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Introduction 

An example of the type of problems to be discussed here is found in 

connection with the construction of time-tables [1}. 

Suppose that n lectures (of one hour) must be given within m hours. 

There is, in general, a large number of ways to assign an hour to 

each lecture. An assignment is infeasible if the same hour in assigned 

to different lectures to be given by the same person. An assignment is 

undesirable if the same hour is assigned to different lectures that 

are of interest to a common set of students. An assignment is good if 

there is only a small number of cases in which a student must make a 

choice between lectures, that >he would like to attend, because they 

are given simultaneously. 

This leads to the following problem (in which a .• may be interpreted 
1J 

as the number of students liking to attend both lectures i and j): 

To each pair of elements (i,j) from a set 

X= f 1 , 2, ••• ,n .} a number a. . with a .. > 0 , 
~ 1J 1J-

a .. = a .. and a .. = 0 has been assigned. 
l.J J1 11 

Find a prescribed number of disjoint, non-empty subsets P1 , ••• ,Pm 

from X such that 

and 

is minimized, 

where 
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To solve this problem a 'double' branch and bound algorithm was con­

structedo In the first stage of the algorithm a 'representation' is 

generated, that is an 'incomplete partitioning' in which each set 

Ph contains one element only. A lower bound for the z-values of all 

'complete partitionings' that are extensions of the representation 

is computedc If this lower bound exceeds the smallest upper bound 

for the minimal value of z known at that moment a new representation 

is generatedo 

In the second stage of the algorithm a lower bound for the z-values 

of all complete partitionings that are extensions of a given incomplete 

partitioning is computedo The value of this lower bound is used to 

determine whether the incomplete partitioning must be extended or note 

If not, the algorithm returns to an incomplete partitioning of which 

the current incomplete partitioning in an extension and generates a new 

extension. 

After all extensions of a representation have been enumerated 

(explicitly or implicitly) stage 1 is activated again. 

The order in which the representations are generated and the lower 

bound that is used to detect whether a respresentation may be skipped 

or.must be extended leads, by heuristic reasoning, to a re-indexing 

(permutation) of the rows and colUr.1.ns of (a .. ) which may be applied 
lJ 

before the proper algorithm is performedo 

A problem related to the one defined above is that of finding the 

minimal value of m for which a partitioning with z=O exists. The 

algorithm given in [2] is similar to the algorithm presented in this 

report. 
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Numerical Results 

Matrices (a .. ) were generated with the help of the following 
1J 

distribution: 

Prob (~ = 0) = p 

1..P 2 Prob (~ = i) = 2 (i=1, ... ' n ). n 

For each of the combinations n=10, p= .2,.4,.6,.8 20 matrices were 

generated, for each matrix the partitioning problems with m=2,4,6,8 

were solved, 

For each of the combinations n=15, P = .2,.4,.6,.8 10 matrices were 

generated, for each matrix the partitioning problems with m=3,6,9,12 

were solved. 

In all cases the Algol-procedures given in the last section of this 

report were used. 

Table 1 contains the means of the observed times that were used to 

rearrange the matrices. 

Tables 2 and 3 contain the means of the observed times that were used 

to solve the partitioning problems for n=10 and n=15 respectively. 

All times are given in seconds. 

The computations were performed by the ELECTROLOGICA X-8 computer • 

.2 .4 • G .3 

10 .53 .43 .40 .31 

15 1,44 1, 18 .94 ,81 

table 1 : mean time to rearrange the matrix. 



.4 .8 

2 2.00 1.37 .73 .21 

4 1.00 .34 0 13 C 12 

6 0 18 .oa .08 .oa 
8 .05 .05 .05 .05 

table 2:. mean time to solve a problem with n=10 • 

.2 .4 • 6 .8 

3 171 .70 39.93 2.56 .49 

6 8.50 .76 .25 .25 

9 ~26 0 15 0 16 0 17 

12 .oa .oa .08 .09 

tab.le 3: mean time to solve a problem with n=15. 
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Definitions 

For each non-empty subset Ph :from X= t1,o o. ,n J 
the 'representative' Ph is defined as 

The non-empty and disjoint subsets P1, •• o, Pm :from X constitute a 

'complete partitioning' if 

The non-empty and disjoint subsets P1, ••• , P :from X constitute an m 
'incomplete' partitioning' if 

X) ~ Ph. 

If P1, ••• , Pm is an incomplete partitioning ~hen p1,o••• pm is said 

to be the 'representation' of the incomplete partitioning, where ~ 

is the representative of Ph (h=1, •• o,m). 

It will be assumed in the sequel that the subsets constituting an 

incomplete partitioning are indexed in such a way that 

The incomplete partitioning P1, •••• Pm is said to be an 'extension' of 

the incomplete partitioning Q1 ••-•. •~ if 

~ CPh (h=1,2, .... ,m). 

As a representation p1,.o•,Pm may be identified with the incomplete 

partitioning [P1},•••,tPJ it may be stated that each incomplete 

partitioning is an extension of its representation. 
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It is easily seen that the relation 'having the same representation' 

is an equivalence relation on the class of all incomplete partitio­

ningso Each equivalence-class is identified by a representation and 

contains all incomplete partitionings that are extensions of that repre­

sentationo 

Obviously 9 an equivalence class contains a complete partitioning if 

and only if p1=1c 



-7-

Stage 1 o 

As X must be partitioned into disjoint non-empty subsets P1, ••• ,Pm 

with 

-" X - h=1 Ph 

and 

it follows that 

and 

h< p < n-m+h 
- h-

The representations having these properties are generated by applicatio1~ 

of the following rules: 

'first' representation: 

p =h 
h 

{h=1,2 ••• ,m) 

'next' representation: 

let 

step 

2 

3 

p1, ••• ,pm be the present representation. 

compute h * = Illf½X (h I. ph < n-m+h), 

if h-k=1 all {relevant) representations have been generated, 

terminate the algorithm, 

the new representation is defined by: 
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~ for 
~ 

h=1,2o o o 9h··-1 

1 * Ph = ph+1 for h=h 

1 * p * +h-h for * h=h +1,ooo 9mo 
h 

Let P11 oeo 9Pm be a complete partitioning. with representation p11 ao••Pmo 

As p1<p2< o•o <pm it follows 

from the definition of a representative that 

if 

Define 

min (a .1 h=1,oo•,l) for 1=1 9 21 ••• ,m-1, 
PiiJ 

and 

It. = I 
-m p <j 

m 
min ( a . I h=1,. o. 9m) o 

P}iJ· 

Then, for each h=0 9 1,2,ooo,m 
h 

G = ~ g 
h 1!1 1 

is a lower bound for the z-values of a1i complete partitionings that 

are extensions of the representation p1,.ao,Pmo 

* Now suppose that a complete partitioning with z = z was found already. 
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* . . . If G >z extension of the present representation will not lead to a 
m 

better complete partitioning, thus a next representation may be 

generated. 

The rules given above generate all representations, and a sequence of 

representations with G >z• may be found. The following rules, applied 
m 

to each representation found in step 31 will skip representations for 

which it is evident that no extension to a complete partitioning with 
* z < z exists. 

let P,,••••Pm be the representation found in step 3 

step 
4 k: max (hlGh<z*. h=0,1,o •• ,m), 

5 

h 

if k # m 

if k = .m 

~ 

define h =k+1 1 return to step 2 9 

the present representation may not be skipped. 

The contents of steps 4,5 ma,y be clarified with the following remarks. 

Suppose that the representation (1,4,7~9) has been generated in a 

problem with n=10 m=4. If steps 4,5 were not applied the next repre­

sentations would be (1,4,7,10) etco 

1 2 3 4 5 6 7 8 9 10 

~ X X X X 

X X X X 

X i X X X I 
X I X X X 

i 
X l X X X 

I 
~ X ! X X X 

X X X X 

X X X X 

X ! X X X 

X I I X X X 
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If'• for representation { 1 ,4, 7 ,9") , G 1 <z"" but G2>z * , this will also 

be the case for the next 4 representations because g2 does not 

decreaseo Thus the 5 representations~ be skipped. The next 

representation to be considered is {1,5,6,7). 

Stage 2o 

Let P1 ,ooo 1Pm be an incomplete partitioning {e.g. a representation). 

Define 

and 

m 

F=X - \J Ph 
h=1 

= 

+ * otherwise, 

for h= 1 1 2, o ~ o ,m and each j € F. 

Define 

zh = .l. {a .• I i£Ph, j6P:h) {h=1.cootm), 1.<J l.J . 

and 

c. = min bhJ' for each j & F. 
J h 

Then 

is a lower bound for the z-values of' all complete partitionings that 

are extensions of' the present incomplete partitioning.--te) 

-tt) The value of' z might be increased by adding a term depending on 

the a •• with i IF and j f F. l.J 
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* If '"z>z the present incomplete partitioning mey be abandoned,, 

otherwise a j* !F is selected and the incomplete partitionings 

(h=1,ooo 1m) 

are generated 1 as will be specified belowo 

Now stage 2 of the algorithm mey be described with the help of the 

recursive procedure 

T(P1,ooo,Pm) 

which consists of the following steps: 

step 

1 determine F 

if F ~ ~ proceded with step 3, 

2 copy the current complete partitioning, replace the current 
* value of z by the z-value of the complete partitioning 1 if 

* . . z = 0 terminate the algorithm, 

if a~>b terminate this instance of T, 

3 -determine bh. , c. and z 
• - ~ J_ J 
if z >z terminate this instance of T, 

4 .~ £ determine J by: C,* > c. j cF, 
J J 

5 determine h1,ooo 9hm such that 

bh ·* < bh ·* <oooo< bh .~ , 
1J - 2J - - mJ 

perform 

T ( P 1 , o o o ,P hJ. V ~ -.c J , o o oeP m) 

for 1=1,2,ooo 

( • -M ) Notice that the value of z mey be decreased by a call of T. 
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Stage 2 of the algorithm is equivalent with the call 

where p1 , ••• ,pm is a representation generated by stage 1. 

It should be noted that the matrix (b 1hj ) associated with the 

incomplete partitioning 

p 1 t eo O I Ph ~j"" J, 0 • 0 1 pm 

~ be obtained from the matrix (bhj) associated with the incomplete 

partitioning 

by 

1 

2 

deleting the column corresponding with j*, 

• • • -M re-computing the remaining elements of the h -th row: 

b 1 b (J•L~fJ•*J). h*j = h'"j + ajj-M ~ ... ,l 

Stage O. 

The algorithm sketched above m9¥ be applied to any symmetric matrix 

(a .. ) with a •. >O and a .. =O. 
1J 1J 11 

The problem defined in the first section remains the same if the rows 

and columns of (aij) are permuted. This freedom to re-arrange the 

elements of ( a . . ) m9¥ be used to accelerate the algorithm. 
1J 

Let i 1 be an index i for which 

n 
}: 

j=1 
a •• 
1J 

is maximal. 
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Select ik (k=2,ooo 9n) as an index i 

with 

for which 
min ( a. • I 1=1 • c. c ,k-1) 

l.l.l 

is maximal, if this maximum is attained for several indices an index 

i for which 

n 
l 

j=1 
a •• 

1J 

is maximal may be chosen from that set of indices. 

If the rows and columns of ( a .. ) are permuted according to the 
1J 

permutation 

( i, 9 00 Ct im) 

it may be expected that, in general, the optimal solution of' the 

partitioning problem will be found· in a small number of iterations. 

* As z then reaches its minimal value only a relatively small number 

of representations will be presented to stage 2. 

The permutation (i1, ••• , im) obtained in this way is optimal in 

the sense that for fixed i 1, ••• ,ik_1 , selection of i*k # ik • 

ask-th index will lend to a smaller lower bound Gk-l in stage 1, 

for all representations containing i 1, ••• , ik_1• 
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Algol procedureso 

The algorithms sketched above will now be given 1n the form of 

Aleol-60 procedures. All details of the algori tlms r1ay be :found b. 

these procedures. 

The procedure PERMUTE contains a call of the procedure Smf, which is 

equivalent with 

~ procedure SID1 (i,a,b,x); value b; integer i,a,b; real x, 
begin~ s; s: = O; 

for i: = a step 1 until b do s: = s + x; -
SUM~= s 

end· _, 
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procedure PERMUTE(A, I, n); value n; integer n; integer arra:v A, I; 

.22.,_Ill,!!lent PERMUTE re-arranges the elements of A[l : n, 1 : n] in 

preparation of the procedure PARTITION. I[j ]:= original index of 

the j-th row and column in the new array; 

begin integer i, j, k, a, b; 

integer arrav B [1 :n]; 

procedure change(i, j); value i, j; inte,z:er i, j; 

begin integer a, k; 

a:= I[i]; I[i]:= I[j ]; I[j ]:= a; 

!2!:_k:=lstepl~n~ 

begin a:= A[i,k]; A[i,k]:= A[j,k]; A[j,k]:= a end; 

for k:= 1 step 1 until n do - --- - -
begin a:= A[k,i]; A[k,i]:= A[k,j]; A[k,j]:= a end; 

a:= B[i]; B[i]:= B[j]; B[j]:= a 

end change; - . 

!2!:_ i:= 1 step 1 ~ n ~ 

begin B[i]:= SUM(j, 1, n, A[i,j]); I[i]:= i end; 

for i:= 1 step 1 until n do ---- ------ ........,_... -
begin a:= B[i]; k:= i; 

!2!:_ j:= i + 1 step 1 ~n ~ 

begin b:= B[j]; .!f. b > a ~ 

begin a:= b; k:= j ~ 

end• _, 
.!!_ k f i ~ change(i, k) 

end; 

b:= - 1; 

!2!:, i:= 2 step 1 .!!!!!!!_n ~ 

begin a:= B[i]:= A[i,l]; .!f. a > b ~ 

b~n b:= a; k:= i ~ 

end; 

for i:= 2 step 1 ~n ~ 

begin.!!?!, j:= k - 1 step - 1 ~ i ~ change(j, j + 1); 
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b:= - 1; 

i2!:, j:= i + 1 step 1 ~n ,22 
begin a:= A[i,j]; .!!. a < B[j] then B[j]:= a~ a:= B[j]; 

ifa>bthen 

end 

end 

end PERMUTE; 

- -
~ b:= a; k:= j ~ 
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procedure PARTITION(A, P, n, m, zstar, output);~ n, m; 

integer zstar, n, m; integer arrav A, P; procedure output; 

2!?.._In_~ PARTITION solves the following problem: the set (1, 

2 , ••• ,n) must be partitioned into m disjoint non-empty subsets, 

such that the cost of the partitioning is minimized. The cost of 

the partitioning is defined ,as the sum of all A[i, j] with i < j 

for which i and j are in the same subset. It is assumed that: A[i, 

j] = A[j, i] ~ O, A[i, i] = 0 for 1 < i, j ,::: n, 1 < m < n, zstar > 
the minimal cost of a partitioning. The procedure generates a 

sequence of partitionings with decreasing cost. Each time an 

improved solution is found zstar:= cost of the partitioning, P[i]:= 

j if i is in subset j, for i = 1, •.• ,n, a· call of the procedure 

output is made; 

begin integer z, max; 

integer arrav F[l:n], C, H[l:n - m], B[l:m,1:n - m], p[l:m]; 

procedure nextrep; 

begin intee:er h, i, j, k, a, b, g; 

s1: for h:= m ~ - 1 until 1 do if p[h] < n - m + h 

~ goto s2; 

s2: .!!_ h = 1 ~ goto exit; 

s3: i:= p[h]:= p[h] + 1; 

.!2!. j := h + 1 step 1 ~ m ~ p(j ]:= i + j - h; 

for j:= 1 step 1 until n do F[j]:= O; - _........ --
.!2!. j:= 1 step 1 ~ m do F[p[j]]:= j; k:= O; g:= O; 

.!2!. j:= 1 step 1 ~ n ~ if F[j] = 0 then 

begin k:= k + 1; a:= max; 

for h:= 1 step 1 until m do - _....... - -
begin i:= p[h]; 

end; 

b := B [h,k]:= .!!_ i < j ~ A[i,j] ~ max; 

if b < a then a:= b 

H(k]:= j; C[k]:= a; g:= g + a; 

if g < zstar ~ goto nextj; 
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!£!:. h:= m step - 1 until 1 do if p[h] < j then 

goto s2; -
nextj: 

z:= O; 

~ nextrep; 

procedure iter; 

begin intei:rer h, i, j, k, a, b, zl; 

sl: b:= - 1; k:= O; zl:= O; 

for j:= 1 step 1 until n - m do if F[H[j]] = 0 then - - - -- -
begin a:= C[jJ; if a > b then 

bee:in b:= a; k:= j end; 

zl:= zl + a 

end; 

.ll_kf o~~s3; 
s2: !2E, j:= 1 step 1 until n ~ P[j]:= F[j]; zstar:= z; 

output; if z = 0 then iroto exit; - --
s3: if z + zl > zstar then goto term; zl:= zl - b; - - -----
s4: a:= max; 

for i:= 1 step 1 ~ m do 

begin b:= B[i,k]; if b < a then 

begin a:= b; h:= i ~ 

end; 

if z + zl + a > zstar then 

begin for i:= 1 step 1 until m ~ 

bel!in b:= B[i,k]; if b 2, max~ B[i,k]:= b - max 

end; 

goto term 

end; 

s5: F[H[k]]:= h; z:= z + B[h,k]; B[h,k]:= B[h,k] + max; 

for j:= 1 step 1 until n - m do if F[H[j]] = 0 then - ----- - -- -
begin a:= C[j]; b:= B[h,j]; B[h,j]:= b + A[H[k],H[j]]; 

if a < b then goto nextj; a:= max; - --
~ i:= 1 step 1 ~m do 

begin b:= B[i,j]; if b < a then a:= b end; 



C[j]:= a; 

nextj: 

end• _, 
iter; 
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!2!:_ j:= 1 step 1 ~ n - m do if F[H[j]] = 0 ~ 

begin a:= C[j]; b:= B[h,j]:= B[h,j] - A[H[k],H[j]]; 

.!!_ b < a then C[j]:= b 

end; 

z:= z - B[h,k] + max; F[H[k]]:= O; goto s4; 

term: 

~ iter; 

init: max:= 10 6; 

!2!:, z:= 1 step 1 ~ m ~ p[z]:= z; p[m]:= m - 1; 

stagel: nextrep,; 

stage2: iter,; goto stagel,; -
exit: 

~ PARTITION,; 
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