
STICHTING

MATHEMATISCH CENTRUM
2e BOERHAAVESTRAAT 49

AMSTERDAM

AFDELING MATHEMATISCHE STATISTIEK

S 393

Determination of the Chromatic Number of a Graph

by

Jae. Mo Anthonisse

March 1968

The Mathematical Centre at Amsterdam, founded the 11th of February, 1946,

is a non-profit institution aiming at the promotion of pure mathematics and

its applications, and is sponsored by the Netherlands Government through the

Netherlands Organization for the Advancement of Pure Research (Z. W. o.) and

the Central Organization for Applied Scientific Research in the Netherlands

(T. N. O.), by the Municipality of Amsterdam and by several industries.

I Introduction

In this report an algorithm. is presented which mey be used to determine

such a partition of a given finite set that:

1. the number of subsets in the partition is minimized,

2. certain prescribed pairs of elements are not in the same subset.

If the elements of the set are identified with the vertices of a graph

in which the prescribed pairs of elements are connected by an edge,

the problem is equivalent with assigning a color to each vertex of the

graph in such a wey that:

1. the number of colors used in minimized>

2. connected vertices have different colors.

The terminology of 'graph', 'vertex', 1 edge 1 etc. is used throughout

the report.

The algorithm was programmed in ALGOL-60 and run on the ELECTROLOGICA X-8

computer. ALGOL text and numerical results are given.

2

II Definitions

Let a finite, non-oriented graph G without loops be given by

1. the set N = { 1, 2, ••• , n} of indices .of its constituent vertices

(n ~ 1),

2. its associated matrix A,

thus

{

1 if vertex i and vertex j are

_ (directly connected),
a .. -
1J

0 otherwise.

connected by an 'edge'

It follows that

a .. = a ..
1J J1

a .. = 0 11

(1 < i, j .:_ n),

(1<i<n).

If a .. = 1 vertex i and vertex j are said to be I adjacent I vertices.
1J

A vertex 1 is. adjacent to a subset SCN if a vertex j eS exists which

is adjacent to i.

A set SCN is an 'internally stable' set if S contains no adjacent

vertices:

S internally stable<=> I
1,J

(a. -Ii, jE:S) = O.
1J

If the elements of C = (s1, ••• , Sm) are disjoint, non-empty, inter

nally stable sets, these sets constitute a 'm-subcoloring' of G,

if, moreover,

them sets constitute a 'complete m-coloring' of G.

The 'cm-omatic number' y of G is defined as the smallest value of m

for which a complete m-coloring of G exists.

The value of y equals the smallest number of colors with which it is

possible to color the vertices of Gin such a way that adjacent vertices

have different colors.

For each non-empty internally stable set Sh the 'representative' rh is

3

defined as the smallest index in Sh:

rh = min (ilie:.sh).
i

Them representatives

(r 1 '

of a m-subcoloring of G form a 'representation' of that subcoloring.

Two m-subcolorings:

... ' s)
m

and

C' = (s• 1, ••• , S'm)

are defined to be the 'same' subcoloring (C = C') if a permutation

(p 1, ••• , pm) of the numbers (1,

S' = S.

II O O '
m) exists with:

(i=1, ••• ,m).
pi i

A m-subcoloring C = {s1 ,

form if
. ~ . ' s }

m
is defined to be in its 'normal'

< • • • < r • m

In the sequal all colorings are supposed to be given in their normal

form.

A m-subcoloring C = (s 1 ,

m-subcoloring C' = (S' 1,

• e o ,

0 •• ,

S. CS'.
i i

S) is said to be 'included' in the
m

S 1) , notation CCC', if
m

(i=1, ••• ,m).

A complete m-subcoloring C' is a 'completion' of C if C is included

in C'.

4

III Outline of the procedure

Let P(m) be a procedure which

1. either constructs a complete m-coloring of G,

2. or finds evidence that such a coloring does not exist.

If a lower bound b1 .:. 1 and an upper bound bu .:_ n of y are known

(e.g. b1 = 1, bu= n) the following steps are sufficient to compute

y and a complete y-coloring of G:

step:

1. define 1 = b1 - 1, u =bu+ 1,

2. if u - 1 < 2 proceed with step 7,
() · · (u2-l), 3. re define m = 1 + integer part of

4. perform P(m),

if a complete m-coloring does not exist proceed with step 6,
5. copy the coloring that was found in step 4,

redefine u = m, proceed with step 2,

6. redefine 1 = m, proceed with step 2,

7. define y = u, the last coloring that was copied in step 5 is a

complete y-coloring.

It is well-known that the problem to be solved by P(m) is equivalent

with a linear programming problem inn x m zero-one variables and

Ex m + n constraints, where E = L
i<j

a .. = number of edges in G.
iJ

An alternative procedure will be given now.

5

IV The procedure P(m)

The relation C = C1 is defined to hold between two m-subcolorings C

and C1 if and only if the representations of C and C' are identical.

Obviously, the relation'=' is an equivalence relation and there is

a one-to-one correspondence between the equivalence classes and the

representationso As each representation may be interpreted as a

m-subcoloring with

S. = {r.}
l l

(i=1,, •• ,m),

each equivalence class may be described as consisting of all m-sub

colorings which include the representation corresponding with that

equivalence class.

Let Q(r1 , ••• , rm) be a procedure which

1. either constructs a complete m-coloring from the equivalence class

corresponding with the representation (r1 , ••• , rm),

2o or finds evidence that this equivalence class contains no complete

m-coloring.

Let R(m) be a procedure which

1. either construct a representation (r1 , ••• , rm) different from

all representations that were constructed previously, and for which

representation it is not evident that a complete coloring including

this representation does not exist,

2. or finds that such a representation does not exist.

Now the procedure P(m) may be described by the following steps:

step

1. perform R(m),

if no representation exists, proceed with step 4,
2. perform Q(r1 , .,., rm),

where (r1, ••o, rm) in the representation found in step 1,

if no completion of (r1, ••• , rm) exists proceed with step 1,

3. copy the complete coloring found in step 2, terminate P(m),

4. a complete m-coloring does not exist, terminate P(m),

6

V The procedure Q(r1 , ••• , rm,l

Q(r 1 , oo•, rm) in a special case of the procedure T(S 1 , ••• , Sm),

where (s1 , ••• , Sm) is a m-subcoloring including (r1 , ••• , rm), to

be described nOWo

Define

and assume

thus F contains all 'free' indices, the indices of the vertices which

are left uncolored by C = (s1 , ••• , Sm).

If v = 0 C is a complete m-coloring of G.

Now suppose v > O, then am xv matrix B may be constructed with

elements:

{:: if f. not incident with S. and f.
J i J

b ..
iJ

otherwise.

(i = 1, ... '
From B the quantities z. (j = 1,

J

m; j

. " . ,
= 1 , ••• ' V) •

v) may be computed:

z. = number of elements= 0 in the j-th column of B.
J

Finally, j* is defined by

Z.* < z.
J - J

(j=1, ••• ,v).

> r.'
i

The rationale behind the definition of Bis that b .. = 0 if and only
iJ

if the addition off.
J

S. U fr.}, nor results
i i

to S. neither results in an unstable set
i

in a stable set that is not in the equivalence

class corresponding to (r 1 , ••• , rm).

If z-* = 0 there exists no completion of c.
J

Suppose now Zj* > O, let (i 1, ••• , ik, •••~ i) be defined by:
w

(k=1, ••• ,w),

'T

where w = z .*.
J

(k)
Then w m-subcolorings C (k = 1, ••• , w) each including C and each

with v - 1 free indices are given by:

c(k) = (s1 , ••• , s. U{t·}, ... , s) (k = 1, ••• , w).
ik m

This leads to the following recursive description of the procedure T,

where Tis applied to the m-subcoloring C = (s1 , ••• , Sm) of G:

step

1 o compute v,

if v = 0 a complete coloring is found, proceed with step 5,
2. construct a matrix B, determine wand j*,

if w = 0 proceed with step 4,
3 1 f k 1 2 t . 1 T to c(k) • app y, or = , , ••• , w consecu ive y, ,

4. terminate this instance of T,

5o copy the complete coloring of G,

terminate all instances of T.

Thus, applied to C = (s 1 , ••• , Sm), the procedure T

1, either constructs a completion of C,

2, or finds that a completion of C does not exist,

and Q(r 1, ,., , rm) in equivalent with

It should be noted that a matrix B(k) associated with C(k) may be

obtained from the matrix B associated with C by
. ·* 1. deleting the J -th column,

2, re-computing the elements of the ik-th row,

In the procedure to be given in section IX the elements of Bare defined

by

b .. ={1 iJ
I
1

if f. < r.,
J i

(af_ 1 11ESi) otherwise.
J

8

VI The procedure R(m)

The normal form of a m-subcoloring C = (s1 , ••• , Sm) was chosen such

that

The_procedure R(m) should generate only representations for which it

is not evident that no completion exists. This gives

r 1 = 1

for all representations to be considered. The maximum number of different

representations is

(n-1)
m-1

as each set {1, r2, ••• , rm}c{1, 2, 3, ••• , nl constitutes a represen

tation.

This leads to the relation

i < r. < n-m+i
- l

which is easily verified.

(i=1, ... ,m)

The following rules with yield all(:=~) representations in lexico

graphical order:

'first' representation:

'next' representation:

r. = l
l

(i=1, ••• ,m)

let (r1, ••• , rm) be the current representation,

step

1. define i* as the maximal index i with

r. < n-m+i,
l

2. if i* = 1 a next representation does not exist, otherwise it is

defined by:

r'. = r.
l l

r' ·* = r.* +
l l

I = r' ·* + r ·* 1 l + l

1

1

(i=1, ••• , ·* l 1)

(·*) 1 = 1, ••• , m-i •

9

Let C = (s1 , o o. , Sm) be a completion of the representation (r1 , o •• , rm).

If

rl < j < rl+1

for a vertex j and an index 1 (1 < 1 < m), the definition of a repre

sentative gives
1

jE:_ u s .•
i=1 2

Thus a completion of (r1 , •••, rm) does certainly not exist if there

are a vertex j and an index 1 (1 < 1 < m) such that

and

vertex j is adjacent to each of the vertices r 1 , r 2 , ••• , r 1 .

It 2s even true (and easily recognized) that:

if r 1 < j < rl+l and j is adjacent to each of the vertices r 1, ••• , r 1 ,

none of the representations (r 1 1, ••• , r'm) with

r'. = r.
].].

(i=1, ••• ,l),

can be completed.

This leads to the following extension of the rules to generate a

1 next I representation:

step

let (r 1 , <••, rm) be a 'next' representation obtained by the

steps given above.

3. compute c lJ. = I a . (1 = 1 , ••• , m-1 ; r 1 < J < r 1 + 1)
i<l riJ

4. if c1j ~ 1 for all 1 and j proceed with step 7,
* 5, define 1 as the smallest index 1 for which a j exists with c1j

60 define i* as the maximal index i with

. ~
l < 1 and r. < n - m + 2,

].

proceed with step 2,

= 1

7. copy the representation found 2n step 2, terminate this instance of

R,

10

VII Optimal indexing

The efficiency of the algorithm described in the preceding sections

depends on the number of representations that is generated by R(m)

and presented to Q. This number is reduced by assigning the indices

to the vertices of Gin some 'optimal' way.

Define n
d. =

i I a ..
iJ

(i=1, ••• ,n).
j=1

It was proved in [1] that

b = max min(d. + 1, i) u i i

provides an upperbound for the chromatic number of G if the vertices

are indexed such that

Now it will be assumed that the vertices are indexed in this way (re

i:;i;ult of step 1,)'.,, :i:n n-2' step$ an I optimal I indexing is obtained.

Let the permutation of the original indices left by the s-th step be:

(t1' t2, • • •' tn).

In the (s+1)-th step the smallest index i with

s + < i < n

and
s

I (s + 1 < j .::_n)
1=1

·* . . is computed. Let i be this smallest index:

••• , t , t + 1 , ••• , t . *, ... , t) , s s i n

then the new permutation is:

If the elements of A are permuted according to the indexing found in

this way it may be expected that the upper left corner of A will

contain most of the elements= 1. And due to the order in which the

representations are generated it may be expected that after a few

representations a complete coloring is found or that it is evident

11

that a complete m-coloring does not exist.

The smallest index 1 with

j-1

I
i=1

and
1

I
i=1

a .. = j-1
l.J

a. < 1-1
i ,1+1

(j=1, ••• ,l)

provides a lower bound for the chromatic number of G.

12

VIII An example

Consider the graph given in figure 1, with associated matrix as in

table 1.

2 3 4 5 6 7 8 9 10

0 0 0 1 0 1

2 0 0 0 0 0 1 0 0 0

3 0 0 0 1 0 0 0 0

4 0 1 0 0 1 0 0

5 0 0 0 0 0 1 0 1 0 1

6 1 0 1 1 0 0 0 0 0

7 0 1 0 0 0 0 1 0

8 1 0 0 1 0 0 0 0

9 0 0 0 0 0 1 0 0

10 1 0 0 0 0 0 0

table 1.

3

8 4

6

figure 1.

13

Table 2 contains the value of d. corresponding with
l

each of the vertices.

l 2 3 4 5 6 7 8 9 10

d. 6 2 3 5
l

3 4 4 4 3 4

table 2.

In table 3 such a permutation of the indices is given that the corres

ponding d.'s form a non-increasing sequence. Table 4 shows the
l

associated matrix of the graph after the rows and columns were inter-

changed according to this permutation.

l

d.
l

4

6

7

8

10

3

5

9

2

6

0

0

0

0

4

5

4

0

0

1

0

0

0

6

4

6

1

0

0

0

0

0

0

7

4

7

1

0

0

0

0

0

0

8

4

10

4

table 3.

8 10

0

0 0

0 0

0 0

0 0

1

1 0

0 0

table 4.

3

3

3

0

0

0

0

0

0

0

5

3

5

0

0

0

0

0

0

0

9

3

9

1

0

0

1

0

0

0

0

0

2

2

2

0

0

0

0

0

0

0

0

It follows from table 3, that b = 5 provides an upperbound for the u
chromatic number of the graph.

Now, starting from table 4, the rules given in section VII will be

applied to obtain an optimal order of the vertices. The indices 1, 4~
6 and 7 are in their proper position already, 8 and 10 must be inter

changed, resulting in table 5.

14

1 4 6 7 10 8 3 5 9 2

1 0 1 1 1 0 0 1 0

4 0 1 1 1 0 1 0 0 0

6 1 1 0 0 0 0 0 0 1

7 0 0 0 0 0 0 1

10 1 0 0 0 0 1 0 0

8 1 0 0 0 0 0 1 0

3 0 0 0 1 1 0 0 0 0

5 0 0 1 0 1 0 0 0 0

9 1 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0

table 5.

Next, 8 and 3 are interchanged, giving table 6, an optimal indexing

has been reached, the new indices are also shown in table 6. Throughout

the computations the~ indices will be used.

original indices

1 4 6 7 10 3 8 5 9 2

1 0 1 1 1 1 0 1 0 1 0 1

4 1 0 1 1 1 1 0 0 0 0 2

6 1 1 0 0 0 0 0 1 0 1 3

7 1 1 0 0 0 0 0 0 2 1 4

0 1 1 0 0 0 1 0 1 0 0 5

3 0 1 0 0 1 0 1 0 0 0 6

8 1 0 0 0 0 1 0 1 1 0 7

5 0 0 1 0 1 0 1 0 0 0 8

9 1 0 0 1 0 0 1 0 0 0 9

2 0 0 1 1 0 0 0 0 0 0 10

1 2 3 4 5 6 7 8 9 10

new indices

table 6.

15

From table 6 the lower bound b1 = 3 for the chromatic number is computed.

According to section III the procedure P should be performed now with

m = 2 + ~;2~ = 4.

The first representation is (1, 2, 3, 4), the corresponding matrix B,

and z. are given in table 7.
J

color vertices 5 6 7

1 0

2 2 0

3 3 0 0 0

4 4 0 0 0

2 3 3

table 7.

First vertex 5 is colored with color 3,

color vertices 6 7 8

0 0

2 2 0 0

3 3, 5 0 2

4 4 0 0 0

2 3 3

table 8.

8 9 10

0

0 0

0

0

2 2

giving

9 10

0

0 0

0

2 2

0

0

2

table

The following tables are self-explanatory.

color vertices

1 ' 6

2 2

3 3, 5

4 4

7

2

0

0

0

3

table

8

0

0

2

0

3

9.

9 10

0

0 0

0

2 2

free indices

matrix B

z 0

J

8.

16

color vertices 7 8 10

1 1 , 6 2 0 0

2 2, 9 1 0 0

3 3, 5 0 2 1

4 4 0 0

2 3 2

table 1 o.

color vertices 8 10

1 , 6 0 0

2 2, 9 0 0

3 3, 5, 7 3

4 4 0

3 2

table 11.

color vertices 8

1, 6, 10 0

2 2, 9 0

3 3, 5, 7 3

4 4 0

3

table 12.

color vertices

1,6,10,8

2 2, 9

3 3, 5, 7

4 4

table 13.

17

Thus a complete 1±;-coloring exists, procedure P is performed again,

. ~-2j with m = 2 + 2 = 3.

color vertices 4 5 6 7 8 9 10

0 1 0 1 0

2 2 1 1 0 0 0 0

3 3 0 0 0 0 0

1 2 2 2 2 2

table 14.

color vertices 5 6 7 8 9 10

0 0 0

2 2 0 0 0 0

3 3, 4 0 0 0 1 2

2 2 2 2

table 15.

color vertices 6 7 8 9 10

0 0 0

2 2 0 0 0 0

3 3, 4, 5 0 2 2

2 2 2

table 16.

color vertices 7 8 9 10

1 1 , 6 2 0 0

2 2 0 0 0 0

3 3, 4, 5 0 2 2

table 17.

18

color vertices 7 8 10

1 ' 6 2 0 0

2 2, 9 0 0

3 3, 4, 5 0 2 2

2 2

table 18,

color vertices 8 10

1 ' 6 0 0

2 2, 9 0 0

3 3,4,5,7 3 2

2 2

table 19.

color vertices 10

1, 6, 8 0

2 2, 9 0

3 3,4,5,7 2

2

table 20.

color vertices

1,6,8,10

2 2, 9

3 3,4,5,7

table 21.

As a complete coloring with b1 = 3 colors has been found it follows

that y = 3, the coloring is given in table 22.

original index 2 3 4 5 6 7 8 9 10

color 1 2 3 3 3 2 3

table 22.

19

IX ALGOL-6O procedures

Two procedures are given:

PERMUTE rearranges the rows and columns of the associated matrix of

the graph and computes an upper and lower bound for the chromatic

number, as described in section VII.

CHROMATIC NUMBER computes the chromatic number and a coloring of the

graph using the minimum number of colors, as described in sections III -

VL

A call of PERMUTE followed by a call of CHROMATIC NUMBER is sufficient

to compute the chromatic number.

Both procedures contain calls of the non-local procedure SUM which

may be defined as:

~ procedure SUM (i, a, b, x); value b; integer i, a, b; real x;

begin~ s; s := O;

for i := a step 1 until b dos := s + x;

SUM := s

20

procedure PERMUTE(A, I, n, upper, lower); integer n, upper, lower;

integer array A, I;

~_!!lent A[l : n, 1 : n] should contain the associated matrix of a

symmetric graph without loops, I[l : n] should contain the indices

of the vertices of this graph. PERMUTE interchanges the rows and

columns of A in accordance with an optimal re-indexing of the

vertices of the graph. The elements of I are permuted such that

I[i] contains the original index corresponding with the new index

i. Such values are assigned to upper and lower that these variables

provide an upper bound and a lower bound for the chromatic number·

of the graph;

begin integer g, h, i, j, k, l;

integer array D[l:n];

procedure wsl(i, j); value i, j; intee-er i, j;

begin integer g, h;

for h:= 1 step 1 until n do - --
begin g:= A[h,i]; A[h,i]:= A[h,j]; A[h,j]:= g end;

for h:= 1 step 1 until n do - -- - -
begin g:= A[i,h]; A[i,h]:= A[j,h]; A[j,h]:= g end;

g:= I[i]; I[i]:= I[j]; I[j]:= g; g:= D[i]; D[i]:= D[j];

D[j]:= g

end wsl;

for i:= 1 step 1 until n do D[i]:= SUM(j, 1, n, A[i,j]); - -- -
for i := 1 step 1 until n do ---
begin g:= - 1;

for j := i step 1 ~ n do

begin h:= DU]; .!!_ h > g then

begin g:= h; k:= j end

end;

_!L k •~ i then wsl(i, k)

end;

upper:= 1;

21

for i:= 1 step 1 until n do - --- ---
begin h:= D[i] + 1; if h > i then h:= i;

if h > upper then upper:= h

end;

lower:= 1;

for i:= _2 step 1 until n do

begin g:= - 1;

for j := i step 1 until n do

begin h:= SUM(l, 1, i - 1, A[j,l]); .!!_ h > g then

begin g:= h; k:= j end

end;

for j:= k - 1 step - 1 until i do wsl(j, j + 1);

.!!_ g = i - 1 /\ lower = i - 1 then lower:= lower + 1;

end

end PERMUTE;

22

integer procedure CHROMATIC NUMBER(A, n, C, upper, lower);

value n, upper, lower; integer n, upper, lower; integer array A, C;

~_!!lent CHROMATIC NUMBER:= chromatic number of the symmetric

graph without loops with associated matrix A[l : n, 1 : n]. upper and

lower should provide an upper and lower bound for this chromatic

number. A coloring of the graph using the minimum number of colors

is stored into C[l : n], C[i]:= j if vertex i is to be colored with

color j ;

begin integer m; ·

integer array CC[l:n];

procedure P(m); value m; integer m; if m = n then

begin integer i;

end

else

for i:= 1 step 1 until n do C[i]:= i; upper:= m - --

begin integer array B[l:m,1:n - m], rep[l:m], I, Z[l:n - m];

integer col;

Boolean first;

procedure R;

~ integer h, i, j, k, 1, a, ? , f, g;

iii:

iml:

if 7first then e:oto iii; first:= false; - -- --
for i:= 1 step 1 until m do rep[i]:= CC[i]:= i; - --- - -
1rnto BCC; -i:= m + 1;

i:= i - 1; if i = 1 then e:oto step3; - ---h:= rep[i]:= rep[i] + 1;

if h > n - m + i then g-oto iml; - --
for j:= i + 1 step 1 ~ m do rep[j]:= rep[j - 1]

+ 1;

for i:= 2 step 1 until m .92.
begin h:= rep[i - 1] + 1; k:= rep[i] - 1;

end;

for j:= h step 1 until k do if SUMO, 1, i -

1, A[j,rep[l]]) = i - 1 then rroto irnl -----

for i:= 1 step 1 ~ rn do CC[rep[i]]:= i;

BCC: g:= O; f:= rn + 1; col:= O;

end R;

for i:= 2 step 1 until rn do

be!!in h:= rep[i - 1] + 1; k:= rep[i] - 1;

for j:= h step 1 ~k do

be!!in g:= g + 1; I[g]:= j; CC[j]:= O; z:= O;

for l:= 1 step 1 until i - 1 do - --- - -
begin a:= B[l,g]:= A[rep[l],j];

if a = 0 then z := z + 1

end;

if z < f then

~ f := z; col:= g end;

Z[g]:= z;

for 1 := i step 1 until m do B [l ,g]:= 1

end

end;

for j:= rep[m] + 1 step 1 until n do

begin g:= g + 1; I[g]:= j; CC[j]:= O; z:= O;

for 1 := 1 steu 1 until rn do

end

--~
begin a:= B [l ,g]:= A [rep [l],j];

if a = 0 then z := z + 1

end;

if z < f then

begin f:= z; col:= g end;

Z [g]:= z; .!!_ f = 0 then goto iii

procedure T(col); value col; integer col;

begin integer k, i, j, loc, f. z, a, b;

for i:= 1 sten 1 until rn do if B[i,col] = 0 then - ---"- - --
begin j:= l[col]; I[col]:= - j; CC[j]:= i;

f:= m + 1; loc:= O;

end

end T;

first:= true;

24

for k:= 1 step 1 until n - m do if I[k] > 0 - -- --- ---
then

be!!in a:= A[I[kM]; b:= B[i,k]; z:= Z[k];

B[i,k]:= b + a;

end;

.!!_ b = 0 A a f O ~ z:= Z[k]:= z - l;

if z < f then

begin f:= z; loc:= k end;

if loc = O then goto step4; T(loc);

j:= - I[col]; CCU]:= O;

for k:= 1 step 1 until n - m do if I[k] > 0

then

begin a:= A[I[k],j]; b:= B[i,k]; z:= Z[kh

B[i,k]:= b - a;

.!f_ b = a A b f 0 ~ Z [k]:= z + 1

end;

I[col]:= j

next: R; T(col); goto next

end P;

.!f_ upper > n then upper:= n; if lower < 1 then lower:= 1,

upper:= upper + 1; lower:= lower - 1;

stepl: if upper - lower < 2 then !!Oto exit;

m:= lower + (upper - lower) ..:.. 2;

step2: P(m);

step3: lower:= m; e:oto stepl; ..,.__

step4: upper:= m;

for m := 1 step 1 until n do C [m]:= CC [rn]; e-oto stepl; --- - - ---
exit: CHROMATIC NUMBER:= upper

25

X Numerical Results

The efficiency of the algorithms given in the previous section was

studied by generating associated matrices with the help of random

numbers and measuring the time that was used to compute each chromatic

number.

The matrices were of order n = 10, 20, 30, the elements were drawn from

the distribution

Prob(~= 0) = 1 - p

Prob (~ = 1) = p

with p = • 2 , • 4 , • 6 , • 8.

For n = 10 (20, 30) and each p, 10(20, 25) matrices were generated.

The results of these 220 experiments are given in tables 23-26.

Table 23 shows the observed frequencies of o = upperbound - lowerbound.

Table 24 contains the frequencies of y = chromatic number.

In table 25 the computing times are given.

Table 26 shows the means of the computing times (in seconds) for

each combination of n and p,

26

n 10 20 30

p .2 .4 .6 .8 .2 .4 .6 .8 .2 .4 .6 .8

0

0 3
1 6 4 3 7 1

2 1 6 6 2 8

3 1 1 10

4 1 3 7

5 16 1 5 11
6 1 11 4 7

7 6 8 4
8 2 3 14

9 7
10 8 3
11 12 3
12 4 9
13 1 6
14 4

table 23.

n 10 20 30
.. --

p .2 .4 .6 .8 .2 .4 .6 .8 .2 .4 .6 .8
. ··-

y

2 3

3 7 8 10 1
4 2 4 10 7 23

5 6 1 13 1 2
6 4 7 23

7 5 10

8 3 1 18

9 7 7
10 2
11 10 3
12 15
13 I 7

table 24.

27

n 10 20 30

p .2 .4 .6 .8 .2 .4 .6 .8 .2 .4 • 6 .8
time (seconds)

< .5 6 1 5 8 -
• 5 - 1 4 9 5 2

1 - 2

2 - 3 3 11

3 - 4 12 13 11 6

4 - 5 5 5 6 1

5 - 10 2 3 2 2 1 1 6

10 - 15 21 13 9 6

15 - 20 2 6 2 6

20 - 30 3 10 3
30 - 40

40 - 50 1

50 - 60

> 60 ' 2 2 4

table 25 •

p .2 .4 • 6 . 8

n

10 .50 .58 • 51 .46
20 3.54 4. 04 4.17 3.29

30 12. 14 22.68 29.04 43.46

table 26.

28

XI Literature

1o D.J.A. Wel~h, M.B. Powell, An upperbound for the chromatic number

of a graph and its application to time tabling

problems.

The Computer Journal, .!.Q. (1967) 85-86.

2. C. Berge, The Theory of Graphs, translated by A. Doig.

London, Methuen, and New York, John Wiley, 1962.

