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1o Introduction and results 

Let x 1) be a one-dimensional random variableo Define the 

three probabilities P+, p_ and Po by P+ = P(.!, > O), p_ = P(,! < o), 

Po= P(,! = O), so that P+ + P_ +Po= 1o A random sample of 

observations.!, 9 ,2£2 , o. o, ~ of 1,! is given and the hypothesis to 

be tested is 

G0 : P+ ~ P_ 

against the alternative hypothesis 

G1 : P+ > P_o 

In [2) it is shown that the uniformly most powerful unbiased 

(UMPU) test of G0 against G1 is the one-sided sign test, 

disregarding the observations equal to zeroo If a, is the 

prescribed size of the test and E. the number of observations 

different from zero, this test can also be described as a 

conditional binomial test of size a of the hypothesis p+/p_ ~ 19 

against p+/p_ > 1, given E. = no To obtain the exact size a,. 

this test procedure requires randomization in the boundary 

points of the conditional critical regions (if n=O, G0 should 

be rejected with probability a). 

We remark, that in practical applications this kind of 

randomization is often thought undesirableo HEMELRIJK [1] 

proved, that if no randomization is applied and the boundary 

points are included in the conditional acceptance regions, 

the power of this'test is never smailer than the power of 

the test where the observations equal to zero are equally 

divided between the two classes x > 0 and x < Oo 

The power of the test is usually expressed as a function 

of P+IP_o For a given alternative p+/p_ the power also 

depends on p=1-p0 , the probability of the event.!=, Oo For 

fixed p+/p_ the power of the exact size-a test is obviously 

a strictly increasing function of p. However, in some situations 

alternatives P+-p-=d may also be of interesto 

1) Random variables will be distiguished from fixed numbers(e.go 

from values they assunie in an experiment) by underlining their 

symbolso 



Now consider two characterist1cs A and B, which each 

member of a population may or may not possess, and denote 

the complement of A and B by A and B respectivelyo The 

probabilities of the four possible combinations can be 

displa;yed in a 2x2 table: 

B B 

P(B) P(B) 
A random sample of size N is drawn from this population and 

we wish to test the hypothesis concerning the marginal 

distributions 

H0 : P(A) ;f P(B) (or equivalently p 12 ~ p21 ) 

against the alternative hypothesis 

H1 : P(A) > P(B) (or equivalently p 12 > p21 ) 

Let n be the number of elements in the sample possessing the 

properties Ar-. B or A nBo Let m be the number of elements in 

the sample with the property Ar,., Bo It is well known (cf [2}, 
Cho4) that the 'ITT,WU size-a test of H0 against H1 is given by 

the critical function (the probability with which H0 should 

be rejected) 

( 1 ) ~(m,n) ={ i(n) if 

m > c(n) 

m = c(n) 

m < c(n), 

where the arithmetical functions c(n) and y(n), 0 ~ y(n) < 1, 

are determined by the relations 

(2) n=O, 1, ooo,N 

(E0 denotes the expectation under the hypothesis p 12 = p21 )o 

If we define 
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(3) 

the test given by (1) and (2) is the conditional binomial 
# 

size-a test of the hypothesis p12 ~!against the alternative 
# 1 0 p 12 > 2 ,. given E,_ = no If n = O, HO must be rejected with 

probability Cto In fact this test is completely identical 

with the sign test described above, if we identify the 

occurrences of A r-. B and A "i'L Hence, if no randomization 

is used in the boundary points of the conditional critical regions, 

the property proved by HEMELRIJK also applies hereo 

Restricting the parameter space to the subspace satisfying 

p12 ~ p21 , HO is replaced by H0 : P(A) = P(B), equivalent with 

p12 = p21 o This hypothesis is lmoWil_Ets the hypothesis of symmetry 

in a 2x2 tableo The test is obviously not affected by this res

trictiono 

The above test is sometimes called Mc NEMAR's test, since 

Mc NEMAR first advocated the use of this test in the social 

sciences, be it in a slightly different form. A detailed 

description is given in [3]. 

The power of the test may again be expressed as a function 

of p12/p21 o For a fixed alternative p 1/p21 the power still 

depends on p and is in fact a strictly increasing function of 

po However$ in some applications, where the marginal probabilities 

are essential, the ratio p12/p21 is irrelevant and o~e prefers 

to express the power of the test as a function of the marginal 

probabilities P(A) and P(B)o If the events A and Bare 

independent$ p12/p21 = P(A) { 1-P(B) } / P(B) { 1-P(A)}. 

This case was considered by WALD ( [4], Cho 6), who constructed 

a sequential test of HO against H1 $ based on the test (1). 

However, if A and Bare not independent, it is impossible to 

write p12/p21 as a function of P(A) and P(B) alone, unless 

both p 11 and p22 are known, a most unusual situation. Since 

P(A)-P(B) = p 12 = p21 , it seems a reasonable approach in such 

cases to consider the power of the test for given p12 - p21 • 
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For the sign test this corresponds with the consideration of 

alternatives with fixed p - po 
+ = 

Consider therefore a fixed alterpative 

(4) P(A) - P(B) = p 12 

The definitions (3) and (4) imply d ~ p ~ 1o We want to investi~ate 

the behaviour of the unconditional power of the test (1) as a 

function of p for fixed d, For given E. = n the alternative (4) 
* corresponds to the alternative p12 = ~ + d/2p in the 
. * 

conditional binomial testo Hence p12 decreases asp increases 

and the conditional power decreases asp increases for every 

fixed n > Oo However 9 asp increases larger values of n are 

more likely and hence the unconditional power increases as 
0 * p increases for a fixed p 12 > ~o The following theorem shows 

that the first effect is in general more important than the 

second one~ 

THEOREM: For a fixed alternative (4) the unconditional power 

of the randomized size-a test defined by (1) and (2) is 

(i) independent of p for all sample sizes N satisfying 

either a~ 2-N or 1 - a~ 2-N 

( ii )a strictly decreasing function of p for all sample sizes N 

satisfying 2-N < a < 1 - 2-N 

for all p in the interval [d 9 1] o 

The rather elaborate proof of this theorem will be given in 

section 2o The theorem also holds for the sign test if we 

replace the alternative (4) by p+ - p = d (> 0) and define 

p = 1 - Poe 

If one does not want to use a randomized test, the pairs 

(m, n) for which O < ¢ (m, n) = y(n) < 1 may be included in the 

acceptance region of the test, resulting in a nonrandomized 

.test with level of significance a" but size a' < a. The theorem 
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is not necessarily true for this modified test, as is 

illustrated by the following exampleo Let a and N satisfy 
=N -N+1 o o o • 2 ~a< 2 o The critical region of the nonrandomized 

t.est now contains only one point, (m 11 n) = (N 9 N)o The 

power of this test against the alternative (4) is equal to 

pN(; + d/2p)N = 2-N(p + d)N, a strictly increasing function 

of po However, as N tends to infinity and a and p remain 

bounded away from O and 1i the effect of the above modification 

ofthe test on the power becomes negligibleo Hence we may 

expect that the power of the nonrandomized test roughly behaves 

like the power of the randomized test for moderate values of a 

and p and large No 

At the end of this report three tables are given, where 

the powers of the randomized and nonrandomized test are shown 

for N = 25, 100 and 1000~ a= 005 and various values of p 

and do The tables indicate that the influence of p on the 

power is rather important. 

2. Proof of the theorem 

The critical region of the test (1) is the union of the 

critical regions of the one=slded conditional binomial size-a 

tests for given n = n, n = O, 1, ooo, N. Denote such a 

critical region by Co For n=O this region is degenerate. 
n 

For n > 0 a region C contains h+1 points m = n-h, n-h+1, ••• ,n n 
with positive probability, where h ~ 0 depends on n and the 

point m = n-h is contained in C with probability y(n) 
n 

satisfying 

n 
( 5) 1 ~ y ( n) = La - 2-n l ( j) ] / ( ~) > 0; 

J =n-h+1 

the h points n-h+1, ooo, n are contained in C with probability 1. 
n 

We have 



LEMMA~ If for a given n ( 1 ~ n < N) the region C contains 
n 

exactly h+1 points with positive ~robability, then C 1 n+ 
contains at least h+1 and at most h+2 points with positive 

probabilityo 

Proof~ Let C contain exactly h+1 points with positive 
n 

probabilityo Then 

a = P0(cn) > P0 (~ ~ n-h+1 I ~=n) 

(P0 denotes the probability under H0 ) and hence 

P0{~ ~ n-h+2 I 11=n+1) < P0(~ ~ n-h+1 I E_=n)< a ~ 

ioeo Cn+i contains at least the h+1 points n-h+1, n-h+2, oo•, 

n+1 with positive probabilityo On the other hand 

a= P0 (c ) ~ P0 (m ~ n-h I n=n) 
n - -

and hence 

P (m >. n-h I n=n+1) > P (m ~ n-h I n=n) ~ a 9 
0- - o- -

ioeo Cn+1 contains at most the h+2 points n-hi n-h+1, 000 9 

n+1 with positive probabilityo 

Let k+1 (k >. 0) be the number of points contained with 

positive probability in CNo Then for n > 0 the regions 

can be grouped into k+1 mutually disjoint sets Vh, 

{c} 
n 

h= O, 1, ooo, k, where Vh is the collection of those 

conditional critical regions containing exactly h+1 points 

with positive probabilityo In view of the preceding lemma 

the index of the·· set V containing C is non-.decreasing in 
n 

no Moreover, if we assign the degenerate region c0 to the set 

v0 j none of the sets v0 , V1, ooo, Vk is emptyo As a result of 

these considerations we can define a unique set of integers 

0 ~ n1 < n2 < ooo < nk < N such that 

(6) for 
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for h= 19 2, OOOj k-1o If we define no=_, and nk+1= N, then 

(6) also holds for h=0 and h=ks and the relations (5) and (6) 
yield 

(7) 

The power of the test (1) against the alternative (4) can now 

be written as 

13N\ d; p) = 

k 0 h+1 
= r I 

h=0 n=nh+1 

k nh+1 
= I l 

h=0 n=nh+1 

(8) 

+ (n~h)y(n)O+ !p)n-ho- ;p)h} = 

(: )( i-p)N-n { 2-n I I (~) (p+d)m(p-d)n-m+ 
m=:h-h+1 

Differentiating (8) with respect top we obtain 

h-1 } 
+(n=h) [ a-2-n l (jj] (p+d)n-h-1 (p-d)h + 

j=0 

N [ h-1 (n)(1-p)N-n 2-n l (~)m(p+d)n-m (p-d)m-1 + 
m=1 
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(9) 

N N 
where we have applied the identity (N-n)(n)= (n+1)(n+1) in the 

terms corresponding with differentiation of the factors (1-p)N-n 

in 8No 

We shall investigate the sign of this derivativei assuming 

d < p < 1o The following well known identity will be needed in 

the sequel~ 

( 10) 

for integer-valu~d s and all r o 

Gathering the terms with n=nh+1 in (9) and call~ng their 

sum S(nh+1), we have (h=O, 1, ooo, k) 

( N )( )N-n -1 S ( nh + 1 ) = nh + 1 1-p h x 

{ 
-n - 1 h= 1 n + 1 n -m 

x 2 h m~O (m~1 )(m+1)(p+d) h (p-d)m+ 

h-1 nh+1 nh-h h 
+(n -h+1) [ a-2-nh- 1 l ( , ) ] (p+d) (p-d) + 

h j=O J 

-n = 1 h-2 n + 1 n -m 
+ 2 h l ( h 1) (m+1) (p+d) h (p-d)m + 

m+ 
m=O 

+ h 
-nh-1 h-1 nh+1] 

[a-2 I ( , ) 
j=O J 

nh-h+1 h 1 
(p+d) (p-d) - + 

-n h-2 n +1 n -m 
- 2 h l ( h ,)(m+1)(p+d) h (p-d)m+ 

m+1 
m=O 

~-h+1 h 1} 
(p+d) (p-d) - o 

The first., third and fifth term within the braces cancel out 

except for a term with m=h-1 o Writing 



and combining the remaining terms we have 

N-n -1 n -h 
S(nh+1) = (~+1 )(1-p) h (p+d) h (p-d)h-1 x 

-n = 1 h- 1 nh + 1 
(11)-2d(n-h+1) [a-2 h I ( J. )] } • 

h . 0 J= 

The first term within the braces in (11) is zero, since from (10) 

h=1 nh +1 
(n+1)(-I ( J·)+2 

h . 0 J= 

h-2 
I 

j=O 

h=1 n h-1 n 
=<n +1)(- I (~)-I<~)+ 

h j=O J j=1 J 

nh 
( j) ) = 

From (7) we derive that the second term within the braces in 

(11) is strictly negative if nh > h-1 and zero if nh=h-1 

(the definition of n 0 s n 1 , ooo, nk+ 1implies that nh ~ h-1)o 

Hence 

(12) 

< 0 

if 

if 

n = h-1 
h 

n > h-1 
h 

h = 0 1 1, oao, kc 

Next consider the terms in (9) with n satisfying nh+2 ~ n ~ nh+ 1 

call their sum S (nh+2~ nh+ 1), h=O, 1, coo~ k. Such a sum 

is void if and only if nh+ 1 = nh+1. Suppose nh+1 > nh+1. Then 
nh+1 

'i' N ( )N-n 

and 

S ( nh +2, nh+ 1 ) = l ( n) 1-p x 

n-1 n n 
[ -2n ( m ) +(n-m) (m) + (m+1) (m+1 )] + 



It is easily verified that the first term within the braces is 

zeroo The second term may be written as 

(14) ( )n-h( )h-1 [ =n p+d p-d h a -2 
h n 
I (j)1, 

j=O 

and the third term within the braces in (13) is equal to (apply (10)) 

( )n-h-1( )h [ -n p+d p-d -ha+ 2 h 

h-1 n-1 h-1 n-1 ] 
= l < 0 ) = I ( 0-,)) = 

·oJ .• J ~ J= J= ! 

( 15) 
h 

( )n-h-1( )h [' _2-n , (n)] p+d p-d h a l j o 
j=O 

It follows from (7) that the expression between square brackets 

in (14) and (15) is nonpositive, therefore the sum of (14) and 

(15) is also nonpositiveo Hence 

We consider the case nk= k-1 ~ 0 somewhat more closelyo In view 

of (6) nk=k-1 implies 

P0 (~ ~ 1 I n = nk+1 = k) <a. 

Hence fork~ 1 

PO (E!_ ~ 2 I 1:,=k+2) £'. PO(~ ~ 1 I .!!. = k) < a, 

ioe. Ck+2 contains more than k+1 points with positive probability. 

Therefore nk=k-1 ~ 0 implies N < k+2 for otherwise CN would 

contain more than k+1 points with positive probability, contra

dicting the definition of k. If N=k, nk+ 1=nk+1 and S(nk+2, nk+1)=0o 

If N=k+1i S(nk+2, nk+ 1) = 0 if and only if a= 1+2-N(cfo(15)). 

Thus we have proved 



( 17) S(nk +2, nk+l) = 0 if nk=k=1 ~ 0 and N=k 
-N or if nk=k-1 ~ oi N=k+1 and a=1-2 
-N < 0 if nk=k-1 ~ o, N=k+1 and a<1-2 o 

Since 

a k k 
ap ~N(d; p)= l S(nh+1) + I S(nh+2, nh+ 1), 

h=O h=O 

we have shown (cfo(12), (16) and (17))that 

with equality if and only if one of the following conditions is 

fulfilled 

(a) k=O 

(b) k > 0~ nk=k='l and either N=k or a=1=2-N 0 

Since (a) is equivalent with a:;;: 2-N and (b) is equivalent with 

a~ 1-2-N, the proof of the theorem is completeo 
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TABLE 1 

Power of the UMPU test of P(A) ~ P(B)~ N=25t Cl.=oO5o 

The entries on every second line are the powers of the nonrandomized 

testo 

p 0 1 0 15 o2 025 o3 035 o4 o5 0 75 1 
d 

0 1 0376 0318 0275 0243 0220 0203 0 189 0 169 0 141 0 126 

0098 0 12'1 0 127 0 125 0 120 0116 0 113 0 111 0 101 o064 
o2 0800 0671 0585 0523 0475 0406 0308 .259 

0579 0493 0427 0380 0348 0310 0244 0 154 

o3 0967 0886 0818 0 711 0541 .447 

0909 0797 0716 0616 0466 0306 

TABLE 2 

Power of the UMPU test of P(A) ~ P(B); N=10O, a=.O5o 

The entries on every second line are the powers of the nonrandomized 

testo 

c02 005 0 1 0 15 o2 o3 o4 o5 075 1 

002 0284 0205 0 150 0 127 0114 0100 0091 0086 0079 0074 

0051 0086 0086 0085 0080 0074 0070 0067 0062 0066 

005 0782 0472 0357 0295 0230 0 195 0173 0 142 0 126 

0564 0348 0277 0232 0185 0 159 0142 0 117 0 115 

0 1 0992 0859 0739 0576 0475 0408 0 311 0259 

0976 0801 0675 0515 0421 0359 0270 0241 

TABLE 3 

Power of the UMPU test of P(A) ~ P(B) ; N=10OO, a=.O5o 

The entries on every second line are the powers -0f the nonrandomized 

test. 

p 0005 001 002 005 0 1 o2 o3 o5 075 1 
d 

0005 0777 0471 0295 0173 0 126 0098 .087 0078 0072 0069 

0560 0347 0232 0 142 0106 0087 0079 0072 0067 0064 

001 0990 0737 0408 0259 0 174 0 143 0 1 ·15 0 100 0092 

0971 0673 0359 0227 0 157 0130 0 107 0094 0087 

002 ~, 0891 o64o 0409 0312 0226 0 180 0 156 

=~1 0865 0603 0382 0292 0214 0 171 0 148 


