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I Introduction 

In this report an algorithm. is presented which mey be used to determine 

such a partition of a given finite set that: 

1. the number of subsets in the partition is minimized, 

2. certain prescribed pairs of elements are not in the same subset. 

If the elements of the set are identified with the vertices of a graph 

in which the prescribed pairs of elements are connected by an edge, 

the problem is equivalent with assigning a color to each vertex of the 

graph in such a wey that: 

1. the number of colors used in minimized> 

2. connected vertices have different colors. 

The terminology of 'graph', 'vertex', 1 edge 1 etc. is used throughout 

the report. 

The algorithm was programmed in ALGOL-60 and run on the ELECTROLOGICA X-8 

computer. ALGOL text and numerical results are given. 
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II Definitions 

Let a finite, non-oriented graph G without loops be given by 

1. the set N = { 1, 2, ••• , n} of indices .of its constituent vertices 

(n ~ 1), 

2. its associated matrix A, 

thus 

{

1 if vertex i and vertex j are 

_ (directly connected), 
a .. -
1J 

0 otherwise. 

connected by an 'edge' 

It follows that 

a .. = a .. 
1J J1 

a .. = 0 11 

(1 < i, j .:_ n), 

(1<i<n). 

If a .. = 1 vertex i and vertex j are said to be I adjacent I vertices. 
1J 

A vertex 1 is. adjacent to a subset SCN if a vertex j eS exists which 

is adjacent to i. 

A set SCN is an 'internally stable' set if S contains no adjacent 

vertices: 

S internally stable<=> I 
1,J 

(a. -Ii, jE:S) = O. 
1J 

If the elements of C = (s1, ••• , Sm) are disjoint, non-empty, inter

nally stable sets, these sets constitute a 'm-subcoloring' of G, 

if, moreover, 

them sets constitute a 'complete m-coloring' of G. 

The 'cm-omatic number' y of G is defined as the smallest value of m 

for which a complete m-coloring of G exists. 

The value of y equals the smallest number of colors with which it is 

possible to color the vertices of Gin such a way that adjacent vertices 

have different colors. 

For each non-empty internally stable set Sh the 'representative' rh is 
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defined as the smallest index in Sh: 

rh = min (ilie:.sh). 
i 

Them representatives 

(r 1 ' 

of a m-subcoloring of G form a 'representation' of that subcoloring. 

Two m-subcolorings: 

... ' s ) 
m 

and 

C' = (s• 1, ••• , S'm) 

are defined to be the 'same' subcoloring (C = C') if a permutation 

(p 1, ••• , pm) of the numbers (1, 

S' = S. 

II O O ' 
m) exists with: 

(i=1, ••• ,m). 
pi i 

A m-subcoloring C = {s1 , 

form if 
. ~ . ' s } 

m 
is defined to be in its 'normal' 

< • • • < r • m 

In the sequal all colorings are supposed to be given in their normal 

form. 

A m-subcoloring C = (s 1 , 

m-subcoloring C' = (S' 1, 

• e o , 

0 •• , 

S. CS'. 
i i 

S ) is said to be 'included' in the 
m 

S 1 ) , notation CCC', if 
m 

(i=1, ••• ,m). 

A complete m-subcoloring C' is a 'completion' of C if C is included 

in C'. 
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III Outline of the procedure 

Let P(m) be a procedure which 

1. either constructs a complete m-coloring of G, 

2. or finds evidence that such a coloring does not exist. 

If a lower bound b1 .:. 1 and an upper bound bu .:_ n of y are known 

(e.g. b1 = 1, bu= n) the following steps are sufficient to compute 

y and a complete y-coloring of G: 

step: 

1. define 1 = b1 - 1, u =bu+ 1, 

2. if u - 1 < 2 proceed with step 7, 
( ) · · (u2-l), 3. re define m = 1 + integer part of 

4. perform P(m), 

if a complete m-coloring does not exist proceed with step 6, 
5. copy the coloring that was found in step 4, 

redefine u = m, proceed with step 2, 

6. redefine 1 = m, proceed with step 2, 

7. define y = u, the last coloring that was copied in step 5 is a 

complete y-coloring. 

It is well-known that the problem to be solved by P(m) is equivalent 

with a linear programming problem inn x m zero-one variables and 

Ex m + n constraints, where E = L 
i<j 

a .. = number of edges in G. 
iJ 

An alternative procedure will be given now. 
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IV The procedure P(m) 

The relation C = C1 is defined to hold between two m-subcolorings C 

and C1 if and only if the representations of C and C' are identical. 

Obviously, the relation'=' is an equivalence relation and there is 

a one-to-one correspondence between the equivalence classes and the 

representationso As each representation may be interpreted as a 

m-subcoloring with 

S. = {r.} 
l l 

(i=1,, •• ,m), 

each equivalence class may be described as consisting of all m-sub

colorings which include the representation corresponding with that 

equivalence class. 

Let Q(r1 , ••• , rm) be a procedure which 

1. either constructs a complete m-coloring from the equivalence class 

corresponding with the representation (r1 , ••• , rm), 

2o or finds evidence that this equivalence class contains no complete 

m-coloring. 

Let R(m) be a procedure which 

1. either construct a representation (r1 , ••• , rm) different from 

all representations that were constructed previously, and for which 

representation it is not evident that a complete coloring including 

this representation does not exist, 

2. or finds that such a representation does not exist. 

Now the procedure P(m) may be described by the following steps: 

step 

1. perform R(m), 

if no representation exists, proceed with step 4, 
2. perform Q(r1 , .,., rm), 

where (r1, ••o, rm) in the representation found in step 1, 

if no completion of (r1, ••• , rm) exists proceed with step 1, 

3. copy the complete coloring found in step 2, terminate P(m), 

4. a complete m-coloring does not exist, terminate P(m), 
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V The procedure Q(r1 , ••• , rm,l 

Q(r 1 , oo•, rm) in a special case of the procedure T(S 1 , ••• , Sm), 

where (s1 , ••• , Sm) is a m-subcoloring including (r1 , ••• , rm), to 

be described nOWo 

Define 

and assume 

thus F contains all 'free' indices, the indices of the vertices which 

are left uncolored by C = (s1 , ••• , Sm). 

If v = 0 C is a complete m-coloring of G. 

Now suppose v > O, then am xv matrix B may be constructed with 

elements: 

{:: if f. not incident with S. and f. 
J i J 

b .. 
iJ 

otherwise. 

( i = 1, ... ' 
From B the quantities z. (j = 1, 

J 

m; j 

. " . , 
= 1 , ••• ' V) • 

v) may be computed: 

z. = number of elements= 0 in the j-th column of B. 
J 

Finally, j* is defined by 

Z.* < z. 
J - J 

(j=1, ••• ,v). 

> r.' 
i 

The rationale behind the definition of Bis that b .. = 0 if and only 
iJ 

if the addition off. 
J 

S. U fr.}, nor results 
i i 

to S. neither results in an unstable set 
i 

in a stable set that is not in the equivalence 

class corresponding to (r 1 , ••• , rm). 

If z-* = 0 there exists no completion of c. 
J 

Suppose now Zj* > O, let (i 1, ••• , ik, •••~ i ) be defined by: 
w 

(k=1, ••• ,w), 



'T 

where w = z .*. 
J 

(k) 
Then w m-subcolorings C (k = 1, ••• , w) each including C and each 

with v - 1 free indices are given by: 

c(k) = (s1 , ••• , s. U{t·}, ... , s) (k = 1, ••• , w). 
ik m 

This leads to the following recursive description of the procedure T, 

where Tis applied to the m-subcoloring C = (s1 , ••• , Sm) of G: 

step 

1 o compute v, 

if v = 0 a complete coloring is found, proceed with step 5, 
2. construct a matrix B, determine wand j*, 

if w = 0 proceed with step 4, 
3 1 f k 1 2 t . 1 T to c(k) • app y, or = , , ••• , w consecu ive y, , 

4. terminate this instance of T, 

5o copy the complete coloring of G, 

terminate all instances of T. 

Thus, applied to C = (s 1 , ••• , Sm), the procedure T 

1, either constructs a completion of C, 

2, or finds that a completion of C does not exist, 

and Q(r 1, ,., , rm) in equivalent with 

It should be noted that a matrix B(k) associated with C(k) may be 

obtained from the matrix B associated with C by 
. ·* 1. deleting the J -th column, 

2, re-computing the elements of the ik-th row, 

In the procedure to be given in section IX the elements of Bare defined 

by 

b .. ={1 iJ 
I 
1 

if f. < r., 
J i 

(af_ 1 11ESi) otherwise. 
J 



8 

VI The procedure R(m) 

The normal form of a m-subcoloring C = (s1 , ••• , Sm) was chosen such 

that 

The_procedure R(m) should generate only representations for which it 

is not evident that no completion exists. This gives 

r 1 = 1 

for all representations to be considered. The maximum number of different 

representations is 

( n-1) 
m-1 

as each set {1, r2, ••• , rm}c{1, 2, 3, ••• , nl constitutes a represen

tation. 

This leads to the relation 

i < r. < n-m+i 
- l 

which is easily verified. 

(i=1, ... ,m) 

The following rules with yield all(:=~) representations in lexico

graphical order: 

'first' representation: 

'next' representation: 

r. = l 
l 

(i=1, ••• ,m) 

let (r1, ••• , rm) be the current representation, 

step 

1. define i* as the maximal index i with 

r. < n-m+i, 
l 

2. if i* = 1 a next representation does not exist, otherwise it is 

defined by: 

r'. = r. 
l l 

r' ·* = r.* + 
l l 

I = r' ·* + r ·* 1 l + l 

1 

1 

(i=1, ••• , ·* l 1 ) 

( ·*) 1 = 1, ••• , m-i • 
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Let C = ( s1 , o o. , Sm) be a completion of the representation (r1 , o •• , rm). 

If 

rl < j < rl+1 

for a vertex j and an index 1 ( 1 < 1 < m), the definition of a repre

sentative gives 
1 

jE:_ u s .• 
i=1 2 

Thus a completion of (r1 , •••, rm) does certainly not exist if there 

are a vertex j and an index 1 (1 < 1 < m) such that 

and 

vertex j is adjacent to each of the vertices r 1 , r 2 , ••• , r 1 . 

It 2s even true (and easily recognized) that: 

if r 1 < j < rl+l and j is adjacent to each of the vertices r 1, ••• , r 1 , 

none of the representations (r 1 1, ••• , r'm) with 

r'. = r. 
]. ]. 

(i=1, ••• ,l), 

can be completed. 

This leads to the following extension of the rules to generate a 

1 next I representation: 

step 

let (r 1 , <••, rm) be a 'next' representation obtained by the 

steps given above. 

3. compute c lJ. = I a . ( 1 = 1 , ••• , m-1 ; r 1 < J < r 1 + 1 ) 
i<l riJ 

4. if c1j ~ 1 for all 1 and j proceed with step 7, 
* 5, define 1 as the smallest index 1 for which a j exists with c1j 

60 define i* as the maximal index i with 

. ~ 
l < 1 and r. < n - m + 2, 

]. 

proceed with step 2, 

= 1 

7. copy the representation found 2n step 2, terminate this instance of 

R, 



10 

VII Optimal indexing 

The efficiency of the algorithm described in the preceding sections 

depends on the number of representations that is generated by R(m) 

and presented to Q. This number is reduced by assigning the indices 

to the vertices of Gin some 'optimal' way. 

Define n 
d. = 

i I a .. 
iJ 

(i=1, ••• ,n). 
j=1 

It was proved in [1] that 

b = max min(d. + 1, i) u i i 

provides an upperbound for the chromatic number of G if the vertices 

are indexed such that 

Now it will be assumed that the vertices are indexed in this way (re

i:;i;ult of step 1,)'.,, :i:n n-2' step$ an I optimal I indexing is obtained. 

Let the permutation of the original indices left by the s-th step be: 

(t1' t2, • • •' tn). 

In the (s+1 )-th step the smallest index i with 

s + < i < n 

and 
s 

I (s + 1 < j .::_n) 
1=1 

·* . . is computed. Let i be this smallest index: 

••• , t , t + 1 , ••• , t . *, ... , t ) , s s i n 

then the new permutation is: 

If the elements of A are permuted according to the indexing found in 

this way it may be expected that the upper left corner of A will 

contain most of the elements= 1. And due to the order in which the 

representations are generated it may be expected that after a few 

representations a complete coloring is found or that it is evident 
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that a complete m-coloring does not exist. 

The smallest index 1 with 

j-1 

I 
i=1 

and 
1 

I 
i=1 

a .. = j-1 
l.J 

a. < 1-1 
i ,1+1 

(j=1, ••• ,l) 

provides a lower bound for the chromatic number of G. 
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VIII An example 

Consider the graph given in figure 1, with associated matrix as in 

table 1. 

2 3 4 5 6 7 8 9 10 

0 0 0 1 0 1 

2 0 0 0 0 0 1 0 0 0 

3 0 0 0 1 0 0 0 0 

4 0 1 0 0 1 0 0 

5 0 0 0 0 0 1 0 1 0 1 

6 1 0 1 1 0 0 0 0 0 

7 0 1 0 0 0 0 1 0 

8 1 0 0 1 0 0 0 0 

9 0 0 0 0 0 1 0 0 

10 1 0 0 0 0 0 0 

table 1. 

3 

8 4 

6 

figure 1. 
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Table 2 contains the value of d. corresponding with 
l 

each of the vertices. 

l 2 3 4 5 6 7 8 9 10 

d. 6 2 3 5 
l 

3 4 4 4 3 4 

table 2. 

In table 3 such a permutation of the indices is given that the corres

ponding d.'s form a non-increasing sequence. Table 4 shows the 
l 

associated matrix of the graph after the rows and columns were inter-

changed according to this permutation. 

l 

d. 
l 

4 

6 

7 

8 

10 

3 

5 

9 

2 

6 

0 

0 

0 

0 

4 

5 

4 

0 

0 

1 

0 

0 

0 

6 

4 

6 

1 

0 

0 

0 

0 

0 

0 

7 

4 

7 

1 

0 

0 

0 

0 

0 

0 

8 

4 

10 

4 

table 3. 

8 10 

0 

0 0 

0 0 

0 0 

0 0 

1 

1 0 

0 0 

table 4. 

3 

3 

3 

0 

0 

0 

0 

0 

0 

0 

5 

3 

5 

0 

0 

0 

0 

0 

0 

0 

9 

3 

9 

1 

0 

0 

1 

0 

0 

0 

0 

0 

2 

2 

2 

0 

0 

0 

0 

0 

0 

0 

0 

It follows from table 3, that b = 5 provides an upperbound for the u 
chromatic number of the graph. 

Now, starting from table 4, the rules given in section VII will be 

applied to obtain an optimal order of the vertices. The indices 1, 4~ 
6 and 7 are in their proper position already, 8 and 10 must be inter

changed, resulting in table 5. 
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1 4 6 7 10 8 3 5 9 2 

1 0 1 1 1 0 0 1 0 

4 0 1 1 1 0 1 0 0 0 

6 1 1 0 0 0 0 0 0 1 

7 0 0 0 0 0 0 1 

10 1 0 0 0 0 1 0 0 

8 1 0 0 0 0 0 1 0 

3 0 0 0 1 1 0 0 0 0 

5 0 0 1 0 1 0 0 0 0 

9 1 0 0 0 0 0 0 0 

2 0 0 0 0 0 0 0 0 

table 5. 

Next, 8 and 3 are interchanged, giving table 6, an optimal indexing 

has been reached, the new indices are also shown in table 6. Throughout 

the computations the~ indices will be used. 

original indices 

1 4 6 7 10 3 8 5 9 2 

1 0 1 1 1 1 0 1 0 1 0 1 

4 1 0 1 1 1 1 0 0 0 0 2 

6 1 1 0 0 0 0 0 1 0 1 3 

7 1 1 0 0 0 0 0 0 2 1 4 

0 1 1 0 0 0 1 0 1 0 0 5 

3 0 1 0 0 1 0 1 0 0 0 6 

8 1 0 0 0 0 1 0 1 1 0 7 

5 0 0 1 0 1 0 1 0 0 0 8 

9 1 0 0 1 0 0 1 0 0 0 9 

2 0 0 1 1 0 0 0 0 0 0 10 

1 2 3 4 5 6 7 8 9 10 

new indices 

table 6. 
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From table 6 the lower bound b1 = 3 for the chromatic number is computed. 

According to section III the procedure P should be performed now with 

m = 2 + ~;2~ = 4. 

The first representation is (1, 2, 3, 4), the corresponding matrix B, 

and z. are given in table 7. 
J 

color vertices 5 6 7 

1 0 

2 2 0 

3 3 0 0 0 

4 4 0 0 0 

2 3 3 

table 7. 

First vertex 5 is colored with color 3, 

color vertices 6 7 8 

0 0 

2 2 0 0 

3 3, 5 0 2 

4 4 0 0 0 

2 3 3 

table 8. 

8 9 10 

0 

0 0 

0 

0 

2 2 

giving 

9 10 

0 

0 0 

0 

2 2 

0 

0 

2 

table 

The following tables are self-explanatory. 

color vertices 

1 ' 6 

2 2 

3 3, 5 

4 4 

7 

2 

0 

0 

0 

3 

table 

8 

0 

0 

2 

0 

3 

9. 

9 10 

0 

0 0 

0 

2 2 

free indices 

matrix B 

z 0 

J 

8. 
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color vertices 7 8 10 

1 1 , 6 2 0 0 

2 2, 9 1 0 0 

3 3, 5 0 2 1 

4 4 0 0 

2 3 2 

table 1 o. 

color vertices 8 10 

1 , 6 0 0 

2 2, 9 0 0 

3 3, 5, 7 3 

4 4 0 

3 2 

table 11. 

color vertices 8 

1, 6, 10 0 

2 2, 9 0 

3 3, 5, 7 3 

4 4 0 

3 

table 12. 

color vertices 

1,6,10,8 

2 2, 9 

3 3, 5, 7 

4 4 

table 13. 
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Thus a complete 1±;-coloring exists, procedure P is performed again, 

. ~-2j with m = 2 + 2 = 3. 

color vertices 4 5 6 7 8 9 10 

0 1 0 1 0 

2 2 1 1 0 0 0 0 

3 3 0 0 0 0 0 

1 2 2 2 2 2 

table 14. 

color vertices 5 6 7 8 9 10 

0 0 0 

2 2 0 0 0 0 

3 3, 4 0 0 0 1 2 

2 2 2 2 

table 15. 

color vertices 6 7 8 9 10 

0 0 0 

2 2 0 0 0 0 

3 3, 4, 5 0 2 2 

2 2 2 

table 16. 

color vertices 7 8 9 10 

1 1 , 6 2 0 0 

2 2 0 0 0 0 

3 3, 4, 5 0 2 2 

table 17. 
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color vertices 7 8 10 

1 ' 6 2 0 0 

2 2, 9 0 0 

3 3, 4, 5 0 2 2 

2 2 

table 18, 

color vertices 8 10 

1 ' 6 0 0 

2 2, 9 0 0 

3 3,4,5,7 3 2 

2 2 

table 19. 

color vertices 10 

1, 6, 8 0 

2 2, 9 0 

3 3,4,5,7 2 

2 

table 20. 

color vertices 

1,6,8,10 

2 2, 9 

3 3,4,5,7 

table 21. 

As a complete coloring with b1 = 3 colors has been found it follows 

that y = 3, the coloring is given in table 22. 

original index 2 3 4 5 6 7 8 9 10 

color 1 2 3 3 3 2 3 

table 22. 
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IX ALGOL-6O procedures 

Two procedures are given: 

PERMUTE rearranges the rows and columns of the associated matrix of 

the graph and computes an upper and lower bound for the chromatic 

number, as described in section VII. 

CHROMATIC NUMBER computes the chromatic number and a coloring of the 

graph using the minimum number of colors, as described in sections III -

VL 

A call of PERMUTE followed by a call of CHROMATIC NUMBER is sufficient 

to compute the chromatic number. 

Both procedures contain calls of the non-local procedure SUM which 

may be defined as: 

~ procedure SUM (i, a, b, x); value b; integer i, a, b; real x; 

begin~ s; s := O; 

for i := a step 1 until b dos := s + x; 

SUM := s 
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procedure PERMUTE(A, I, n, upper, lower); integer n, upper, lower; 

integer array A, I; 

~_!!lent A[l : n, 1 : n] should contain the associated matrix of a 

symmetric graph without loops, I[l : n] should contain the indices 

of the vertices of this graph. PERMUTE interchanges the rows and 

columns of A in accordance with an optimal re-indexing of the 

vertices of the graph. The elements of I are permuted such that 

I[i] contains the original index corresponding with the new index 

i. Such values are assigned to upper and lower that these variables 

provide an upper bound and a lower bound for the chromatic number· 

of the graph; 

begin integer g, h, i, j, k, l; 

integer array D[l:n]; 

procedure wsl(i, j); value i, j; intee-er i, j; 

begin integer g, h; 

for h:= 1 step 1 until n do - --
begin g:= A[h,i]; A[h,i]:= A[h,j]; A[h,j]:= g end; 

for h:= 1 step 1 until n do - -- - -
begin g:= A[i,h]; A[i,h]:= A[j,h]; A[j,h]:= g end; 

g:= I[i]; I[i]:= I[j]; I[j]:= g; g:= D[i]; D[i]:= D[j]; 

D[j]:= g 

end wsl; 

for i:= 1 step 1 until n do D[i]:= SUM(j, 1, n, A[i,j]); - -- -
for i := 1 step 1 until n do ---
begin g:= - 1; 

for j := i step 1 ~ n do 

begin h:= DU]; .!!_ h > g then 

begin g:= h; k:= j end 

end; 

_!L k •~ i then wsl(i, k) 

end; 

upper:= 1; 





21 

for i:= 1 step 1 until n do - --- ---
begin h:= D[i] + 1; if h > i then h:= i; 

if h > upper then upper:= h 

end; 

lower:= 1; 

for i:= _2 step 1 until n do 

begin g:= - 1; 

for j := i step 1 until n do 

begin h:= SUM(l, 1, i - 1, A[j,l]); .!!_ h > g then 

begin g:= h; k:= j end 

end; 

for j:= k - 1 step - 1 until i do wsl(j, j + 1); 

.!!_ g = i - 1 /\ lower = i - 1 then lower:= lower + 1; 

end 

end PERMUTE; 
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integer procedure CHROMATIC NUMBER(A, n, C, upper, lower); 

value n, upper, lower; integer n, upper, lower; integer array A, C; 

~_!!lent CHROMATIC NUMBER:= chromatic number of the symmetric 

graph without loops with associated matrix A[l : n, 1 : n]. upper and 

lower should provide an upper and lower bound for this chromatic 

number. A coloring of the graph using the minimum number of colors 

is stored into C[l : n], C[i]:= j if vertex i is to be colored with 

color j ; 

begin integer m; · 

integer array CC[l:n]; 

procedure P(m); value m; integer m; if m = n then 

begin integer i; 

end 

else 

for i:= 1 step 1 until n do C[i]:= i; upper:= m - --

begin integer array B[l:m,1:n - m], rep[l:m], I, Z[l:n - m]; 

integer col; 

Boolean first; 

procedure R; 

~ integer h, i, j, k, 1, a, ? , f, g; 

iii: 

iml: 

if 7first then e:oto iii; first:= false; - -- --
for i:= 1 step 1 until m do rep[i]:= CC[i]:= i; - --- - -
1rnto BCC; -i:= m + 1; 

i:= i - 1; if i = 1 then e:oto step3; - ---h:= rep[i]:= rep[i] + 1; 

if h > n - m + i then g-oto iml; - --
for j:= i + 1 step 1 ~ m do rep[j ]:= rep[j - 1] 

+ 1; 

for i:= 2 step 1 until m .92. 
begin h:= rep[i - 1] + 1; k:= rep[i] - 1; 





end; 

for j:= h step 1 until k do if SUMO, 1, i -

1, A[j,rep[l]]) = i - 1 then rroto irnl -----

for i:= 1 step 1 ~ rn do CC[rep[i]]:= i; 

BCC: g:= O; f:= rn + 1; col:= O; 

end R; 

for i:= 2 step 1 until rn do 

be!!in h:= rep[i - 1] + 1; k:= rep[i] - 1; 

for j:= h step 1 ~k do 

be!!in g:= g + 1; I[g]:= j; CC[j]:= O; z:= O; 

for l:= 1 step 1 until i - 1 do - --- - -
begin a:= B[l,g]:= A[rep[l],j]; 

if a = 0 then z := z + 1 

end; 

if z < f then 

~ f := z; col:= g end; 

Z[g]:= z; 

for 1 := i step 1 until m do B [l ,g ]:= 1 

end 

end; 

for j:= rep[m] + 1 step 1 until n do 

begin g:= g + 1; I[g]:= j; CC[j ]:= O; z:= O; 

for 1 := 1 steu 1 until rn do 

end 

--~ 
begin a:= B [l ,g ]:= A [rep [l ],j ]; 

if a = 0 then z := z + 1 

end; 

if z < f then 

begin f:= z; col:= g end; 

Z [g ]:= z; .!!_ f = 0 then goto iii 

procedure T(col); value col; integer col; 

begin integer k, i, j, loc, f. z, a, b; 

for i:= 1 sten 1 until rn do if B[i,col] = 0 then - ---"- - --
begin j:= l[col]; I[col]:= - j; CC[j]:= i; 

f:= m + 1; loc:= O; 





end 

end T; 

first:= true; 
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for k:= 1 step 1 until n - m do if I[k] > 0 - -- --- ---
then 

be!!in a:= A[I[kM]; b:= B[i,k]; z:= Z[k]; 

B[i,k]:= b + a; 

end; 

.!!_ b = 0 A a f O ~ z:= Z[k]:= z - l; 

if z < f then 

begin f:= z; loc:= k end; 

if loc = O then goto step4; T(loc); 

j:= - I[col]; CCU]:= O; 

for k:= 1 step 1 until n - m do if I[k] > 0 

then 

begin a:= A[I[k],j]; b:= B[i,k]; z:= Z[kh 

B[i,k]:= b - a; 

.!f_ b = a A b f 0 ~ Z [k]:= z + 1 

end; 

I[col]:= j 

next: R; T(col); goto next 

end P; 

.!f_ upper > n then upper:= n; if lower < 1 then lower:= 1, 

upper:= upper + 1; lower:= lower - 1; 

stepl: if upper - lower < 2 then !!Oto exit; 

m:= lower + (upper - lower) ..:.. 2; 

step2: P(m); 

step3: lower:= m; e:oto stepl; ..,.__ 

step4: upper:= m; 

for m := 1 step 1 until n do C [m ]:= CC [rn ]; e-oto stepl; --- - - ---
exit: CHROMATIC NUMBER:= upper 
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X Numerical Results 

The efficiency of the algorithms given in the previous section was 

studied by generating associated matrices with the help of random 

numbers and measuring the time that was used to compute each chromatic 

number. 

The matrices were of order n = 10, 20, 30, the elements were drawn from 

the distribution 

Prob(~= 0) = 1 - p 

Prob (~ = 1 ) = p 

with p = • 2 , • 4 , • 6 , • 8. 

For n = 10 (20, 30) and each p, 10(20, 25) matrices were generated. 

The results of these 220 experiments are given in tables 23-26. 

Table 23 shows the observed frequencies of o = upperbound - lowerbound. 

Table 24 contains the frequencies of y = chromatic number. 

In table 25 the computing times are given. 

Table 26 shows the means of the computing times (in seconds) for 

each combination of n and p, 
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n 10 20 30 

p .2 .4 .6 .8 .2 .4 .6 .8 .2 .4 .6 .8 

0 

0 3 
1 6 4 3 7 1 

2 1 6 6 2 8 

3 1 1 10 

4 1 3 7 

5 16 1 5 11 
6 1 11 4 7 

7 6 8 4 
8 2 3 14 

9 7 
10 8 3 
11 12 3 
12 4 9 
13 1 6 
14 4 

table 23. 

n 10 20 30 
.. --

p .2 .4 .6 .8 .2 .4 .6 .8 .2 .4 .6 .8 
. ··-

y 

2 3 

3 7 8 10 1 
4 2 4 10 7 23 

5 6 1 13 1 2 
6 4 7 23 

7 5 10 

8 3 1 18 

9 7 7 
10 2 
11 10 3 
12 15 
13 I 7 

table 24. 
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n 10 20 30 

p .2 .4 .6 .8 .2 .4 .6 .8 .2 .4 • 6 .8 
time (seconds) 

< .5 6 1 5 8 -
• 5 - 1 4 9 5 2 

1 - 2 

2 - 3 3 11 

3 - 4 12 13 11 6 

4 - 5 5 5 6 1 

5 - 10 2 3 2 2 1 1 6 

10 - 15 21 13 9 6 

15 - 20 2 6 2 6 

20 - 30 3 10 3 
30 - 40 

40 - 50 1 

50 - 60 

> 60 ' 2 2 4 

table 25 • 

p .2 .4 • 6 . 8 

n 

10 .50 .58 • 51 .46 
20 3.54 4. 04 4.17 3.29 

30 12. 14 22.68 29.04 43.46 

table 26. 
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