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1o The main theorem 

Let {X 9n > O} be a Markov chain on(-=,+=) with constant transition 
n -

probabilities given by 

and 

= ax+i=a IX = x} = n 

= Bx IX = x} = q = n 

P{Xn+, = Bx I Xn = x} = 1 

if ax+1-a-:/: Bx 

if ax+1-a = B • 

where p 1 a and Sare constant para.meters with values strictly between 

0 and 1, and let Fn denote the distribution function of Xn (n ~ O). 

Then the following is trueg 

Ao The probability is one that after a finite number of steps the 

process will enter the interval I = [o • 1] never to leave it again 1 

~o There is a unique stationary distribution, its distribution 

function Fis continuous and is the unique solution of the 

functional equation 

(x E. (-=,+=)) 

under the sideconditions 

F(x) = 0 for X < ... 0 and F(x) = 1 for X > - 1 • 
and 

lim Fn(x) = F(x) uniformly in X • 
n -+ex> 



2o Proof of A 

It is clear that ax+1-a ~ I and Sx EI whenever x t Io Thus the 

sequence of events {X E. I} (n > 0) is nondecreasing and hence 
n -

00 

( 1 ) {X € I} = n {X c I} n m (n ~ 0) II 

m=n 
00 00 

{Xm E I}) (2) 
p(n~O mQ 

= lim P{X E. I} n n-+-00 

and P{Xn E: I I X = x} = 1 for n > Oi XE Io A fortiori 0 -
(3) lim P{X E I XO = x} = (xE.I)c 

n-+ 00 n 

To show that (3) remains valid without the restriction x EI, we note 

that we may think of the process {X 9n ~ O} as being determined by 
n 

its initial state x0 and a sequence of independent random variables 

{Un 1n ~ O} with 

P{U =1} = n 1 - P{U =O} n = p (n ~ Q) I 

by means of the definition 

{ 
ax +1-a if u = 

xn+1 
n n = 

sx if u = 0 n n 

(n > 0) ... 

Thus we can define two auxiliary processes by putting 

1o = ZO = XO 

1n+1 = y s zn+1 = Z +1=a if u = 1 n n n (n > 0) ... 
yn+1 - SY 9 zn+1 = z if u = 0 n n n 

Since ax+1=a < x whenever x > 1 9 this definition and (1) imply 
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where v = - i~: ~ o Because both ax+1-a > x+1-a and ax> x when x < o. 
a similar argument shows that 

(5) ( n) j n-j . p q 
J 

(n ~ 0 9 X < 0) 

with v' = X 
- - 0 1-a 

From (3) 9 (4) and (5) we obtain 

(6) lim P{Xn €. I I x0 =x} {x E. {-=.+=)) e 
n-+= 

and hence A follows from (2) and 

{n ~ 0) 1 

(dominated convergence)o 

3o Proof of B 

The essence of the proof is contained in Theorem 1 below, which is a 

special case of a more general theorem stated by DUBINS and FREEDMAN 

in [1] and proved in [2]0 The proof given here is less general 8 since 

it was expressly constructed for the problem at hando 

Let 53 be the set of all bounded real-valued functions on(-=.+=) and 

let 

2) = {g E Y3 I g(x) = 0 for x < 0 9 g(x) = 1 for x ~ 1} o 

For g e:. :B and A c. (-=,+=) we write 

and 

II g IIA = sup lg(x) I 1 

X€A 

It is easy to see that the operator T1 defined on :J!:J by 

( ) (x-1+a) x Tg x = pg a + qg(!) (g E. ~IX E. (-=,+=)) I 



is a linear operator which maps !f3 into itself in such a way that 

(7) Tg E ,;[) (g E /J) ) 

and 

(8) II Tg II ~ I lg II (g € 33 ) C 

Theorem 1 ~ There exist an integer N ~ 1 and a number p E ( 0 ~ 1 ) 9 

such that 

Pro2fg The definitions of T and .2J imply that, for all g1 ,g2 e .;l) 

· and all x > 0 , 

I I Tg1 - Tg2 11 ~ qo 11 g1 - g2 I J 

(-00 9 '1-a) 

11 Tg1 - Tg2 11 r: ~ Po 11 g1 - g2 II + qo II g1 - g2 11 o 
L X t 00 ) [ x/ St 00 ) 

Because of (7) and (8) 9 iteration gives 

and 

for all g 19 ~ E. ::0 and n ~ 1 o Hence (9) holds with 

N = min {n J Sn~ 1-a} , N 
p = max (q,1-q) o 

Theorem 2: The restriction of T on2J has a unique fixed point Fo This 

function F is a continuous distribution function and lim 11 Tng - F 11 = 0 

for all g E. D> o 
n -+ oo 

Proof; Let g E. :JJ and let N and p be such that (9) holds (N ~ 19 0 < p < 1) o 

We have then, by virtue of (7), (8) and (9) 9 

l!Tn+mg = Tngll ~ Pffi]oJJ~g-gJJ ~ 2.JJglloP~] (n 9m ~ 0) o 



It follows that the sequence of functions {Tng,n ~ O} is uniformly 

Cauchy convergent and hence converges uniformly to a limit F1 

necessarily an element of.;D o The invariance of Funder T follows 
. n+1 F h . . from the uniform convergence of T g to and t e continuity of the 

operator T implied by (8)0 
If f € 2) is a fixed point of T9 then we have 

and hence 11 f -F II = 0 9 Leo f = F, so that F is the unique fixed 

point of T in 9) o 

To show that Fis a continuous distribution function we take g € .9J 
to be a continuous distribution functiono Then 9 by the definition of 

T9 the same is true for all Tng (n ~ 1) 9 hence also for their uniform 

limit F 9 and the proof is completeo 

Let us now return to the Markov chain {X 9n ~ O}o Its definition implies 
n 

that Fn+ 1 = TFn and hence F0 := TnF0 (n ~ O)o Consequently B follows 

immediately from Theorem 2, except for the assertion that F converges 
n 

uniformly to Fin case F0 1$.;1) 1 ioeo in case P{X0 EI}< 1. To show 

the validity of this assertion, let£> Oo In view of A and (2) there 

is then an integer m ~ 0~ such that P{Xm E. I} > 1-£~ 

Putting 
A 

F (x) = P{X < x I X e I} 
n n""' m 

F (x) = P{X e I}oi (x) + P{X ~ I 8X < x} 9 n m n m n• 

and hence 

< IIF -FIi + £ n (n ~ m) o 

Since Fm€ :J> and Fm+k = TkFm (k ~ 0) 9 Theorem 2 implies that Fn 

converges uniformly to Fas n ~ ®e and thus we obtain 
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lim sup 11 F - F 11 < t • n 

Since e: >· 0 but otherwise arbitrary, the assertion follows. 
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