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1, Introduction and results

1)

Let x * be a one=dimensional random variable. Define the

three probabilities p , p_ and p, by p, = P(x >0), p_=P(x <0),
Py = P(x = 0), so that p, + P_* Py = 1. A random sample of
observations Xqs Xpo 000y Xy of x is given and the hypothesis to

be tested is

In [2] 1t i1s shown that the uniformly most powerful unbiased

(UMPU) test of G, against G, is the one-sided sign test,

disregarding theOObservatio;s equal to zero, If o, is the
prescribed size of the test and n the number of observations
different from zero, this test can also be described as a
conditional binomial test of size o of the hypothesis p+/p_ € 1
against p+/p_ > 1, given n = n, To obtain the exact size a,.
this test procedure requires randomization in the boundary
points of the conditional critical regions (if n=0, G, should
be rejected with probability o).

We remark, that in practical applications this kind of
randomization is often thought undesirable. HEMELRIJK [1]
proved, that if no randomization is applied and the boundary
points are included in the conditional acceptance regions,
the power of this test is never smaller than the power of
the test where the observations equal to zero are equally

divided between the two classes x > 0 and x < 0,

The power of the test is usually expressed as a function
of p_'_/pmo For a given alternative p+/p_ the power also
depends on p=1-po, the probability of the event x # 0, For
fixed p+/p_ the power of the exact size-o test is obviously
a strictly increasing function of p. However, in some situations

alternatives p,-p =d may also be of interest.

e o am o e e e oD m

1) Random variables will be distiguished from fixed numbers(e.g.
from values they assume in an experiment) by underlining their

symbols,
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Now consider two characteristics A and B, which each
member of a population may or may not possess, and denote
the complement of A and B by & and B respectively. The
probabilities of the four possible combinations can be

displayedin a 2x2 table:

B B
APy, | Pyo P(A)
APy [ Ppp| P(A)

P(B) P(B)

A random sample of size N is drawn Tfrom this population and
we wish to test the hypothesis concerning the marginal

distributions

Hy P(A) < P(B) (or equivalently Pip € Ppy)

against the alternative hypothesis

H1 s P(A) > P(B) (or equivalently Pyo P21)

Let n be the number of elements in the sample possessing the
properties A~ B or & "B, Let m be the number of elements in
the sample with the property Am B, It is well known (cf [21,

Ch.Y4) that the UMPU size-a test of H. against H, is given by

0
the critical function (the probability with which HO should
be rejected)
1 m > c(n)
(1) ¢(m,n) =< y(n) if = c¢(n)
0 ' m < e(n),

where the arithmetical functions c¢(n) and y(n), 0 5 y(n) < 1,

are determined by the relations

®

(2) EO {¢(_II_1_,_I_1_) |£1_=n}=0t, n=0,1 cooy N

(EO denotes the expectation under the hypothesis Py = p21)°

If we define
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(3) P=DPyp * Py s DPyp =Pn/Ps
the test given by (1) and (2) is the conditional binomial
size-0 test of the hypothesis ﬁ?e £ 3 against the alternative

L3
Py > 3, given n=n, If n = 0, H, must be rejected with

probability a. In fact this test gs completely identical

with the sign test described above, if we identify the

occurrences of A ~ B and & A~ B. Hence, if no randomization

is used in the boundary points of the conditional critical regions,

the property proved by HEMELRIJK also applies here,

Restricting the parameter space to the subspace satisfying
Pyp % Pyys Hy is replaced by Hy = P(A) = P(B), equivalent with
Pyp = Ppyo This hypothesis is known as the hypothesis of symmetry
in a 2x2 table. The test is obviously not affected by this res-

triction.
The above test is sometimes called Mc NEMAR's test, since
Mc NEMAR first advocated the use of this test in the social

sciences, be it in a slightly different form. A detailed

description is given in [3].

The power of the test may again be expressed as a function
of p12/p210 For a fixed alternative p12/p21 the power still
depends on p and is in fact a strictly increasing function of
p. However, in some applications, where the marginal probabilities
are essential, the ratio p12/p21 is irrelevant and one prefers
to express the power of the test as a function of the marginal
probabilities P(A) and P(B). If the events A and B are
independent, p,,/py, = P(A) { 1-p(B) } / p(B) { 1-pP(a)}.

This case was considered by WALD ( [4], Ch. 6), who constructed
based on the test (1),

a sequential test of H, against H

s
Howevery; if A and B arg not indep;ndent, it is impossible to
write p,i2/pe1 as a function of P(A) and P(B) alone, unless
both Pqq and Py, are known, a most unusual situation. Since
P(A)-P(B) = Py = Ppys it seems a reasonable approach in such

cases to consider the power of the test for given Pyp = Ppqe
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For the sign test this corresponds with the consideration of

alternatives with fixed P, = DP_o
Consider therefore a fixed alternative

() P(A) - P(B) = =d(> 0),

Pip = Py

The definitions (3) and (L) imply 4 € p € 1. We want to investigate
the behaviour of the unconditional power of the test (1) as a
function of p for fixed d, For given n = n the alternative (L)
corresponds to the alternative pTé = 3 + d/2p in the

conditional binomial test. Hence Pyo decreases as p increases

and the conditional power decreases as p increases for every

fixed n > O, However, as p increases larger values of n are

more likely and hence the unconditional power increases as

p increases for a fixed pTé > 1. The following theorem shows

that the first effect is in general more important than the

second one,

THEOREM : For a fixed alternative (L4) the unconditional power
of the randomized size-a test defined by (1) and (2) is

(i) independent of p for all sample sizes N satisfying

= =N

either a €2 or 1 = a g2

(ii)a strictly decreasing function of p for all sample sizes N

satisfying oM g oT

for all p in the interval [d,ﬂo

The rather elaborate proof of this theorem will be given in
section 2. The theorem also holds for the sign test if we
replace the alternative (L) by p, -p_=4d (> 0) and define
p=1=Dp,

If one does not want to use a randomized test, the pairs
(my, n) for which 0 < ¢ (m, n) = y(n) < 1 may be included in the
acceptance region of the test, resulting in a nonrandomized

test with level of significance a, but size a' < a. The theorem
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is not necessarily true for this modified test, as is
illustrated by the following example., Let a and N satisfy

oM ¢ o < o

. The critical region of the nonrandomized

test now contains only one point, (m, n) = (N, N). The

power of this test against the alternative (L) is equal to

pN(% + d/2p)N = Z'N(p + d)Ns a strictly increasing function

of p. However, as N tends to infinity and o and p remain
bounded away from O and 1, the effect of the above modification
ofthe test on the power becomes negligible. Hence we may

expect that the power of the nonrandomized test roughly behaves
like the power of the randomized test for moderate values of a

and p and large N.

At the end of this report three tables are given, where
the powers of the randomized and nonrandomized test are shown
for N = 25, 100 and 1000, a = .05 and various values of p
and d. The tables indicate that the influence of p on the

power is rather important.

Proof of the theorem

The critical region of the test (1) is the union of the
critical regions of the one-sided conditional binomial size-a
tests for givenn =n, n =0, 1, c0.., N. Denote such a
critical region by Cna For n=0 this region is degenerate,

For n > 0 a region C, contains h+1 points m = n=h, n-h+1, ...,n
with positive probability, where h > O depends on n and the

point m = n=h is contained in Cn with probability y(n)

satisfying
n
(5) 132 v(n) = [a-2" LM I17G) o
j =n=h+1 Y

the h points n-h+1, ..., n are contained in C with probability 1.
n
We have
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LEMMA : If for a givenn ( 1 € n < N) the region Cncontains
exactly h+1 points with positive probability, then Cn+1
contains at least h+1 and at most h+2 points with positive

probability.

Proof : Let Cn contain exactly h+1 points with positive

probability. Then
o = PO(Cn) > P, (m 2 n=h+1 | n=n)
(PO denotes the probability under Hd) and hence

Po(g'z n=h+2 | n=n+1) < Po(g_a n-h+1 | n=n)< a ,

i.es Cn+1 contains at least the h+1 points n-h+1, n-h+2, c..,

n+1 with positive probability. On the other hand

(mVZ n-h | n=n)

0''n 0 == v
and hence
PO(E_Z n=h | n=n+1) > Po(g 2 n=h | n=n) 3 a,
i.eo Cn+1 contains at most the h+2 points n-=h, n=h+1, ..o,

'

n+1 with positive probability.

Let k+1 (k 2 0) be the number of points contained with

positive probability in C_., Then for n > O the regions {Cn}

N

can be grouped into k+1 mutually disjoint sets Vh,

h= 0, 1, coc, k, Where Vh is the collection of those

conditional critical regions containing exactly h+1 points
with positive probability. In view of the preceding lemma
the index of the-set V containing'Ch is non-decreasing in

n. Moreover, if we assign the degenerate region CO to the set
VO, none of the sets VO’ V1, coog Vk is empty. As a result of

these considerations we can define a unique set of integers

0 g n, < n, < so0 % nk < N such that

(6) cnev for n <n¢

h Bp4q
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for h= 1, 2, .00, k=1, If we define n, = =1 and n 4= N, then
(6) also holds for h=0 and h=k, and the relations (5) and (6)
yield
_.n ,.n h n
(1) Z ( ) <a g2} () for n, <nsn ., b=0,1,.. ke

j=0 j=0

The power of the test (1) against the alternative (4) can now

be written as

By(ds p) =
- hgo n:Z:; (i)pn (1-p)i-0 {m=§h+1 (;)(%%)m(%n %)n_m+
+ ( o )Y(n)(2+ gp)n”h(%_ %)h} =
= hlfo nhi; (lr\i)(1~—p)1\1=_n {2-’!1 "I ?h” (B (p+d)™( ped) >
- Ty e
¢ b T )

Differentiating (8) with respect to p we obtain

%5 (d;p) =
K Bt . +1h.,1
=1 [- 1 Gt ™ {n 2T (Pn ) (pra) 2 (pea) ™
h=0 n=nh+2 m=0

+n [0‘—2““1 Z ( ] (p+d)n'h'1(p-d)h}+
J=0

h+1 N h-1
v ) <n>(1-p>N“n{z‘“ T (%) (mem) (prd) ™ (pec)™s
n=nh+1 m=0

hel _ _
tnen) [a-2™ T (3] (pra)® B (p-0)® } 4
L

nh+1
+ ) (§>(1-p N“n{ “"Z (B)m(p+d)™™  (p-a)™"

=n_+
n nh i
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_! |
(9) +n[a2™y (D] (p+d>“‘h(p-d>h‘i} I
5=0

N N
where we have applied the identity (N-n)(p)= (n+1)(n+1) in the
terms corresponding with differentiation of the factors (1-p)N-n

in BNo

We shall investigate the sign of this derivative, assuming
d < p < 1, The following well known identity will be needed in
the sequel:

r =1 -1
(10) (g) = (Fg7) + (§29)
for integer=valued sand all r.

Gathering the terms with n=n_+1 in (9) and calling their

h
sum S(nh+1), we have (h=0, 1, cc0, k)

8(n,+1) = (n,*1)(1-p)" 07"

=n, =1 h=1 n +1 n, =m
AT O ey o)™ (o)™
m=0 et

h=1 n_+1 n, =h
-1 h h
+(nhuh+1) [ a-2 fhety "~ ) ] (p+d) h (p-d) +
j=0 J
=n, =1 h=2 n, +1

n, =m
+2 B L« D ) (pra) P (pma)™ 4
m:

=n. =1 he=1 n,.+1 n, =h+1
h=1
+n fo2 B (B @) B (p-)™Ts
:20 J
J
mnh h=2 (nh+1
=0 m+1

-n, h-2 I =h+1
cmen (w2 P ]G] (o)™ (pea)®T |
j=0

=M

nh m
-2 ) (m+1) (p+d) (p=a) +

The first, third and fifth term within the braces cancel out

except for a term with m=h-1. Writing
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(p-a)® = (p+a) (p-a)2"-2a(p-a)P"

and combining the remaining terms we have

N-n, =1 n, =h
S(n,+1) = (niﬂ)(-a-p) B (pra) B (p-a)PT
-n, =1 n, +1 h=1 n, +1 h=2 n
< L2 P opra) Tn (8 Mo en (=T (P 0e2 L O3 T+

J=O j:O
«n, =1 h=1 n, +1

(11) = 2d(n =h+1) [o-2 P °zo ( hj )11,
J:

The first term within the braces in (11) is zero, since from (10)

manT 0y w2 T My
+1 - ° + 2 o =
" b P

he1 nh_ he1 nh he
=(n+1)(= 1 (-1 9+ 2]
3= j=1 j=

2n
h n
O(j_1))= —(nh+1)(hE1) =

’ h
= =h ( )o
From (7) we derive that the second term within the braces in

(11) is strictly negative if n, > h-1 and zero if nh=h-1

(the definition of Dgs Ny coos nk+11mplles that ny 2 h-1).
Hence
+ = 1 = he
(12) S(nh 1) =0 if n, = h-l
<0 if n, > he1 s h=0, 1, coo, ko

Next consider the terms in (9) with n satisfying n+2 sn<n

and call their sum S (nh+2, nh+1), h=0, 1, ..., k. Such a sum
is void 1f and only 1if nh+,1 = nh+1a Suppose nh+1 > nh+1u Then
n
h+1 N Nen
S(n, +2, nh+3) = ] (n) (1=p)" " x
n=nh+2

h=2 -
3 {2"’1 L (ot ™ (p-0)® [ w2n (") +(nem) () + (me1) ()] +
m=0
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h=1 n.1 h=1
(13) +p+a)® P (p-a)® [ cnave™ ' ] (7] )-2P(nen) ] (?)]}a
3=0 j=0

It is easily verified that the first term within the braces is
zero. The second term may be written as
n

j)-l N

and the third term within the braces in (13) is equal to (apply (10))

h
(14) (p+a)* (p-a)®n [« 2™ | ¢

o

J=0

' ' h=1 - he1 _
(2+0)* " (p-0)® [oma + 2 [ () + 272 ] (751 +

=0 J=O
h=1 pn.1 h=1 ,_1 J
- L 0:) = (- N | =
jzo J 551 J=1 ]
h
(15) = = (+) " (p-a)P 0 [ 2 § (D] .
j=0

It follows from (7) that the expression between square brackets
in (14) and (15) is nonpositive, therefore the sum of (14) and

(15) is also nonpositive., Hence

) =0 if n_..=n +1 (h =1, 2,,.., k) or if h=0

(16) S(nh+2, n ne1= Bh

h+1

€0 if n, . .> n +1 (h

pe1” Oy Ty 250004 K) o

We consider the case n, = k=1 2 O somewhat more closely. In view

of (6) nk=k—1 implies

Py (m 21 | o= n+l =k) <a.

Hence for k > 1

P, (m > 2 | n=k+2) < P

o m 2 1 I(E = k) < a,

olm

i.e, C contains more than k+1 points with positive probability.

k+2

Therefore nk=k~1 > 0 implies N < k+2 for otherwise CN would

contain more than k+1 points with positive probability, contra-

dicting the definition of k. If N=k, n ., .=n +1 and S(nk+2, n, . .)=0,

k+1 "k N k+1
If N=k+1, s(nk+2, n

) = 0 if and only if a= 1427 (cf.(15)).

k+1
Thus we have proved
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(17) S(nk+29 nk+1) =0 if n =k-1 2 0 and N=k .
or if n =k-1 2 0, N=k+1 and a=1=2"
<0 if n=k-1 > 0, N=k+! and a<1=27N,
Since
3 i i
= B.(d; p)= S(n, +1) + S(n, +2, n,__ .),
3p N nso B veo b h+1

we have shown (cf.(12), (16) and (17))that

3
33 By (a; p) s‘o

with equality if and only if one of the following conditions is
fulfilled

(a) k=0

(b) k > 0, n,=k-1 and either N=k or a=1-27,

Since (a) is equivalent with o < o and (b) is equivalent with

o 2 1-=2°°N9 the proof of the theorem is complete.
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TABLE 1

Power of the UMPU test of P(A) £ P(B); N=25, a=,05.
The entries on every second line are the powers of the nonrandomized

test,

p 01} 01.5 02 025 03 035 oh 05 075 1

o1 2376 .,318 .275 .243 ,220 .203 .189 .169 .1k1 126
,008 121 127 .125 L1120 ,116 .113 111 101 .06k

02 800 671 .585 .523 .L75 L0O6 .308 .259
.579 493 k27 ,380 .348 .310 244 154
03 967 ,886 .818 711 541 hhT

,909 797 .716 .616 .L66 .306
TABLE 2

Power of the UMPU test of P(A) < P(B); N=100, a=.05,

The entries on every second line are the powers of the nonrandomized
testo

P 02 .05 1 15 L2 o3 ol 05 0TS 1

.02 | .284 205 .150 .127 .11k 100 .091 .086 .079 .OTL
,051 086 ,086 .085 ,080 .07k .0T0 LO06T .062 066

.05 .82 L4712 35T 295 ,230 ,195 L1173 .1k2 .126
.56 348 277 .232 .185 .159 ,1k2 11T .115
o1 ,992 .859 ,739 .576 475 .LO8 .311 ,259

976 .801 675 .515 .kL21 ;359 270 241
TABLE 3

Power of the UMPU test of P(A) £ P(B) ; N=1000, a=.05.
The entries on every second line are the powers of the nonrandomized
test,

p | .005 .01 .02 .05 .1 .2 o3 .5 .75 1
a

,005| 77T b71 .295 173 .126 .098 .087 .078 .072 .069
.,560 347 .232 .1k2 106 .087 .,079 .072 .06T .06k

.01 ,990 73T .408 .259 .17k 143 115 100 .092
971 673 .359 .227 .157 .130 .107 .094 087
.02 ~t  ,891 ,6L0 409 .312 .226 .180 .156

ot .865 .603 .382 .292 .21k 171 ,1L48



