STICHTING

MATHEMATISCH CENTRUM

2e BOERHAAVESTRAAT 49
AMSTERDAM

AFDELING MATHEMATISCHE STATISTIEK

S 371
AN INPUT SYSTEM
FOR

LINEAR PROGRAMMING PROBLEMS

part 1

formal description of L.P. problems

by

Jac .M. Anthonisse

preliminary 4
21-1-69

The Mathematical Centre at Amsterdam, founded the 11th of February, 1946,
is a non-profit institution aiming at the promotion of pure mathematics
and its applications, and is sponsored by the Netherlands Government
through the Netherlands Organization for Pure Research (Z.W.O.) and the
Central National Council for Applied Scientific Research in the Netherlands
(T.N.O.), by the Municipality of Amsterdam and by several industries.

Summggx

The formal system presented in this report gives a syntactical definition
of linear programming problems.
This system can be used to construct a computer-program which accepts the

mathematical model of a linear programming problem as input.

Introduction

Any linear programming problem can be put into the

maximize c.X.

; 973

e B8

J

subject to the constraints

and

Xj io (j=1, oao,n)

In these formulas n, m, cj, bi and aij represent known numerical values.

The problem is to find optimal numerical values for the variables xj.

The formulation of an actual problem as a linear programming problem seldom

following form:

(1)

(2)

(3).

leads directly to formulas that are as simple as (1), (2) and (3).

Some examples of more complex constructions will be given now, the symbols x,

y and z denote variables.

j2 0 g=r

m n

0 321 RERE

m 1

121 321 ERIER
n.

m 1

(4)

(5)

(6)

(7)

(8)

(9)

a. .
_.Q- + = 1= + k=3 ¢ 1=
§1 bl X, +y, =g (J=1, eeey my k=j, cou, my 1=1, ..., ujk)

(10)

If a model contains complex constructions it may be & tedious task to put
the model into the standard form (1), (2), (3). This task must be performed
because the techniques for solving linear programming problems require

as "input" the columns of the standardized matrix of constraints.

Often, sequences of L.P. problems are solved which are all similar, in the
sense that the matrices of constraints have a common "structure". In such
cases a computer program can be written which generates columns of the
matrix of constraints (all columns, the "next" column, or a specified
column). The preparation of input for the program that solves the L.P.
problem is usually simplified by such a "matrix generator".

Another advantage is the decrease of storage requirements.

For the solution of a sequence of L.P. problems without a common "structure"

a "general matrix generator" might be usefull. The input for such a generator
should contain a description of the "structure" of the matrix. Without defining
the meaning of the term "structure" it may be stated that the mathematical
model of a linear programming problem contains a complete description of

the matrix of constraints. Thus the following input should be sufficient

for a "general matrix generator":

o) a mathematical model of the L.P., problem,

B) numerical values for the coefficients occurring in the model.

The present report is part of a project to construct a computer program that
approximates a "general matrix generator". In sections 1-6 a formal system
is presented, giving a syntactical definition of the concept "linear
programming problem", including a method to describe the numerical values
for coefficients in the model,

In section T some examples are given.

1. Basic Concepts, Syntax

(1.1) <letter>:=
alble|d|e|f|glnlilj|k|1|m]|nlo|p|a|r|s|t]ulv]w|x|y]|z

(1.2) <digit>:= 0|1]|2|3|4|5|6]|7|8|9

(1.3) <identifier>:= <letter>|<identifier><letter>|<identifier><digit>

(1.4) <natural>:= <digit>|<natural><digit>

(1.5) <decimal fraction>:=,<natural>

(1.6) <exponent part>:= 1O<natural>|10+<natural>|1o--<natural>

(1.7) <decimal number>:= <natural>|<decimal fraction>|<natural><decimal fraction>

(1.8) <unsigned number>:= <decimal number> |<exponent part> |

<decimal number><exponent part>
(1.9) <number>:= +<unsigned number>|-<unsigned number>
(1.10) <symbol>:= <letter>|<digit>|<other symbol>
(1.11) <sequence>:= <symbol>|<sequence><symbol>
(1.12) <string>:= {<sequence>}

(1.13) <identification>:= <string>

Basic Concepts, Semantics

The notation that is used to define the formal system is best explained by
an example. In definition (1.4) a "natural" is defined to be either a
"digit" or a "natural" followed by a "digit".

With the help of definition (1.2) the following examples of "natural" are

found.

0
01
35
Some examples of other concepts:
(1.3) i variable x1
(1.12) $Exampled

The concept "other symbol", used in (1.,10), is not defined in this report,
except for the provision that "i" is not an "other symbol". An "other
symbol" can occur in a "string" only, and may be a capital letter or any
symbol that can be reproduced in an implementation of the formal system.
A "string" does not influence the computations but is used to identify
the problem and the constraints, and may describe their physical meaning.

These "strings" can be reproduced in the solution of an actual problem.

2. Formulas and Linear Forms, Syntax

(2.1)
(2.2)

(2.3)

(2.k4)

(2.5)

(2.6)

(2.7)

(2.8)

(2.9)

(2.10)
(2.11)
(2.12)

(2.13)

<lower bound>:= <real formula>
<upper bound>:= <real formula>
<sum>:= SUM(<index>,<lower bound>,<upper bound>,<real formula>)

<real primary>:= <unsigned number>|<index>|<integer> |<real> |

<formula> | <sum>|(<real formula>)
<real factor>:= <real primary>L<real factor>t<real primary>

<real term>:= <real factor>|<real term>x<real factor> |

<real term>/<real factor>

<real formula>:= <real term>|+<real term>|-<real term> |

<real formula>+<real term>|<real formuls>~<real term>
<simple term>:= <variable>|<real term>x<variable>

<simple linear form>:= <simple term>|+<simple term>|-<simple term> |

<simple linear form>+<simple term>|<simple linear form>-<simple term>
<final sigma>:= S(<index>,<lower bound>,<upper bound>,<simple linear form>) -
<sigma>:= <final sigma>|S(<index>,<lower bound>,<upper bound>,<sigma>) i

<term>:= <simple term>|<sigma>| <real term>x<sigma>

<linear form>:= <term>|*<term>|—<term>]<linear form>+<term>

<linear form>-<term>

Formulas and Linear Forms, Semantics

A "real formula" is a rule to compute a numerical value. That numerical
value is found by the application of operators to operands. An operand
may be given in the form of a "real formula".

Apart from the operators addition (+), subtraction (-), multiplication
(x), division (/) and exponentiation (+) the system contains the operator
SUM. The value of a "sum" (2,3) is

e |1 <i<u)

in the usual mathematical notation, where f,1,i and u denote a "real

formula", "lower bound","index" and "upper bound" respectively.

The concept of "linear form" is essential for the definition of a linear
programming problem.

It occurs as objective function and as left hand side in a constraint.

A homogeneous linear form which, in the usual mathematical notation, can
be written neither using the J-symbol nor the "and so on" dots, is
equivalent with a "simple linear form" (2.9).

In the formal system, the)-symbol and the dots are replaced by a "sigma"

(2.11). The meaning of a "sigma" is
e | <t <u)

in the usual mathematical notation, where 1, i and u denote a "lower bound",
"index", "upper bound" respectively and f denotes either a "simple linear
form" or a "sigma'".

The facts that f does not denote a "linear form" and that each "linear

form" is homogeneous put some restrictions on the notation of a model.

In both a "sum" and a "sigma" nesting may occur, the "index" of a "sum"

may not be used, explicitly or implicitly, outside the "real formula"

of that sum.

Similarly, the "index" of a "sigma" may not be used, explicitly or

implicitly, outside the lower-level-sigma.

3. Declarations, Syntax

(3.1) <simple domain>:= <lower bound><<index><<upper bound>

(3.2) <list of simple domains>:= <simple domain> |

<list of simple domains>,<simple domain>
(3.3) <domain>:= (<list of simple domains>)
(3.4) <list of indices>:= <index>|<list of indices>,<index>
(3.5) <simple declarant>:= <identifier>
(3.6) <indexed declarant>:= <identifier>[}list of indices>]<domain>
(3.7) <declarant>:= <simple declarant>|<indexed declarant>
(3.8) <list of declarants>:= <declarant>|<list of declarants>,<declarant>
(3.9) <formula description>:= <simple declarant> = <real formula>

(3.10) <list of formula descriptions>:=

<formula description>|<list of formula descriptions>,<formule description>
(3.11) <declaration of indices>:= < >|i£§§§ <list of indices>;
(3.12) <declaration of integers>:= < >|inte5er <list of declarants>;
(3.13) <declaration of reals>:= < >|real <list of declarants>;
(3.14) <declaration of formulas> := < >|formula <list of formula descriptions>;
(3.15) <declaration of discrete variables>:= < >|discrete <list of declarants>;
(3.16) <declaration of continuous variables>:= < >|continuous <list of declarants>;

(3.17) <declaration part>:= <declaration of indices><declaration of integers>
<declaration of reals> <declaration of formulas>

<declaration of discrete variables><declaration of continuous variables>
(3.18) <subscript>:= <real formula>
(3.19) <list of subscripts>:= <subscript>|<list of subscripts>,<subscript>
(3.20) <subscripted>:= <identifier>|<list of subscripts%]
(3.21) <simple>:= <identifier>
(3.22) <index>:= <simple>

(3.23) <integer>:= <simple> |<subscripted>

(3.24)
(3.25)
(3.26)
(3.27)
(3.28)

<real>:= <simple>|<subscripted>
<discrete>:= <simple>|<subscripted>
<continuous>:= <simple>|<subscripted>
<formula>i= <simple>

<variable>:= <discrete>|<continuous>

10

Declarations, Semantics

The meaning of all identifiers used in the description of the linear programming
problem must be specified in the "declaration part" (3.17). Each identifier

has a unique type, determined by the declaration of that identifier.

By the "declaration of indices" each identifier occurring as an "index" in

the "list of indices" is defined to be of type "index".

By the "declaration of integers" (3.12), "declaration of reals" (3.13),
"declaration of discrete variables" (3.15) and the "declaration of continuous
variables" (3.16) each identifier occurring either as a "simple declarant" (3.5)
or as an "indexed declarant" (3.6) is defined to be of type "integer", "real",
"discrete" or "continuous" respectively.

By the "declaration of formulas" (3.14), each identifier occurring as a "simple

declarant" in a "formula description" (3.9) is defined to be of type "formula".

In the "domain" of an "indexed declarant" (3.6) the "lower bound" and "upper
bound" of each index of that "indexed declarant" is defined. In the domain
the indices must be given in the same order as in the list of indices.

If a "lower bound" or an "upper bound" depends on an index that index should

precede these bounds in the domain.

Identifiers of the types "integer" and "real" correspond with known numerical
values in the mathematical model, belonging to the set of integer and real
numbers respectively.

Identifiers of the types "discrete" and "continuous" correspond with
variables in the mathematical model. A "discrete" variable must have an
integer value in the solution of the linear programming problem.

Identifiers of the type "formula" identify a "real formula" and represent
numerical values. The numerical value of a "formula" is found by evaluating

the corresponding "real formula'.

A "simple" (3.21) and a "subscripted" (3.20) correspond with a "simple
declarant” and an "indexed declarant" respectively. The number of subscripts

must be equal to the number of indices.

11

b, Objective Function and Constraints, Syntax

(4.1) <objective function>:= <linear form>

(4.2) <objective part>:= MAXIMIZE : <objective function>
MINIMIZE : <objective function>

(4.3) <relation>:=< | > | =

(4.4) <constraint> := <linear form><relation><real formula> |

<linear form><relation><real formula><domain>
(4.5) <constraint description>:= <identification><constrains>

(4.6) <list of constraint descriptions>:= <constraint description>|

<list of constraint descriptions><constraint description>
(4.7) <constraints part>:= <list of constraint descriptions>
(4.8) <proper model>:= <objective part><constraints pars>

(4.9) <structural part>:= <identification><declaration part><proper model>

12

Objective Function and Constraints, Semantics

A linear programming problem consists of an objective function and a
number of constraints. Each index used in the objective function must
have a "lower bound" and an "upper bound" defined wiﬁhin the objective
function.

In a "constraint" the "lower bound" and "upper bound" of an index are
either defined within the "linear form" or "real formula" or in the
"domain". In the latter case each value of the index corresponds with

a set of rows in the standardizedmatrix of constraints.

If, in a domain, a "lower bound" or an "upper bound" depends on an index

that index should precede these bounds in the domain.

13

5. Initialization and Modification, Syntax

(5.1)
(5.2)
(5.3)

(5.4)
(5.5)
(5.6)
(5.7)
(5.8)
(5.9)
(5.10)
(5.11)
(5.12)
(5.13)

(5.14)
(5.15)

<list of numbers>:= <number>|<list of numbers><number>
<simple piece determination>:= <natural>|+<natural>|-<natural>|<index>

<piece determination>:= <simple piece determination>[

<piece determination>,<simple piece determination>
<order>:= < >|(<list of indices>)
<piece>:= <identifier> <identifier>[<piece determination>]<order>
<portion>:= <piece><list of numbers>
<list of portions>:= <portion>l<list of portions><portion>
<initialization>:= INIT <identification><list of portions>
<post optimization>:= POST <identification><list of portions>
<range>:= RANGE <number><number>
<parametrization>:= PARA <identification><range><list of portions>
<modification>:= <initialization>|<post optimization>|<parametrization>

<list of modifications>:= < >|<modification>

<list of modifications><modification>
<numerical part>:= <initialization><list of modifications>|< >

<linear programming problem>:= OPEN <structural part>

<numerical part> CLOSE

"

Initialization and Modification, Semantics

In an "initialization" (5.8) and a "post optimization" (5.9) numerical
values are assigned to "integers" and "reals", and an actual linear
programming problem, determined by these values, is to be solved.

The values are given in "portions" (5.6), the "piece determination"

(5.3) and the "order" (5.4) specify the correspondence between a "subscripted"
and the "list of numbers". This is best explained by an example and some
Algol-60.

Let a be declared as

integer a[i,j,k] (1<i<3,1<j<2,1<k<jl

The piece a[i,j,k:[

defines the correspondence:

for i: = 1,2,3 do
for j: = 1,2 do

for k: = 1 step 1 until j do

a[i,j,k:[: = next number;

The piece a[i,j,kl (j,i,k)

defines the correspondence:

for j: = 1,2 do
for i: = 1,2,3 do
for k: = 1 step 1 until j do

a[i,j,kﬂ: = next number;

The piece ali,2,k] (k,i)
defines the correspondence:
for k: 1,2 do
for i: = 1,2,3 do

a[i,E,Kl: = next number;

The terms "post optimization" and "initialization" indicate that the
computations to solve the new problem should or should not be based upon

the solution of the previous problem.

In a "parametrization" (5.11) the "list of portions" is preceded by a "range"
(5.10) defining an interval of real numbers. Each real number in this interval

corresponds with a linear programming problem.

15

Let q be declared as
real q;

and let q have, by an initialization or a modification, the value 3.

Then

RANGE + 5 +8 q+ k4

means
that for each value of p (+ 5 < p < + 8)the linear programming problem that

is found by substituting for q the expression
3+hbxop

1s to be solved.

Parametrization is similarly defined for subscripted reals and integers.

16

6. Alphabetic list of concepts

constraint

constraint description
constraints part

continuous

decimal fraction

decimal number

declarant

declaration of continuous variables
declaration of discrete variables
declaration of formulas
declaration of indices
declaration of integers
declaration of reals
declaration part

digit

discrete

domain »

exponent part

final sigma

formula

formula description
identification

identifier

index

indexed declarant
initialization

integer

letter

linear form

linear programming problem
list of constraint descriptions
list of declarants

list of formula descriptions
list of indices

list of modifications

list of numbers

list of portions

list of simple domains

(b.4)
(k.5)
(%.7)
(3.26)
(1.5)
(1.7)
(3.7)
(3.16)
(3.15)
(3.14)
(3.11)
(3.12)
(3.13)
(3.17)
(1.2)
(3.25)
(3.3)
(1.6)
(2.10)
(3.27)
(3.9)
(1.13)
(1.3)
(3.22)
(3.6)
(5.8)
(3.23)
(1.1)
(2.13)
(5.15)
(4.6)
(3.8)
(3.10)
(3.4)
(5.13)
(5.1)
(5.7)
(3.2)

.

list of subscripts
lower bound
modification
natural

number

numerical part
objective function
objective part
order

other symbol
parametrization
piece

piece determination
portion

post optimization
proper model
range

real

real factor:

real formula

real primary

real term
relation

sequence

sigma

simple

simple declarant
simple domain
simple linear form
simple piece determination
simple term

string

structural part
subscript
subscripted

sum

s&mbol

term

unsigned number
upper bound

variable

17

(3.19)
(2.1)
(5.12)
(1.4)
(1.9)
(5.14)
(4.1)
(4.2)
(5.4)
(1.10)
(5.11)
(5.5)
(5.3)
(5.6)
(5.9)
(4.8)
(5.10)
(3.24)
(2.5)
(2.7)
(2.4)
(2.6)
(4.3)
(1.11)
(2.11)
(3.21)
(3.5)
(3.1)
(2.9)
(5.2)
(2.8)
(1.12)
(4.9)
(3.18)
(3.20)
(2.3)
(1.10)
(2.12)
(1.8)
(2.2)
(3.28)

18

T. Examples

This section contains some linear programming problems, formulated

in accordance with the formal system developed above.

Only the "structural part" of each problem is given.
Although an implementation of the formal system might contain the
convention "all variables have lower bound = 0 unless specified

otherwise", all lower bounds are given explicitly.

19

OFEN ¢ Example 1, Curve fitting with ninimum deviations,

see: Walter D. Fisher,
A note on curve fitting with minimum deviations by linear programming,
Journal of the American Statistical Association 56 (1961) 359-3623

dindex i,J;

dnteger n,k;

real x[1,§]J(1 £i<n, 1 £J<k);

contipuous ul[i](1 €£i <n), v[i](1 £1 < n),
ylil(1 £1 £k), z[1](1 £1 £ X);

MININIZE: S(i,1,n,u[i] + v[i])
dequationsy
ufi] = v[i] + y[1] - 2[1] +

S(is2,k,x[1,5] x y[3] = x[1,3]1 % 2[j]) = x[1,1](1 £ 1 < n)

dnon-neg ufi] >0 (1 €<1<n)
non-neg V. vii]> o0 (1 €£1<n)
non-neg . v[ilzo0 (1 <J<k)
non-neg z[i] >0 (1 €3 <k)

20

OPEN ¢ Example 2, Uptimal production,

see: W. Dinkelbaci und F. Steffens,
Gemischt ganzzahlige lineare Programme 2zur Loesung gewisser
Entscheidungsproblene,
Unternehmensforschung 5 (1961) 3-1b,

Model IITH

index i,Jsr;

intecer n,nsub[i](1 < i < n),k,m;

real gli,r](1 <i<n, 1 <r <nsub[il]),
c[i,r](1 £1i €n, 1 Sr <nswli]),
alj,i,r](1 £€j<w 1<£1<n, 1 <r <nsublil),
p[j1(1 £ <m);

discrete ul[i,r](1 <i<n,1<r <nsubli]);

continuous x[i,r](1 <1 <n, 1 <r <nsubl[i]);

MAXIMIZE: S(i,1,n,S(r,1,nsublil], c[i,r] x x[i,r]))

4processy
8(111:1'1:3(1';1;113‘1]3[1]: alj,i,r] x X[i:r])) Sb[J]“ <J .<..m)

<t'bounds>*

x[i,r] ~ gli,r] x uli,r] €0 (1 <i<n, 1 <r <nsuli])

4at most one partial process}
S(r,1,nsub[i], uli,r]) £1 (1 £1i < n)

{at most k processesy
S(i,1,n,S(r,1,nsub[i], u[i,r])) <k

{non-neg 'L"lj

ufi,r] >0 (1 <i<n, 1 <r <nsubli])

4non-neg x}

x[1,7]1 20 (1 €£i<n, 1 <r <nsub[i])

21

OPEN ¢ Example 3, Optimal production,
see: example 2

index i,j,7;
integer n,m,k,nsub[i](1 € i < n);
real alj,i,r](1 €3 <my, 1 <1 <n, 1 <r <nsub[i]),

b[j1(1 £ J <m),
c[i,r](1 €1 <n, 1 £r <nsub[il),
beta[i](1 < i < n);

formula g = r X beta[i]/nsub[il];

discrete uli,r](1 <£i<n, 1<r <nsub[i])

continuous x[i,r](1 <i <n, 1 <r <nsubl[i])

.
s
.
J

MAXIMIZE: S(i,1,n,S(r,1,nsubl[i], c[i,r] x x[i,r]))

dprocess}

S(151,m,8(r,1,nsubli], alj,i,r]x x[i,r])) £ [51(1 £ J < m)

4bounds}

x[i,r] ~ gxuli,r] 0 (1 <i<n, 1<r <nsubli])

<fa.t most one partial processﬁ»
S(r,1,nsub[i], ufi,r]) <1 (1 £1 <n)

4at most k processes}
S(i,1,n,S(r,1,nsub[i], u[i:r])) Sk

4non-neg u}

ufi,r] 20 (1 <i<n, 1 <r < nsubl[i])

4non-neg x}
x[i,r120 (1 €i<n, 1 <r <nsublil])

22

OPEN ¢ Example L4, Capacity planning,

see: Robert B, Fetter,
A linear programming model for long range capacity planning,
Management Science 7 (1961) 372-378
log[t] = natural logarithm of 1 Jr/ak:}

ipdex i,J,%;

integer n,r,m,
capt[j1(1 £ J S r),
k[31(x+1 < j Sm=1);

real a[i,j](2 <ig<n, 1<J <),
bli,jl@ <i<n+1,1<j<r),
c[i,j]J(1 £i<n, 1£J <m),
s[i,5]J(1 €£1i<n, 1< Jj<m1),
log[t](1 £t <n),
capd[i](1 £ i < n);

formula. dis = 2.7188 A (- sumM(t,1,1i,log[t]));

continuous cap x[1,j](1 £i<n, 1<j<m),
cap af[i,j](1 €£i<n, 1<j<m1),
cap b[1,j](2 < i <n#1, TSI <r),
cap s[1,j](1 €i<n, 1< j<m1);

MINIMIZE:
8(111,n:S(J:1:m:diS X C[i,-j] X cap x[i){j]))
+ S(i,1,n,5(j,1m-1, dis x al[i,j] x cap a[i,j]))
+ S(i,1,n,5(j,1,m=1, dis x s[i,j] x cap s[i,j]))
- S(i,2,n+1,8(j,1,r, dis X b[i,j] x cap b[i,j]))
¢demands>{»
s(j,1,m,cap x[i,i]) = cap d[i](1 < i < n)
4owned 13
capx[1, j] - capal[1, j] + caps[1, jE O (1 £j<r)
<towned 2:}

cap x[1,3] - S(t,1,i,cap a[t,j] - cap b[t,j]) + cap s[1,j]1= 0
(1<jgr,2<1<n)

23
41eased}

cap x[1,j] - s(t,i - k[j] + 1,i,cap alt,j]) + cap s[i,j] =0
(r+1 < j<m-1, 1 <1i<n)

4terms of service}
S(is2,cap t[j] + t, cap b[i,j])
- S(i,1,t,cap ali,j]) >0
(1<j<r,1<t<n~cap t[j] +1)

4non neg cap x*

cap x[1,j] 20 (1 £i<n, 1S J<m)
4non neg cap a*
cap a[i,jl 2 0 (1 Sisn, 1< <m-1)

‘tnon neg cap b:l»
cap b[i,j]1 20 (@ <i<n+1, 1< j<r)

4non neg cap s}

cap s[i,j] 20 (1 <i<n, 1< j<m1)

| AN

2L

OPEN < Example 5, Traffic signals,
see: John D.C. Little,
The synchronization of traffic signals by mixed-integer linear
programming ,
Operations Research 14 (196C) 568-59k,
LP2}

index i;
real k,cap t1,cap t2,n,
afil(1 <i <n-1),

r[i](1 <

fi](1 £
S

1

o]
~
-

n=1),
n-1),
i <n-1),
i <n-1),
n'2),
n-2),
i _<_n"2),
i £n-2);

1);

e[i](1

h bar[i](1
g bar[1](1
discrete m[il](1 <1
continuous b,bbar,z,

INIANTAIAINIATATIAIATATA

S
1}

wlil(' €1 < n),
w bar[i](1 < i < n),
t[1](1 €1 < n-1),
t bar[i](1 €1 < n-1);
MAXIMIZE: b + bbar
$11% bbar = kX b = 0
41223 z > 1/cap t2
{1203 z < 1/cap t1
413a% wli]l + b < 1-r[i] (1 £ 1 £ n)
41303 w bar[i] + bbar < 1-r[i](1 < i < n)
41k wli] + w var[i] - w[i+1] - w bar[i+1]

+ t[i] + t var[i] - m[i] = ~r[i] + r[i+1](1 < i < n-1)

25

{415aa} alil/flilx z -t[1i]1 <O (1 <1i<n-1)
<415ab% t[i] - d[i)/e[ilx z <O (1 €1 <n-1)
4150a} a[i]/f var[i]x z - t bar[i] £ O (1 <i<n-1)
4156034 t var[i] - d[i]/e bar[i]lx z £ O (1 <1< n-1)
41602} al11/n[i] % z -a[i)/a[i+1] x t[i+1]

+t[i] £ 0 (1 £1<n-2)
41and alil/ali+1] x t[1i + 1] - t[i]

- d[il/elilx 2z £0 (1 £1 £n-2)
€1(vax d[i)/h bar[i] x z = 4[1)/d[i+1] x t bar[i+1]

+t bar[i] £ 0 (1 £1gn-2)

410003} al1)/d[i+1] x t bar[i+1] - © bar[il]

-a[il/g bar[il x 2 £0 (1 £1 £ n-2)
non negﬂ b >
non neg b bar >
on neg wli] >
non ne w bar[i] >

-

2¢

OPEN ¢ Example €, Fermentation,
see: E. Koenigsberg,
Some Industrial Applications of
Linear Programming,
Operations Research Quarterly 12 (1961) 105-11k}

index i,Jsn;
integer capn,capm,tm;
real cm,cf,cpscb,ew, mu,phi,pisbeta,chi,

m[i](1 £ 1i<capn), hp[i](1 < i < cam),
hf[i](1 < i <capn), hpf[i](1 <1 < cam),
hp[i](1 £ 1 < capn), hpp[i](1 < i < capn),
m[i](1 <1 <capn), hpp[i](1 £ i £ capn),
mw[i](1 £ i <capn), hpw[il](1 <1 < cam),
plantcap,warecap,capf0,capp0,capw0,d[
continuous m[1](1 < i < capn), mp[i](1 £ i < cam),
fl1](1 £ 1 < capn), mh%1315wmb
pli](1 £ i S capn), pp[i](1 <1 £ cam),
b[i](1 <1 <capn), bp[i](1 <1 £ camn),
w[i](1 £ i < capn), wpli](1 S i < capn),
capf[j](1 < j < capn), capp[j] (1 £ < capn),
capw[j](1 £ J £ cam);
MINIMIZE: S(1,1,capn,mu X cm x mp[i] +
phi X ef x fp[i] +
pi x epx pp[i] +
beta X ¢b X bp[i] +
chi X ew X wp[i])
43 £[i] + fp[i] - m[i-tn] - mpli-tm] =

(tm+1 < 1 £ capn)

S -capf[J] + S(i,1,3,
f[1] + fp[i] - p[i] - pp[i]) = =-capfO

i]1(1 £i £ capn);

27

5% 5(n,0,9,4[.i-n] + vp[.j=nl]) - capf[j] £ C (10 £ j £ capn)
4564 capf[j] - 5(n,0,29,0[.j-n] + rplj-n]) £ 0 (30 £ j £ cam)
{61 -capplj] + S(1,1,J,

p[i] + pp[i] - b[i] - bp[i]) = -cappO (1 £J € capn)
72t S(n,0,1,p[j-n] + pplj-n]) - capp[j] < O (2 < Jj <cam)
$o% capplj] - 5(n,0,4,p[j-n] + pp[Jj-n]) £ O (5 £J £ cam)
$et b[i] < plantcap (1 €£1i < cap)
<50 bp[i] < plantcap (1 £1i < capn)
$9ec} -capr[j] + S(i,1,5m[1i] + wpli])=

suM(is1,j,d[i]) = capwO (1 < j < capn)
490t cap[j] £ warecap (1< € cam)
{104 capw[j] - S(n,0,cam,w[j-n] + wp[j-n]) < 0 (camm + 1 < j £ capn)
4112} mu X nfi] g mmli) (1 <1< cam)

411034 mu X mp[i] £ hpm[i] (1 £1i < capn)
$11cd phi x f[i] £ nfli] (1 £1 < cam)
4113 phi x fp(i] £ hpfli] (1 £1 < capn)
f11et pi x pli] < hp[i] (1 £1 < capn)
4114 pix ppli] < hppli] (1 £1 £ capn)
4114 beta x b[i] £ hb[i] (1 €£1i < cam)
{41104 beta x bp[i] < hpb[i] (1 <1 < cam)
41114 chi x wli] € mw[i] (1 £1 £ cam)

28

411534 chi x wp[i] < hpw[i] (1 £ 1 € capn)
{123 m[i] 20 (1 £ i < cam)
4134 f[i12 0 (1 <1 < capn)
<41} plil1 >0 (1 £ i £ capn)
4153 b[i]12 0 (1 < i < capm)
$164 wlil20 (1 £1 < cam)
417 mp[i] 20 (1 £ 1 < capn)
{184 fp[i] 2 0 (1 < i < capn)
4194 ppli]1 2 0 (1 < i < camn)

420} bpli] 2 0 (1 £ i < capn)
4213 wpli] 20 (1 £ 1 < capn)
4224 cap fl1]12 0 (1 <1 < capn)
4231 cap p[1]120 (1 £ 1 < cam)

2lt capw[i]l20 (1 i £ capn)

29

OPEN ¢ Example 7, Chromatic number,

The graph G contains n vertices and m edges.
Edge J connects vertex s[.j] with vertex t[j]
z = chromatic number of G}

index i,J;

integer s[jl(1 < Jj <m), t[J](1 £ £ m),
discrete x[jl(1 £ <n), dlil(1 £4i < m),
MINIMIZE: =z
4z bounds} z - x[j] > O (1<
4conflicts 1 3
x[s[1]] = x[t[i]] + nx a[1l > 1 (1 g
¢conflicts 2#
x[s[1]] - x[t[i]] + nx a[i] & n-1 (1 &
4Zero-one dﬁ
alil <1 (1<
%on-neg’d:}
alilz 0 (1<
inatural x}
x[J1 21 (1<

e

Cae

=}
e

