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1, The maln theorem

Let

{Xn,n > 0} be a Markov chain on (-»,+») with constant transition

probabilities given by

and

whe

P{X_,. = oxtl-a | X_=x}=1p

n+1 n .} if ox+1-a # Bx
P{Xn+1 = Bx | X = x} = q = 1=p
P{Xn+1 = Bx | X = x} =1 if ax+l=a = B ,

re p, & and B are constant parameters with values strictly between

0 and 1, and let Fdenote the distribution function of X (n>0),

The

A

n the following is trues

The probability is one that after a finite number of steps the
process will enter the interval I = [Q,i] never to leave it again,

loeﬂ
-] o0
P(U N x €I}> =1
m
n=0 m=n
There is a unique stationary distribution; its distribution
function F is continuous and is the unique solution of the

functional equation

F(x) = pP(EE22) + fB)  (x € (==yt=))

under the sideconditions

F(x) =0 for x 0 and F(x) = 1 for x > 1,
and

lim Fn(x) = F(x) uniformly in x .
n »e



2, Proof of A

It is clear that ox+i=0 ¢ I and Bx € I whenever x € I, Thus the

sequence of events {Xn € I} (n 2 0) is nondecreasing and hence

(1) {x e1t= () {x eI} (n20),
m=n
(2) P<U M x eI}) = lim P{X_ e I}
=0 m=n n-+o n

and P{X €I | Xy =x} =1 rforn 20, xe& I, A fortiori

(3) lim  P{X eI | Xy = x} =1 (x e I).

n-+ *

To show that (3) remains valid without the restriction x ¢ I, we note
that we may think of the process {Xn,n > 0} as being determined by
its initial state XO and a sequence of independent random variables
{u 4n 2 0} with

P{U =1} = 1 - P{Un=0} =p (n20),

by means of the definition

1}
b

aXn+1~a if Un
X = (n > 0)
+ .
n+ BXn if U =

il
o
o

n
Thus we can define two auxiliary processes by putting

Y =2, =X

0 0 0
Y, =Y . Z, =Z+l-a if U =1 s o)
n+1 = BYn 3 Z =2 if U =20 o

n+1 n n

Since ox+1-a < x whenever x > 1, this definition and (1) imply

(8) P(X eI X =x}2Ply g1}= j2>v<?) gp? (n>0, x>1)



log x
log B
a similar argument shows that

where v = o Because both ax+1=a > x+1=0 and Bx > x when x < 0,

(5) P{X e I | X =x}zPlz 20}= ] <“) 29 (030, x <0)

jzvr M
with v = = "":'{"‘ °
T=0
From (3), (4) and (5) we obtain
(6) lim PIX eI | X, =x} (x € (==,+=))

n-—+w

and hence A follows from (2) and
P{X € I} = j P{X eI | %y=x} aF,(x) (n>0),

(dominated convergence),

3, Proof of B

The essence of the proof is contained in Theorem 1 below, which is a
special case of a more general theorem stated by DUBINS and FREEDMAN
in [1] and proved in [2]. The proof given here is less general, since
it was expressly constructed for the problem at hand.
Let 93 be the set of all bounded real-valued functions on (=,+=) and
let

D =1geB| glx) =0for x <0, g(x) =1 for x 2 1} ,

For g € B and A ¢ (==,+=) we write

lell, = sup le(x)]
Xe

and

e ll

ll8||(_m'+w) °

It is easy to see that the operator T, defined on & by

Tg(x) = pe52) + @) (e B, x € (==p4e))



i .

is a linear operator which maps % into itself in such a way that

(1) Tg € LD (geD)
and
(8) el < llell (geB) .

Theorem 1: There exist an integer N > 1 and a number p € (0,1),
such that

N
(9) 17V, - T'g, |l < polle =gyl for all g .8, € D

Proof: The definitions of T and -2 imply that, for all g118, € D

"and all x > O,

||Tg, = Teg, || < alle =gl
1 2 17 82
_m’j-a)

lITg, - Te, |l < polley =g, Il + aolley=e,ll s
x'oo) x/B.oo)

Because of (7) and (8), iteration gives

lI7%, - T8, < alle; =gl
=00 o T

“Tng'] 'Tng2“ §= (1-qn)°|lg1"g2 H

[8",=)

for all 81185 e D and n > 1, Hence (9) holds with

N = min {n | 8" < 1=al p = max (q,‘i«-qN) o

Theorem 2: The restriction of T on<d has a unique fixed point F, This
function F is a continuous distribution function and lim ||Tg-F|| =0
for all g € D, n=e

Proof: Let g € <D and let N and p be such that (9) holds (N1, 0<p< 1),
We have then, by virtue of (7), (8) and (9),

2 a
|| 7% - T || < pmolleg-gll < 2e||g|leo[§] (nym 3 0)
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It follows that the sequence of functions {Tng,n 2 0} is uniformly
Cauchy convergent and hence converges uniformly to a limit F,
necessarily an element of <0 ., The invariance of F under T follows

1g to F and the continuity of the

. +
from the uniform convergence of T
operator T implied by (8).

If f € D is a fixed point of T, then we have
N N
le-Fll = |[Tc -TF|l gecll£=F]

and hence ||f=~F|| = 0, ice. £ = F, so that F is the unique fixed
point of T in D,

To show that F is a continuous distribﬁtion function we take g € <D
to be a continuous distribution function. Then, by the definition of
T, the same is true for all T'g (n > 1), hence also for their uniform

limit F, and the proof is complete.

Let us now return to the Markov chain {X ,n 2 0} Its definition implies
that F_ . = TF_ and hence F_i= T°F. (n

n+1 n n 0
immediately from Theorem 2, except for the assertion that Fn converges
uniformly to F in case FO<$<QD, i.e, in case P{XO € I} < 1, To show

the validity of this assertion, let € > O, In view of A and (2) there

> 0), Consequently B follows

is then an integer m > O, such that P{Xm € I} > =gy

Putting

§n(x) = Pan < x| X € I} (n 2my x &€ (==,42))

we have, for all n > m and all x € (== +=),

F(x) = P{X_e I}oﬁn(x) +PIX_ & I,X g x}

and hence

lr, =%l < I7,-F I + IF, -7l < [IF -Fll+c (azm .

. S ) _ k . . e
Since F_ e D and Fax =TF) (k ; 0), Theorem 2 implies that F

converges uniformly to F as n -+ », and thus we obtain



-

lim sup l]Fn-Fll <€
n -+ o

Since € > .0 but otherwise arbitrary, the assertion follows.,
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