = min (b~x0 , x0-a, 1) and for every N a point ~l € (x0-;£ jJ 

I k £ x0+h) with lf(xN) >2 N, We shall show that for each h.::, 2k ,.. the 

inequality lr(¾r=jh) I > N holds either for at least one index 

j iE {1!12,ooqk} (case A) or for at least one index j E { -1,,1~2,ccoj) 

k=1} (case B)o 

If f is Ik and f(xN) < = 2kN, it is obvious from 

< - 2~ + 
k 

I 
j=1 

that we are 1n case Ao The same conclusion 1s seen to hold if f is Dk 



and f(x..) > 2kNo In the two remaining cases ~f is I, and f(x ... 1 ) > 2~~ 
1\J k r,; I~ 

or f is Dk and f("¾r) < = 2 iD we constder ti! f(xN- (k-1 )h) and we 

find in a similar way that we are in case Bo 

F . J def [ / 2 ) o or each y +n = xN - e:. , ~ we define 

{.j=1,2~ooo~k)o 

It is obvious that these mappings preserve the measurability of sets 3 

the relations 

µ(Q.(E)) = ! µ(E) 
J J 

(j=1 ~2,a o 0 ,k), 

whereµ denotes Lebesgue measure, hold for all intervals E and by 

the uniqueness of the extension for all measurable sets Ea 

In case A, if we put ~ d~f J ('\ {xi! f(x) I > N} i then ~ is 

measurable~ and we shall show that 

k. 
u 

j=1 

In fact for x E J there exists j ~ {1~2,ooo,k} such that ~ 1-j(~-x)/ 

k E; ~$ and this implies by (3o2) 

(3o5) X = Q, (x..=x)/k) t Q. (A__) o 
J .N J -~ 

From (3c4) and µ{J) = ;z follows that µ(~j(~)) > e:/(2k) for at least 

one j € {1,2~·000,k}~ so by (3o3) 



In case B we put BN d~f[¾r = r./2, ~ + e/(2k)] f'\ {xi lr(x)!>Nffo 

Then BN is measurable and 

k=1 
\J 

j=O 

for if there is a j ~- {1,2iooo~k-1} with ~I= 

x l Q/BN)~ and if xN = {-1)(¾1-x)/k E: BN then 

j ( XN=X) /k ~· BN then 

x e: Q0 (BNL 

As before we find µ (BN) .~ s/ (2k2 ) o 

Now in both cases we have found a set measure at least E/(2k2 ) 

which is contained in CN d~f (x0=e~ x0+dn{xllf(x)! > N} o 

0 ' ' 0 ( ) /( 2.) The decreasing sequence {CNJ, with 11,CN ,:: E .2k for all N~ con= 

verges towards C d~f (x0-s ® x0+e:) n {xi! f(x) I = 00 } o This leads to 

a contradiction as f was assumed to have finite values on (aib)o 

Theorem 2o If f is bounded on every closed subinterval of (a,,b) and 

f is Mk for some k > 2. then f is continuous on (a~b)c 

Proofo From (2o1) we find~ by introduction on ni for all positive 

integer J'. 

/J.n = /J.n 
j-1 n+1 (308) f(x+jh) f(x) + l /J.h f(x+ih); h h i=O 

/J.n = /J.n 
j 

n+1 (309) f(x-jh) f(x) = I h 
f{x=ihL 

h h i=1 

The proof is now based on the following lemmas 

Lem.mao If f is bounded on every closed subinterval of (a,b), and 

S means g lim Lim f(x+ph) = 0 for all integer p > - 1 and all 
m MO h 

x € (a,b), then for m > implies S o 
m 

Proof of the lemmao Let Sm+i hold for some m > 1 and suppose that 

1im sup ti.: f(y+qh) = E: > 0 
h+ 0 

for some s >O, some y f (a~b) and some q > 



Choose c > a an<'l d < b such that y €, (,;; ,d) • then there exists a constant 

M such that ! f{x)! < M for x ( [c,d] a Consequently we havej for all 

positive integer n~ all h > 0 and all x l [e:, d=nh] • 

( 3 C 
-,•"" '1 • ' j r(x) I < 2~o 

Choose an integer N >max{~~ 2m+i M} and select 

(3o12) h < min , d=y J 
lY=C~ 2 ' 

N +q+m+1 

such that simultaneously 

(3o13) 

and 

(3a14) 

1 ffy+qh) > -' N 

~m+ 1 f(y+qh+jh) 
h 

for J = o ~ 1 , o o o ,rr 2 

This is possible because of (3o10) and 

, 0 1 N2 

S o With (3a8) we find for 
m+1 

J= .1,,000, 

{ '3 1"' , U I)} ~m 
h 

1 :rl 1 f(y+qh+jh) >,.;., = 
N 2N3 = 2N ' 

and with (308) and (3o 11) 

(3o16) 

which contradicts (3a11)o We next derive a contradiction from 

lim inf ~: f(y+qh) = = £ < 0 
h+O 

for some£> 0~ some y € (a~b) and some q ~ - 1, 



by rewriting the preceding proof with from (:3c13) onward each in

equality 11 > C" replaced 11 < =C 11 " As both ( 3 o 10) and ( 3 o 17) lead to a 

contradiction$ S must hold and the lemma is provedo 
m 

To prove the theorem, w-e observe that Sk_ 1 follows from the 

boundedness and the Mk propertyo For if f is Ik, then (3c10) for 

m=k-1 leads to a contradiction just as in the proof of the lemma: we 

have only used Sm+1 in ( 3 o 14) 5 and the nonnegati vi ty of the k-th 

differences 1s even strongero If f is Dk and (3c10) would hold for 

m=k=1 * then select N as before and h < (y-c)/(N2+1) such that (3c 13) 

holds" By ( 3 "9) ;, ( 3 o 13) and the Dk property we find 

1 ' 1 2 f(y+qh=jh) > ...:. for J=O, .•, a o o ,N ~ 
N 

and from ( 3 o 9) , ( 3 o 11 ) and ( 3" 18) follows 

(3. 19) k-? 6 -
h 

2 f(y+qh=N h) k-2 
> = 2 M 

N2 
+-> 

N 

again contradicting (3o11)o A contradiction is derived from (3a17) 

for Dk f as in the lemma,, and for Ik f because we can derive then 
k 2 k-2 (3o19) with< - 2 = M instead of> 2 Mc Thus Sk-i must hold, 

By repeated application of the lemma we arrive at s1 , 1,e, for 

p=O and p=-1 

(3o20) lim 
h-l-0 

' f::. 1 f(x): Q 
h 

and lim 6~ f(x-h) = O, 
h+O 

which means continuity from the right and from the lefto 

From theorems 1 and 2 and the fact that continuous functions are 

measurable. we find; 

Theorem 3, For }): functions defined on an interval~ measurabili ty I 

boundedness on every closed subinterval. and continuity are equivalent 

prnvided k .:::, 2, 



4o Convexity of order k 

Theorem 4o Any Ck function is Iko 

Proofo Let f be Ck (definition 4) and suppose that 

t.k f(c) = - s·<o~ 
h 

for some e: > 0,, some h > 0 and · some c IE, (a, b=kh) " In the polynomial 

of degree at most k=1 

k=2 
P(x) d~f + \ Po L 

j=O 

J 
pJ. +1 TI (x=c=m...~) = 

m=O 

we define the coefficients p. successively for j=Oj)1,ooo,k=1 by 
J 

requiring 

f(c+jh) - p(c+j~) = (-)k=j-1 2=k £ 

k=1 
For any polynomial p(x) = I a xm it is clear that 

m=O m 
k=1 
I a (x+jh)m = 

m=O m 

k=1 
= I a 

m 

m k k . k l (~) xm-i hi l (=) =J ( .) ji = O; 
i=O 1 j=O J m=O 

there are several ways to show that the :last sum over J is zero for 

i=0~1~voo,k=1; see eogo [1],, Ilo 12 problem 1po 

So=£= ll: f(c) = ti: {r(c) = p(c)}® and we use (2o2) and (4o3) 

to find 

k-1 
f(c+kh) = p(c+kh) = - £ + l 

j=O 

-k 
£ = = 2 E:o 



=9-

Now f-p has exactly k sign changes~ with a minus endingo As this 

contradicts the Ck property, ( 4o 1) was incorrect an1 +> is Ik" 

Theorem 5o A Ck function is continuous if k > 2o 

Proofo Let y be a discontinuity point of a Ck function f, but suppose 

f is continuous in (y=cj y) and (y, y+c) for some c > Oo As Ck im

plies Ik, this means by theorem 3 that for O < o < c/2 there is a 

number M such that I f(x)I < M if x €: [y-c+o II y--o] or x ~ [y+o,y+c-0], 

while f is unbounded on (y-o, y+o)o 

We now choose o < c/(2k), and suppose first there is an 

x ( (y-o, y+o) with f(x) < - 2~o Then by {2o2) 

ti~ 0 f(x-2kc5) < 
k k 

- 2 M + ( 2 -1 )M < 0, 

as x - 2j c5 € (y-c+o, y-o] for j=1 ,2, o co ,ko Suppose next there is an 

x E. (y-o~ y+o) with f(x) > 2~o In a similar way one finds 

as x + 2 a f [y+ o, y+c- a] and x + 2 0 - 2j a E. [r=c+ 6 ~y- aJ for 

j=2,3,ooo~k; hence f is bounded on (y-o~ y+o)o 

So the supposition that y is an isolated discontinuity point of 

the Ik function f leads to a contradiction; in each neighbourhood of 

each discontinuity point of an Ik function there is a new discontinui

ty point o 

But for a finite valued function f which is unbounded in any 

neigbourhood of an infinite number of discontinuity points~ it is 

clear that even subtraction of a constant will lead to more thank 

sign changes (as soon as we have 4k discontinuities this can easily 

be shown explicitly)o So the initial supposition of the existence of 

a discontinuity pointy was incorrect, and every Ck function is 

continuous o 

1 
Theorem 60 If for some k > 2 f is continuous and Ik, then l'I h f(,) is 

continuous and Ik_ 1, for all h > Oo 



Proofo Continuity is trivialo For Ik=l we use that 

A I A'j f(x) 
l.1h2 0 0 0 LI~ 

is nonnegative for all positive hi~ as soon as f is Ik and continuous" 

This will be shown by VAN ZWET in !5]: if all ho are integer multiples 
QO l 

of a fixed h > O\i) (408) can be rewritten as a sum of Li: -differences,, 

and the general case follows by continuityo We find by choosing 

h1=h2=o o o=hk- 1 that ll~f is Ik=i o . 

Theorem 7o If f is continuous and Ik then it is Cko 

Proofo The theorem is trivial for k=1; suppose it is true for k=1c 

Choose a polynomial p of degree at most k=i and put g(x) d~f f(x) = 

- p(x)a Then g is continuous~ so we can divide the domain of 

definition (a~b) in 11plusintervals 11 (where g is nonnegative, zero at 

the endpoints and positive in some interior point) and "minusinter -

vals" between them (g nonpositive, zero at endpoints, negative some

where)o On the first and last interval we drop the condition g=O for 

the endpoint a or bo 

For sufficiently small h, ll~ g (a) changes sign at least once on 

every plus- or minusinterval;1 except perhaps for the intervals at 

both ends of (atb)u As g is continuous and Ik, we know by theorem 6 

and the induction assumption that ll~g has at most k-1 sign changesi 

and if ex11ctly k=1 then with a plus endingo So there are at most k-1 

plus- or minusintervals ·(the ones with endpoints a orb again excep

ted)~ and. if exactly k-1 then the last one is a minusinterval (where 
1 

L.ih g changes from = to -1-)" This proves that g has at most k sign 

changesj and if k then with a plus endingo 

Theorems 4, 5 and 7 are now summarized~ 

Theorem 80 Fork~ 2 the Ik property plus continuity (or measur

ability) is equivalent to the Ck propertyo 
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