STICHTING
 MATHEMATISCH CENTRUM
 2e BOERHAAVESTRAAT 49
 AMSTERDAM
 AFDELING MATHEMATISCHE STATISTIEK

Report S 365

Existence and uniqueness of a stationary
distribution for a class of Markov chains on ($-\infty,+\infty$)
by

Jo Fabius

June 1966

1．The main theorem

Let $\left\{X_{n} n \geq 0\right\}$ be a Markov chain on（ $\infty_{\infty},+\infty$ ）with constant transition probabilities given by

$$
\left.\begin{array}{l}
P\left\{X_{n+1}=\alpha x+1=\alpha \mid X_{n}=x\right\}=p \\
P\left\{X_{n+1}=\beta x \mid X_{n}=x\right\}=q=1-p
\end{array}\right\} \quad \text { if } \alpha x+1-\alpha \neq \beta x
$$

and

$$
P\left\{X_{n+1}=\beta x \mid X_{n}=x\right\}=1 \quad \text { if } \alpha x+1-\alpha=\beta
$$

where p, α and β are constant parameters with values strictly between 0 and 1 ，and let F_{n} denote the distribution function of $X_{n}(n \geq 0)$ 。 Then the following is true：

A。 The probability is one that after a finite number of steps the process will enter the interval $I=[0,1]$ never to leave it again． i。e。

$$
P\left(\bigcup_{n=0}^{\infty} \bigcap_{m=n}^{\infty}\left\{X_{m} \in I\right\}\right)=1
$$

B．There is a unique stationary distribution；its distribution function F is continuous and is the unique solution of the functional equation

$$
F(x)=p F\left(\frac{x-1+\alpha}{\alpha}\right)+q F\left(\frac{x}{\beta}\right) \quad(x \in(-\infty,+\infty))
$$

under the sideconditions

$$
F(x)=0 \text { for } x \leq 0 \text { and } F(x)=1 \text { for } x \geq 1
$$

and

$$
\lim _{n \rightarrow \infty} F_{n}(x)=F(x) \text { uniformly in } x \text { 。 }
$$

2. Proof of A

It is clear that $\alpha x+1-\alpha \in I$ and $\beta x \in I$ whenever $x \in I$ 。 Thus the sequence of events $\left\{X_{n} \in I\right\}(n \geq 0)$ is nondecreasing and hence

$$
\begin{equation*}
\left\{X_{n} \in I\right\}=\bigcap_{m=n}^{\infty}\left\{X_{m} \in I\right\} \quad(n \geq 0) \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
P\left(\bigcup_{n=0}^{\infty} \bigcap_{m=n}^{\infty}\left\{X_{m} \in I\right\}\right)=\lim _{n \rightarrow \infty} P\left\{X_{n} \in I\right\} \tag{2}
\end{equation*}
$$

and $P\left\{X_{n} \in I \mid X_{0}=x\right\}=1$ for $n \geq 0_{0} x \in I_{0} A$ fortiori

$$
\begin{equation*}
\lim _{n \rightarrow \infty} P\left\{X_{n} \in I \mid X_{0}=x\right\}=1 \quad(x \in I)_{0} \tag{3}
\end{equation*}
$$

To show that (3) remains valid without the restriction $x \in I$, we note that we may think of the process $\left\{X_{n}, n \geq 0\right\}$ as being determined by its initial state X_{0} and a sequence of independent random variables $\left\{U_{n}{ }^{n} \geqslant 0\right\}$ with

$$
P\left\{U_{n}=1\right\}=1-P\left\{U_{n}=0\right\}=p \quad(n \geqslant 0)
$$

by means of the definition

$$
X_{n+1}=\left\{\begin{array}{ll}
\alpha X_{n}+1-\alpha & \text { if } U_{n}=1 \\
\beta X_{n} & \text { if } U_{n}=0
\end{array} \quad(n \geq 0)\right.
$$

Thus we can define two auxiliary processes by putting

$$
\begin{aligned}
& Y_{0}=Z_{0}=X_{0} \\
& Y_{n+1}=Y_{n} \quad Z_{n+1}=Z_{n}+1-\alpha \\
& Y_{n+1}=\beta Y_{n}, \quad Z_{n+1}=Z_{n} \quad
\end{aligned}
$$

Since $\alpha x+\prod_{\alpha=\alpha}<x$ whenever $x>1$, this definition and (1) imply
(4) $P\left\{X_{n} \in I \mid X_{0}=x\right\} \geqq P\left\{Y_{n} \leq 1\right\}=\sum_{j \geq \nu}\binom{n}{j} q^{j} p^{n=j} \quad(n \geq 0, x>1)$
where $y=-\frac{\log x}{\log \beta}$ ．Because both $\alpha x+1-\alpha>x+1=\alpha$ and $\beta x>x$ when $x<0$ ， a similar argument shows that
（5）$P\left\{X_{n} \in I \mid X_{0}=x\right\} \geq P\left\{Z_{n} \geq 0\right\}=\sum_{j \geq V^{B}}\binom{n}{j} p^{j} q^{n \propto j} \quad(n \geq 0, x<0)$ with $v^{8}=-\frac{x}{l_{-\alpha}}$ 。
From（3），（4）and（5）we obtain

$$
\begin{equation*}
\lim _{n \rightarrow \infty} P\left\{X_{n} \in I \mid X_{0}=x\right\} \quad\left(x \in\left(\infty \infty_{0}+\infty\right)\right) \tag{6}
\end{equation*}
$$

and hence A follows from（2）and

$$
P\left\{X_{n} \in I\right\}=\int P\left\{X_{n} \in I \mid X_{0}=x\right\} d F_{0}(x) \quad(n \geq 0)
$$

（dominated convergence）。

3．Proof of B

The essence of the proof is contained in Theorem 9 below，which is a special case of a more general theorem stated by DUBINS and FREEDMAN in［1］and proved in［2］．The proof given here is less general，since it was expressly constructed for the problem at hand。
Let β be the set of all bounded real＝valued functions on $(\infty,+\infty)$ and let

$$
D=\{g \in \mathcal{D} \mid g(x)=0 \text { for } x<0, g(x)=1 \text { for } x \geq 1\}
$$

For $g \in \mathcal{B}$ and $A \subset(-\infty,+\infty)$ we write

$$
\|g\|_{A}=\sup _{x \in A}|g(x)|
$$

and

$$
\|g\|=\|g\|_{(-\infty,+\infty)}
$$

$$
\operatorname{Tg}(x)=\operatorname{pg}\left(\frac{x-1+\alpha}{\alpha}\right)+q g\left(\frac{x}{\beta}\right) \quad(g \in \mathbb{B}, x \in(\infty,+\infty))
$$

is a linear operator which maps β into itself in such a way that

$$
\begin{equation*}
T g \in \mathscr{D} \quad(g \in \mathscr{D}) \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\|\mathrm{Tg}\| \leq\|\mathrm{g}\| \quad(\mathrm{g} \in \Re) \tag{8}
\end{equation*}
$$

Theorem 1：There exist an integer $\mathbb{N} \geq 1$ and a number $\rho \in(0,1)$ ， such that

$$
\begin{equation*}
\left\|T^{\mathbb{N}} g_{1}-T^{\mathbb{N}} g_{2}\right\| \leqq \rho \cdot\left\|g_{1}-g_{2}\right\| \text { for all } g_{1} \cdot g_{2} \in \mathscr{D} \tag{9}
\end{equation*}
$$

Proof：The definitions of T and \mathscr{D} imply that，for all $g_{1}, g_{2} \in \mathscr{D}$ and all $x>0$ ，

$$
\begin{aligned}
& \left\|T g_{1}-T g_{2}\right\|_{(-\infty, 1-\alpha)} \leqq q_{0}\left\|g_{1}-g_{2}\right\| \\
& \left\|T g_{1}-T_{2}\right\|_{[x, \infty)} \leqq p_{0}\left\|g_{1}-g_{2}\right\|+q_{0}\left\|g_{1}-g_{2}\right\|_{[x / \beta, \infty)}
\end{aligned}
$$

Because of（7）and（8），iteration gives

$$
\left\|T^{n} g_{1}-T^{n} g_{2}\right\|_{(-\infty, 1-\alpha)} \leqq q_{0}\left\|g_{1}-g_{2}\right\|
$$

and

$$
\left\|T^{n} g_{1}-T^{n} g_{2}\right\|_{\left[\beta_{8}^{n}\right)} \leq\left(1-q^{n}\right) \cdot\left\|g_{1}-g_{2}\right\|
$$

for all $g_{1}, g_{2} \in D$ and $n \geqq 1$ 。Hence（9）holds with

$$
\mathbb{N}=\min \left\{n \mid \beta^{n} \leqq q-\alpha\right\}, \quad \rho=\max \left(q, 1=q^{N}\right)
$$

Theorem 2：The restriction of T on \mathscr{D} has a unique fixed point F 。This function F is a continuous distribution function and $\lim _{n \rightarrow \infty}\left\|T^{n} g-F\right\|=0$
for all $g \in D$.

Proof：Let $g \in D$ and let N and ρ be such that（ 9 ）holds（ $N \geq 1,0<\rho<1$ ）． We have then，by virtue of（7），（8）and（9），

$$
\left\|T^{n+m} g=T^{n} g\right\| \leqq \rho^{\left[\frac{n}{N}\right]}\| \| T^{m} g-g\|\leq 20\| g \| \circ \rho \sum^{\left[\frac{n}{N}\right]} \quad\left(n_{0} m \geq 0\right) 。
$$

It follows that the sequence of functions $\left\{T^{n} g_{8} n \geq 0\right\}$ is uniformly Cauchy convergent and hence converges uniformly to a limit $\mathrm{F}_{\text {：}}$ necessarily an element of \mathcal{D} 。The invariance of F under T follows from the uniform convergence of $T^{n+1} g$ to F and the continuity of the operator T implied by（8）。
If $f \in \mathcal{D}$ is a fixed point of T ，then we have

$$
\|f-F\|=\left\|T_{f}^{N}-T^{N} F\right\| \leq \rho_{0}\|f-F\|
$$

and hence $\|f-F\|=0, i 。 e \rho f=F$ ，so that F is the unique fixed point of T in \mathscr{D} 。
To show that F is a continuous distribution function we take $g \in \mathscr{D}$ to be a continuous distribution function．Then，by the definition of $T_{\text {g }}$ the same is true for all $T^{n} g(n \geq 1)$ ，hence also for their uniform limit F ，and the proof is complete。

Let us now return to the Markov chain $\left\{X_{n} n \geq 0\right\}$ 。 Its definition implies that $F_{n+1}=T F_{n}$ and hence $F_{n}=T N_{0}(n \geq 0)$ 。Consequently B follows immediately from Theorem 2，except for the assertion that F_{n} converges uniformly to F in case $F_{0} \notin D_{0}$ ioe in case $P\left\{X_{0} \in I\right\}<1$ ．To show the validity of this assertion，let $\varepsilon>0$ 。 In view of A and（2）there is then an integer $m>0$ such that $P\left\{X_{m} \in I\right\}>1-\varepsilon \%$ Putting

$$
\mathrm{F}_{\mathrm{n}}(\mathrm{x})=P\left\{X_{\mathrm{n}} \leq x \mid X_{m} \in I\right\} \quad\left(\mathrm{n} \geq \mathrm{m}_{\mathrm{m}} \mathrm{x} \in\left(\infty_{0},+\infty\right)\right)
$$

we have，for all $n \geq m$ and all $x \in\left(\infty_{8}+\infty\right)_{8}$

$$
\left.F_{n}(x)=P\left\{X_{m} \in I\right\}\right\}_{0} F_{n}(x)+P\left\{X_{m} \notin I_{8} X_{n} \leqq x\right\}
$$

and hence

$$
\left\|F_{n}-F\right\| \leq\left\|F_{n}-\stackrel{\rightharpoonup}{F}_{n}\right\|+\left\|\hat{F}_{n}-F\right\|<\left\|\hat{F}_{n}-F\right\|+\varepsilon \quad(n \geq m)
$$

Since $\hat{F}_{m} \in D$ and $\hat{F}_{m+k}=T^{k} F_{m}(k \geq 0)$ ．Theorem 2 implies that \hat{F}_{n} converges uniformly to F as $n \rightarrow \infty$ ，and thus we obtain

$$
\lim _{n \rightarrow \infty} \sup \left\|F_{n}-F\right\|<\varepsilon 。
$$

Since $\varepsilon>0$ but otherwise arbitrary，the assertion follows．

References：

［1］LoE。DUBINS and $D_{0} A_{0}$ FREEDMAN，Random distribution functions， to be published in：Proceedings of the Fifth Berkeley Symposium on Probability and Statistics．
［2］$L_{0} E$ o DUBINS and $D_{0} A_{\circ}$ FREEDMAN，Invariant probabilities for certain Markov processes，to be published in Ann。Math。Statist．

