STICHTING MATHEMATISCH CENTRUM

2e BOERHAAVESTRAAT 49 AMSTERDAM

AFDELING MATHEMATISCHE STATISTIEK

Solution of certain assignment-scheduling problems
with
discrete linear programming

Ъy

Jac.M. Anthonisse

February 1967

SA S 379

Summary

n jobs must be assigned to M machines and the jobs assigned to the same machine must be scheduled, in such a way that the total cost of performing all jobs is minimized.

The method proposed here is applicable if the machines are independent. The solution of the scheduling-assignment problem is found by solving a discrete linear programming problem with p+q constraints, where p and q denote the number of different machines and jobs respectively. The number of variables depends on the number of jobs that might be run subsequently on a machine.

§1.

Consider the following assignment-scheduling problem:

M machines, labeled m_1 , ..., m_M , are available. Machine m_i may be used for t_{m_i} time units, against cost c_{m_i} per time unit.

Each of n jobs, labeled j_1, \ldots, j_n , must be performed on one of the machines. Job j_k takes $u_{j_k}^m$ time units on machine m_i . If, on machine m_i , job j_k is to be followed by job j_1 it takes $v_{j_k}^{j_1}^m$ time units to adjust the machine.

Before starting a first job or after completing a last job on a machine no adjustment is necessary.

Assign the jobs to machines and schedule the jobs assigned to same machine, in such a way that the total cost of performing all jobs is minimized.

§2.

Assignment-scheduling problems of the type given above may be formulated as a discrete linear programming problem, but often the number of variables and the number of constraints are of a magnitude preventing actual solution.

This is mainly caused by the fact that a great number of scheduling problems must be solved implicitly.

The results of solving the assignment-scheduling problem is that to each machine at most 1 ordered subset from the set of jobs is assigned, where the following conditions are satisfied:

- 1. the union of the assigned subsets is the complete set of jobs,
- 2. subsets assigned to different machines are disjunct,
- 3. the ordered subset assigned to machine machine most time units.

From these conditions it is clear that the assignment-scheduling problem can be solved in the following 2 steps:

- step 1. generate, for each machine, the ordered subsets from the set of jobs, which may be completed within the available time,
- step 2. assign, under conditions 1. and 2., at most 1 ordered subset to each machine, minimizing the total cost.

§3.

Now a zero-one linear programming problem will be given that is equivalent with step 2.

Define a JOB as an ordered subset of jobs that may be run, in the given order, on a machine. The JOB's associated with machine m_i (by step 1) may be labeled $J_{N_{i-1}+1}$, ..., J_{N_i} , where $N_0=0$.

Define further:

N = N_M, C_j = the cost of performing the JOB labeled J_j (j = 1, ..., N), the M \times N matrix A with elements

$$a_{ij} = \begin{cases} 1 & \text{if } N_{i-1} + 1 \leq j \leq N_i \\ 0 & \text{otherwise,} \end{cases}$$

the n \times N matrix B with elements

$$b_{kj} = \begin{cases} 1 & \text{if job } j_k \text{ is an element of JOB } J_{j} \\ 0 & \text{otherwise.} \end{cases}$$

The linear program

 $\label{eq:minimize} \begin{array}{c} \sum\limits_{\mathring{\mathtt{J}}=1}^{N} \ \mathtt{C}_{\mathring{\mathtt{J}}} \mathbf{x}_{\mathring{\mathtt{J}}} \end{array}$

under the conditions

$$\sum_{j=1}^{N} a_{j} x_{j} \leq 1 \qquad (1 = 1, ..., M)$$
(1)

$$\sum_{j=1}^{N} b_{kj} x_{j} = 1 (k = 1, ..., n) (2)$$

$$x_{j} = 0 \text{ or } 1$$
 (j = 1, ..., N) (3)

is equivalent with step 2.

The interpretation of x_j = 0 is : do not perform JOB J_j , x_j = 1 must be interpreted as: perform JOB J_j or: assign this ordered subset of jobs to the associated machine.

By the definition of A restrictions (1) and (3) have the effect that at most 1 JOB is assigned to each machine. Restrictions (2) and (3) ensure that exactly 1 JOB containing job j_k will be performed.

<u>ĝ4.</u>

Although the method is presented with the help of a simple example is it clear that the method is applicable to any assignment-scheduling problem in which the machines are independent.

Of special interest are the problems with a stochastical character, in step 1 all JOB's can be excluded which would, with probability $\geq \alpha$, take more than t the time units on machine m.

§5.

If identical jobs and/or identical machines are present the assignment-scheduling problem is easily formulated as a general integer linear programming problem.

Suppose n = $\sum f_k$ and M = $\sum F_i$, where f_k and F_i denote the number of jobs of type j_k and the number of machines of type m_i respectively.

In this case it is sufficient to generate the JOB's for each type of machine, and step 2 is equivalent with the following problem:

$$\text{minimize} \quad \sum_{j=1}^{N} C_{j} x_{j}$$

under the restrictions

$$\sum_{j=1}^{N} a_{ij} x_{j} \leq F_{i} \qquad (i = 1, ..., p)$$

$$\sum_{j=1}^{N} b_{kj}^{\dagger} x_{j} = f_{k}$$
 (k = 1, ..., q)

 $x_{j} = a \text{ non-negative integer} (j = 1, ..., N)$

where p and q are the number of different machines and jobs respective-y, $b_{k\,j}^{\,\prime} = \text{the number of times a job of type j}_k \text{ occurs in JOB J}_j, \text{ and the other symbols have been defined above.}$

§6.

In the example given above, as well as in other applications, the generating of all JOB's is simplified by the fact that it is impossible to obtain a JOB by adding a job to an ordered subset of jobs that itself is not a JOB.

This leads to the following procedure to generate all JOB's for a particular machine.

- 1. determine the JOB's containing only 1 job, let V_1 denote this set of JOB's, i:=1,
- 2. determine the ordered subsets containing in + 4 jobs, such that the first i jobs are a JOB,
- 3. select the ordered subsets containg i+1 jobs that are JOB's, denote this set of JOB's by V_{i+1} ,
- 4. if V_{i+1} is empty all JOB's have been generated, otherwise i:=i+1 and proceed at 2.