

SOME REMARKS ON THE TWO-ARMED BANDIT

by

J. Fabius and W.R. van Zwet

Paper presented at the European Meeting of IMS, TIMS, ES and IASPS, Amsterdam, September 2 - 7, 1968.
BIBLIOTHEEK MATHEMATISCH CENTRUM

SOME REMARKS ON THE TWO-ARMED BANDIT
by J. Fabius and W.R. van Zwet, University of Leiden and Mathematisch Centrum, Amsterdam

1 INTRODUCTION

In this paper we consider the following situation: An experimenter has to perform a total of N trials on two Bernoulli-type experiments E_{1} and E_{2} with success probabilities α and β respectively, where both α and β are unknown to him. The trials are to be carried out sequentially and independently, except that for each trial the experimenter may choose between E_{1} and E_{2}, using the information obtained in all previous trials. The decisions on the part of the experimenter to use E_{1} or E_{2} in the successive trials may be randomized, i.e. for any trial he may use a chance mechanism in order to choose E_{1} or E_{2} with probabilities δ and $1-\delta$ respectively, where δ may depend on the decisions taken and the results obtained in the previous trials. A strategy Δ will be a set of such δ 's, completely describing the experimenters behaviour in every conceivable situation.

[^0]We assume the experimenter wants to maximize the number of successes. More precisely, we assume that he incurs a loss

$$
\begin{equation*}
L(\alpha, \beta, s)=N \max (\alpha, \beta)-s \tag{1.1}
\end{equation*}
$$

if he scores a total of s successes. If he uses a strategy Δ, his expected loss is then given by the risk function

$$
\begin{equation*}
R(\alpha, \beta, \Delta)=N \max (\alpha, \beta)-E(S \mid \alpha, \beta, \Delta), \tag{1.2}
\end{equation*}
$$

where S denotes the random number of successes obtained. Thus the risk of a strategy Δ equals the expected amount by which the number of successes the experimenter will obtain using Δ falls short of the number of successes he would score if he were clairvoyant and would use the more favourable experiment throughout the N trials.

We say that state $(m, k ; n, l)$ is reached during the series of trials if in the first $m+n$ trials E_{1} is used m times, yielding k successes, and E_{2} is used n times, yielding 1 successes. Clearly, under a strategy Δ, the probability that this will happen is of the form

$$
\begin{equation*}
\pi_{\alpha, \beta, \Delta}(m, k ; n, l)=p_{\Delta}(m, k ; n, 1) \alpha^{k}(1-\alpha)^{m-k} \beta^{l}(1-\beta)^{n-1}, \tag{1.3}
\end{equation*}
$$

where $p_{\Delta}(m, k ; n, l)$ depends on the state $(m, k ; n, l)$ and the strategy Δ, but not on α and β. It is easy to show (e.g. by induction on N) that the class of all strategies is convex in the sense that there exists, for every pair of strategies Δ_{1} and Δ_{2} and for every $\lambda \varepsilon[0,1]$, a strategy Δ such that

$$
\begin{equation*}
p_{\Delta}(m, k ; n, l)=\lambda p_{\Delta}(m, k ; n, l)+(1-\lambda) p_{\Delta}(m, k ; n, l) \tag{1.4}
\end{equation*}
$$

for every state ($m, k ; n, l$).

Moreover, this strategy Δ can always be taken to be such, that according to it the experimenter should base all his decisions exclusively on the numbers of successes and failures observed with E_{1} and E_{2}, irrespective of the order in which these data became available. Denoting the class of all such strategies by D and remarking that $R(\alpha, \beta, \Delta)$ can be expressed in terms of the $\pi_{\alpha, B, \Delta}(m, k ; n, l)$, we may conclude that D is an essentially complete class of strategies. We denote the probabilities δ constituting any strategy in \mathscr{D} by $\delta(m, k ; n, l)$: the probability with which the experimenter, having completed the first $m+n$ trials and thereby having reached state $(m, k ; n, l)$, chooses E_{1} for the next trial.

We note that if $p_{\Delta}(m, k ; n, l)=0$ for a state $(m, k ; n, l)$, then $\delta(m, k ; n, l)$ does not play any role in the description of Δ and may be assigned an arbitrary value without affecting the strategy. We shall say that any strategy Δ^{\prime} such that $p_{\Delta^{\prime}}(m, k ; n, l)=p_{\Delta}(m, k ; n, l)$ for all states ($m, k ; n, l$) constitutes a version of Δ.

Since we are considering a symmetric problem in the sense that it remains invariant when α and β are interchanged, it seems reasonable to consider strategies with a similar symmetry. Thus we are led to define the class $\boldsymbol{\mathscr { S }}$ of all symmetric strategies:
$\Delta \varepsilon \mathcal{J}$ iff $\Delta \varepsilon \mathscr{D}$ and $\delta(m, k ; n, l)=1-\delta(n, l ; m, k)$ for all states $(m, k ; n, l)$ with $p_{\Delta}(m, k ; n, l) \neq 0$. Clearly, for $\Delta \varepsilon \boldsymbol{\mathscr { J }}$,

$$
\begin{align*}
\delta(m, k ; m, k) & =\frac{1}{2} \text { if } p_{\Delta}(m, k ; m, k) \neq 0 \text {, and } \tag{1.5}\\
p_{\Delta}(m, k ; n, l) & =p_{\Delta}(n, l ; m, k) \text { for all states }(m, k ; n, l) \tag{1.6}
\end{align*}
$$

It follows that, for $\Delta \varepsilon \mathscr{\mathscr { V }}$ and all (α, β),

$$
\begin{equation*}
R(\alpha, \beta, \Delta)=R(6, \alpha, \Delta) \tag{1.7}
\end{equation*}
$$

Another argument in favour of considering \mathcal{f} is the following result.

THEOREM 1

There is a strategy $\Delta \varepsilon \boldsymbol{\mathscr { C }}$ with minimax risk.

PROOF

The existence of a minimax-risk strategy $\Delta_{1} \varepsilon \mathcal{D}$ is well known for this type of problem. Let $\Delta_{2} \varepsilon \mathscr{D}$ be defined by

$$
\delta_{2}(m, k ; n, l)=1-\delta_{1}(n, l ; m, k) \quad \text { for all states }(m, k ; n, l)
$$

Then

$$
\begin{array}{ll}
p_{\Delta_{2}}(m, k ; n, 1)=p_{\Delta_{1}}(n, l ; m, k) & \text { for all states, hence } \\
R\left(\alpha, \beta, \Delta_{2}\right)=R\left(\beta, \alpha, \Delta_{1}\right) & \text { for all }(\alpha, \beta) \text { so that } \Delta_{2} \text { has }
\end{array}
$$

minimax risk. By convexity we may construct a strategy $\Delta \varepsilon \mathbb{D}$ satisfying (1.4) with $\lambda=\frac{1}{2}$. We have

$$
\begin{array}{ll}
p_{\Delta}(m, k ; n, l)=p_{\Delta}(n, l ; m, k) & \text { for all states, and } \tag{1.8}\\
R(\alpha, \beta, \Delta)=\frac{1}{2} R\left(\alpha, \beta, \Delta_{1}\right)+\frac{1}{2} R\left(\alpha, \beta, \Delta_{2}\right) & \text { for all }(\alpha, \beta), \text { which }
\end{array}
$$

implies that Δ too has minimax risk. Finally, if $\Delta \notin \mathscr{\mathscr { J }}$, we define $\Delta^{\star} \varepsilon \boldsymbol{f} \quad$ by

$$
\delta^{\star}(m, k ; n, 1)=\frac{1}{2} \delta(m, k ; n, 1)+\frac{1}{2}[1-\delta(n, 1 ; m, k)] \text { for all states. }
$$

One easily verifies that (1.8) implies

$$
p_{\Delta t}(m, k ; n, l)=p_{\Delta}(m, k ; n, l) \quad \text { for all states, and as a result }
$$

$\Delta^{\star} \varepsilon \mathscr{\mathcal { U }} \quad$ has minimax risk.
\qquad

Abstract

-5- In section 2 we derive a recurrence relation, which we then use in section 3 to study the structure of admissible strategies in \mathcal{D}. For these strategies we prove certain monotonicity properties of $\delta(m, k ; n, l)$. Though these results may seem intuitively evident, one does well to remember that the two-armed bandit problem has been shown to defy intuition in many aspects (cf. [1]). Section 4 indicates how our results to some degree facilitate the search for minimax-risk strategies. Even so, the algebra involved is extremely tedious for N as small as 4. Already for slightly larger values of N it remains prohibitive.

Among the contributions to the two-armed bandit problem the work of W. Vogel, who considered the same set-up we do, deserves special mention. In [2] he discussed a certain subclass of the class \mathcal{E}, and in [3] he obtained asymptotic bounds for the minimax risk for $N \rightarrow \infty$. Since we shall not be concerned with asymptotics in this paper we state the following result without a formal proof: The lower bound for the asymptotic minimax risk for $N \rightarrow \infty$ that was obtained by Vogel in [3] may be raised by a factor $\sqrt{2}$. The result is proved by applying the same method that was used in [3] to the optimal symmetric strategy for $\alpha+\beta=1$ that was discussed in [2]. Combining this lower bound with the upper bound given in [3] we find that the asymptotic minimax risk must be between $0.265 \mathrm{~N}^{\frac{1}{2}}$ and $0.376 \mathrm{~N}^{\frac{1}{2}}$.

2 A RECURRENCE RELATION

For $\Delta \varepsilon \mathbb{D}$ we consider the expected number of successes
$E(S \mid \alpha, \beta, \Delta)$ as a function of the $\delta(m, k ; n, l)$. Clearly, the dependence on each $\delta(m, k ; n, l)$ is linear.

We denote the coefficient of $\delta(m, k ; n, l)$ in $\mathbb{E}(S \mid \alpha, \beta, \Delta)$ (and hence also in $-R(\alpha, \beta, \Delta))$ by $p_{\Delta}(m, k ; n, l) c_{\alpha, \beta, \Delta}(m, k ; n, l)$. If all $\delta(m, k ; n, l)$ are strictly between 0 and 1 , then all $p_{\Delta}(m, k ; n, l)$ are positive and as a result all $c_{\alpha, \beta, \Delta}(m, k ; n, l)$ are uniquely determined. Otherwise the $c_{\alpha, \beta, \Delta}(m, k ; n, l)$ are defined by continuity.

THEOREM 2

For any strategy Δ in D the functions $c_{\alpha, \beta, \Delta}(m, k ; n, l)$ satisfy the following relations.

$$
\begin{align*}
& \text { (2.1) } c_{\alpha, \beta, \Delta}(m, k ; n, 1)=(\alpha-\beta) \alpha^{k}(1-\alpha)^{m-k} \beta^{l}(1-\beta)^{n-1} \\
& \text { if } m+n=N-1 \text {, } \\
& c_{\alpha, \beta, \Delta}(m, k ; n, l)=\delta(m+1, k+1 ; n, l) c_{\alpha, \beta, \Delta}(m+1, k+1 ; n, l)+ \tag{2.2}\\
& +\delta(m+1, k ; n, 1) c_{\alpha, B, \Delta}(m+1, k ; n, 1)+ \\
& +[1-\delta(m, k ; n+1,1+1)]_{\alpha, \beta, \Delta}(m, k ; n+1,1+1)+ \\
& +[1-\delta(m, k ; n+1, I)] c_{\alpha, \beta, \Delta}(m, k ; n+1,1) \\
& \text { if } m+n \leq N-2 \text {. }
\end{align*}
$$

PROOF

By continuity it is obviously sufficient to consider the case where all $\delta(m, k ; n, l)$ as well as α and β are strictly between 0 and 1. This ensures that expression (1.3) is positive for all states ($m, k ; n, 1$). Hence the conditional expectation $e_{\alpha, B, \Delta}(m, k ; n, l)$ of the total number of successes S under α, β and Δ given that the state ($m, k ; n, 1$) is reached, exists.

It is clearly a linear function of $\delta(m, k ; n, l)$ and may thus be written in the form
(2.3) $e_{\alpha, \beta, \Delta}(m, k ; n, 1)=a_{\alpha, \beta, \Delta}(m, k ; n, 1) \delta(m, k ; n, 1)+b_{\alpha, \beta, \Delta}(m, k ; n, 1)$.

It follows that
(2.4) $\quad c_{\alpha, \beta, \Delta}(m, k ; n, l)=a_{\alpha, \beta, \Delta}(m, k ; n, 1) \alpha^{k}(1-\alpha)^{m-k} \beta^{l}(1-\beta)^{n-1}$.

Dropping the subscripts α, β and Δ, we obtain, from the definition of $e(m, k ; n, 1)$,

$$
\begin{aligned}
e(m, k ; n, l) & =\delta(m, k ; n, l)[\alpha e(m+1, k+1 ; n, l)+(1-\alpha) e(m+1, k ; n, l)]+ \\
+ & {[1-\delta(m, k ; n, l)][\beta e(m, k ; n+1,1+1)+(1-\beta) e(m, k ; n+1, l)] }
\end{aligned}
$$

and consequently
(2.5) $a(m, k ; n, I)=\alpha e(m+1, k+1 ; n, I)+(1-\alpha) e(m+1, k ; n, I)+$
$-\beta e(m, k ; n+1,1+1)-(1-\beta) e(m, k ; n+1,1)$,
(2.6) $b(m, k ; n, l)=\beta e(m, k ; n+1, l+1)+(1-\beta) e(m, k ; n+1, l)$.

If $m+n=N-1$, then (2.5) becomes $a(m, k ; n, 1)=\alpha-\beta$, and hence (2.1) follows from (2.4). On the other hand, rewriting (2.5) by means of (2.3) leads to

$$
\begin{aligned}
(2.7) \quad a(m, k ; n, l) & =\alpha \delta(m+1, k+1 ; n, 1) a(m+1, k+1 ; n, 1)+ \\
& +(1-\alpha) \delta(m+1, k ; n, l) a(m+1, k ; n, 1)+ \\
& +\beta[1-\delta(m, k ; n+1,1+1)] a(m, k ; n+1,1+1)+ \\
& +(1-\beta)[1-\delta(m, k ; n+1,1)] a(m, k ; n+1,1)+ \\
& +[\alpha b(m+1, k+1 ; n, 1)+(1-\alpha) b(m+1, k ; n, 1)+ \\
& -\beta b(m, k ; n+1,1+1)+ \\
& -(1-\beta) b(m, k ; n+1,1)-\beta a(m, k ; n+1,1+1)+ \\
& -(1-\beta) a(m, k ; n+1,1)],
\end{aligned}
$$

where for $m+n \leqq N-2$ the last expression between square brackets vanishes as one easily verifies using (2.5) and (2.6). This result, combined with (2.4), gives (2.2).

Let μ be a prior distribution on the closed unit square. For a strategy $\Delta \varepsilon$,

$$
\begin{equation*}
\rho(\mu, \Delta)=\int R(\alpha, \beta, \Delta) d \mu(\alpha, \beta) \text { denotes the average risk of } \tag{2.8}
\end{equation*}
$$

Δ against μ. If we define

$$
\begin{equation*}
\gamma_{\mu, \Delta}(m, k ; n, l)=\int c_{\alpha, \beta, \Delta}(m, k ; n, l) d \mu(\alpha, \beta) \text {, then } \tag{2.9}
\end{equation*}
$$

$-p_{\Delta}(m, k ; n, l) \gamma_{\mu, \Delta}(m, k ; n, l)$ is the coefficient of $\delta(m, k ; n, l)$ in $\rho(\mu, \Delta)$. It follows that any strategy Δ that has $\delta(m, k ; n, l)=1$ whenever $\gamma_{\mu, \Delta}(m, k ; n, l)>0$ and $\delta(m, k ; n, l)=0$ whenever $\gamma_{\mu, \Delta}(m, k ; n, l)<0$, minimizes $\rho(\mu, \Delta)$ for fixed μ and is therefore a Bayes strategy against μ. This may be seen by successively finding the optimal $\delta(m, k ; n, l)$ for $m+n=N-1, N-2, \ldots, 0$, and noting that for $m+n=v$ these optimal values do not depend on the values of $\delta(m, k ; n, l)$ for $m+n<v .$. Conversely, every Bayes strategy against μ has a version with $\delta(m, k ; n, I)=1 \quad($ or 0$)$ whenever $\gamma_{\mu, \Delta}(m, k ; n, l)>0 \quad($ or $<0)$.

THEOREM 3

Let μ be a prior distribution on the closed unit square and let $\gamma_{\mu}(m, k ; n, l)$ be defined by

$$
\begin{align*}
& \gamma_{\mu}(m, k ; n, I)=\int(\alpha-\beta) \alpha^{k}(1-\alpha)^{m-k} \beta^{\perp}(1-\beta)^{n-I} d \mu(\alpha, \beta) \tag{2.10}\\
& \text { if } m+n=N-1,
\end{align*}
$$

$$
\begin{align*}
\gamma_{\mu}(m, k ; n, l) & =\gamma_{\mu}^{+}(m+1, k+1 ; n, 1)+\gamma_{\mu}^{+}(m+1, k ; n, 1)+ \tag{2.11}\\
& -\gamma_{\mu}^{-}(m, k ; n+1,1+1)-\gamma_{\mu}^{-}(m, k ; n+1,1)
\end{align*}
$$

for $m+n \leq N-2$, where x^{+}and x^{-}denote $\max (0, x)$ and $\max (0,-x)$ respectively: Then $\Delta \varepsilon \mathcal{D}$ is a Bayes strategy against μ if and only if it has a version with $\delta(m, k ; n, l)=1$ whenever $\gamma_{\mu}(m, k ; n, l)>0$ and $\delta(m, k ; n, l)=0$ whenever $\gamma_{\mu}(m, k ; n, l)<0$.

PROOF
According to the remarks preceding the theore m, Δ is Bayes against μ iff it has a version for which $\delta(m, k ; n, l)=1$ (or 0) if $\gamma_{\mu, \Delta}(m, k ; n, l)>0$ (or <0). Integrating (2.1) and (2.2) with respect to μ and substituting the values of the $\delta(m, k ; n, 1)$ we find that for this version of Δ, $\gamma_{\mu, \Delta}(m, k ; n, 1)$ equals $\gamma_{\mu}(m, k ; n, l)$ as defined by (2.10) and (2.11) for all states.

3 ADMISSIBLE STRATEGIES

For the type of problem considered in this paper every admissible strategy is also a Bayes strategy. In the sequel we shall, however, need a slightly stronger result. We shall say that a prior distribution is nonmarginal if, for some $\varepsilon>0$, it assigns probability 1 to the set

$$
\begin{equation*}
Q_{\varepsilon}=\{(\alpha, \beta)| | \alpha-\beta \mid \alpha(1-\alpha) \beta(1-\beta) \geq \varepsilon, 0<\alpha<1,0<\beta<1\} . \tag{3.1}
\end{equation*}
$$

THEOREM 4
Every admissible strategy $\Delta \varepsilon D$ is Bayes against a nonmarginal prior distribution.

PROOF
Let Δ be a Bayes strategy against a prior distribution μ on the closed unit square and suppose that Δ is not Bayes against any nonmarginal prior. It is sufficient to show that Δ is not admissible.

For any sufficiently small $\varepsilon_{i}>0$, consider the restricted problem where the parameter space is reduced to the set $A_{i}=Q_{\varepsilon_{i}}$ as defined by (3.1). Since A_{i} is compact, the assertion that every admissible strategy is Bayes remains true for the restricted problem. By our assumption Δ is not Bayes, and therefore not admissible in the new problem. It follows that there exists a strategy Δ_{i} that is Bayes against a prior distribution μ_{i} on A_{i} and for which

$$
R\left(\alpha, \beta, \Delta_{i}\right) \leqq R(\alpha, \beta, \Delta) \quad \text { for all } \quad(\alpha, \beta) \varepsilon A_{i}
$$

By a standard prodedure we may select a sequence $\varepsilon_{i}>0$ and corresponding μ_{i} and Δ_{i} such that the strategies Δ_{i} converge to a strategy Δ_{0} in the sense that $\delta_{i}(m, k ; n, l)$ converges to $\delta_{0}(m, k ; n, l)$ for every state $(m, k ; n, l)$. Obviously

$$
R\left(\alpha, \beta, \Delta_{0}\right) \leq R(\alpha, \beta, \Delta) \quad \text { for all } \alpha, \beta \varepsilon[0,1],
$$

since the inequality must hold on every A_{i} and both functions are continuous.

Since Δ_{i} converges to Δ_{o} there exists a positive integer \mathfrak{j} for which Δ_{j} has the following properties:
(a) For all states with $\delta_{0}(m, k ; n, l)=0 \quad, \delta_{j}(m, k ; n, l) \neq 1$;
(b) For all states with $\delta_{0}(m, k ; n, l)=1 \quad, \delta_{j}(m, k ; n, l) \neq 0$;
(c) For all states with $0<\delta_{0}(m, k ; n, l)<1,0<\delta_{j}(m, k ; n, l)<1$. This implies that $\delta_{0}(m, k ; n, l)=\delta_{j}(m, k ; n, l)$ for every state with $\delta_{j}(m, k ; n, l)=0$ or 1 .

Recalling that Δ_{j} is Bayes against μ_{j} and noting that this property can not be destroyed by changing only those $\delta_{j}(m, k ; n, l)$ that are strictly between 0 and 1 , we find that Δ_{o} is Bayes against the prior distribution μ_{j} on A_{j}. As Δ is not Bayes against μ_{j} by our assumption, the inequality $R\left(\alpha, \beta, \Delta_{0}\right) \leq R(\alpha, \beta, \Delta)$ on the closed unit square must be strict for at least one point (α, β) and the inadmissibility of Δ follows.

We are now in a position to prove a theorem that provides some insight in the structure of admissible strategies.

THEOREM 5

If μ is a nonmarginal prior distribution and $m+n \leq N-2$, then

$$
\begin{equation*}
\gamma_{\mu}(m, k ; n+1,1+1)<\gamma_{\mu}(m+1, k+1 ; n, l) \tag{3.2}
\end{equation*}
$$

$$
\begin{equation*}
\gamma_{\mu}(m+1, k ; n, l)<\gamma_{\mu}(m, k ; n+1, l) \tag{3.3}
\end{equation*}
$$

PROOF

$$
\begin{aligned}
\text { For } m+n=N & -2,(2.10) \text { yields } \\
\gamma_{\mu}(m+1, k+1 ; n, l) & =\gamma_{\mu}(m, k ; n+1, l+1)= \\
& =\int(\alpha-\beta)^{2} \alpha^{k}(1-\alpha)^{m-k} \beta^{l}(1-\beta)^{n-1} d \mu(\alpha, \beta),
\end{aligned}
$$

which is strictly positive since μ is nonmarginal. In the same way one shows that (3.3) is satisfied for $m+n=N-2$.

Next we suppose that the theorem is valid for $m+n=v$, where $0<v \leq N-2$, and we assume $m+n=v-1$.

By (2.11) we have then

$$
\begin{aligned}
\gamma_{\mu}(m+1, k & +1 ; n, 1)-\gamma_{\mu}(m, k ; n+1,1+1)= \\
& =\left[\gamma_{\mu}^{+}(m+2, k+2 ; n, 1)-\gamma_{\mu}^{+}(m+1, k+1 ; n+1,1+1)\right]+ \\
+ & {\left[\gamma_{\mu}^{+}(m+2, k+1 ; n, 1)-\gamma_{\mu}^{+}(m+1, k ; n+1,1+1)\right]+} \\
& +\left[\gamma_{\mu}^{-}(m, k ; n+2,1+2)-\gamma_{\mu}^{-}(m+1, k+1 ; n+1,1+1)\right]+ \\
& +\left[\gamma_{\mu}^{-}(m, k ; n+2,1+1)-\gamma_{\mu}^{-}(m+1, k+1 ; n+1,1)\right] \geq 0,
\end{aligned}
$$

since by hypothesis each of the four expressions is nonnegative. Equality can occur only if all four expressions vanish. However, the first and the third one can vanish only if $\gamma_{\mu}(m+1, k+1 ; n+1,1+1)<0$ and ≥ 0 respectively, and hence inequality (3.2) is strict.

Similarly (3.3) follows from

$$
\begin{aligned}
\gamma_{\mu}(m, k ; n & +1,1)-\gamma_{\mu}(m+1, k ; n, 1)= \\
& =\left[\gamma_{\mu}^{+}(m+1, k+1 ; n+1,1)-\gamma_{\mu}^{+}(m+2, k+1 ; n, 1)\right]+ \\
& +\left[\gamma_{\mu}^{+}(m+1, k ; n+1,1)-\gamma_{\mu}^{+}(m+2, k ; n, 1)\right]+ \\
& +\left[\gamma_{\mu}^{-}(m+1, k ; n+1,1+1)-\gamma_{\mu}^{-}(m, k ; n+2,1+1)\right]+ \\
& +\left[\gamma_{\mu}^{-}(m+1, k ; n+1,1)-\gamma_{\mu}^{-}(m, k ; n+2,1)\right] \geq 0,
\end{aligned}
$$

and the fact that the first expression in square brackets can vanish only if $\gamma_{\mu}(m+2, k+1 ; n, 1)<0$ and the third one only if $\gamma_{\mu}(m+1, k ; n+1,1+1) \geq 0$, which would imply $\gamma_{\mu}(m+2, k+1 ; n, 1)>0$.

Every admissible strategy $\Delta \varepsilon \mathscr{D}$ has a version for which

$$
\begin{equation*}
\delta(m, k ; n+1, l+1) \leq \delta(m+1, k+1 ; n, l) \tag{3.4}
\end{equation*}
$$

$$
\begin{equation*}
\delta(m+1, k ; n, l) \leq \delta(m, k ; n+1, l) \tag{3.5}
\end{equation*}
$$

for all $m+n \leq N-2$, where in each of these inequalities at least one member equals 0 or 1.

PROOF
By theorem 4, Δ is Bayes against a nonmarginal prior μ, and as a result the theorem is proved by applying theorems 5 and 3.

COROLLARY 2
Every admissible strategy $\Delta \varepsilon \mathcal{D}$ has a version for which

$$
\begin{align*}
& \delta(m, k ; n, 1)[1-\delta(m+1, k+1 ; n, 1)][1-\delta(m+1, k ; n, 1)]=0 \tag{3.6}\\
& {[1-\delta(m, k ; n, 1)] \delta(m, k ; n+1,1+1) \delta(m, k ; n+1,1)=0}
\end{align*}
$$

for all $m+n \leq N-2$.

PROOF
As before, we let μ denote the nonmarginal prior of theorem 4 and consider the version of Δ having $\delta(m, k ; n, l)=1$ (or 0) whenever $\gamma_{\mu}(m, k ; n, 1)>0(o r<0)$. If (3.6) were false for this version, then $\gamma_{\mu}(m, k ; n, l) \geq 0, \quad \gamma_{\mu}(m+1, k+1 ; n, I) \leq 0$ and $\gamma_{\mu}(m+1, k ; n, l) \leq 0$, The second of these inequalities implies $\gamma_{\mu}(m, k ; n+1,1+1)<0$ by theorem 5, and hence (2.11) shows that $\gamma_{\mu}(m, k ; n, l)<0$, which contradicts the first inequality.

Similarly, if (3.7) were false, then $\gamma_{\mu}(m, k ; n, 1) \leqq 0$, $\gamma_{\mu}(m, k ; n+1, l+1) \geq 0$ and $\gamma_{\mu}(m, k ; n+1, l)>0$.

The second inequality implies $\gamma_{\mu}(m+1, k+1 ; n, 1)>0$ by theorem 5 , and hence $\gamma_{\mu}(m, k ; n, 1)>0$ by (2.11), which contradicts the first inequality. This completes the proof.

For symmetric strategies a more explicit result may be obtained.

COROLLARY 3

Every admissible strategy $\Delta \varepsilon \boldsymbol{\mathcal { y }}$ has a version for which

$$
\begin{equation*}
\delta(m, k ; n, l)=1, \quad \delta(n, l ; m, k)=0 \tag{3.8}
\end{equation*}
$$

whenever $m+n \leq N-1, k \geqq 1, m-k \leq n-1$ and $(m, k ; n, l) \neq(n, l ; m, k)$.

PROOF

For the version of Δ that satisfies corollary 1 we find by repeated application of (3.4) and (3.5)

$$
\delta(m, k ; n, 1) \geqq \delta(m-k+1,1 ; n+k-1, k) \geqq \delta(n, 1 ; m, k)
$$

where at least one of the extreme members must be 0 or 1 . Since their sum equals 1 if $p_{\Delta}(m, k ; n, l) \neq 0$, (3.8) will hold in this case. If $p_{\Delta}(m, k ; n, l)=0$, then by (1.6) we also have $p_{\Delta}(n, l ; m, k)=0$ and choosing $\delta(m, k ; n, l)=1$ and $\delta(n, l ; m, k)=0$ merely leads to another version of Δ.

We conclude this section by remarking that corollaries 1,2 and 3 obviously continue to hold if, instead of admissibility, we require that Δ be Bayes against a nonmarginal prior.

In section 1 we have shown that there exists a symmetric minimaxrisk strategy. For the type of problem considered in this paper there exists a least favourable prior distribution and any minimax-risk strategy is Bayes against any least favourable prior. These assertions continue to hold if the parameter space is reduced to a compact subset of the closed unit square.

THEOREM 6

There exists a minimax-risk strategy $\Delta \varepsilon \mathscr{\mathcal { J }}$ which obeys (3.4) through (3.8).

PROOF
By the remark at the end of section 3 , it is sufficient to demonstrate the existence of a symmetric minimax-risk strategy that is Bayes against a nonmarginal prior.

For sufficiently small $\varepsilon_{i}>0$ let $A_{i}=Q_{\varepsilon_{i}}$ as defined by (3.1) and let μ_{i} and Δ_{i} denote a least favourable prior and a symmetric minimax-risk strategy for the restricted problem where the parameter space is reduced to the compact set A_{i}. Repeating the proof of theorem 4 we may select a sequence $\varepsilon_{i} \searrow 0$ and corresponding μ_{i} and Δ_{i} such that the strategies Δ_{i} converge to a strategy Δ_{o} that is Bayes against a nonmarginal prior μ_{j} on A_{j}. Since the convergence is defined as convergence of the $\delta_{i}(m, k ; n, l)$ to the $\delta_{0}(m, k ; n, l), \Delta_{0}$ is symmetric. As the maximum risk of Δ_{i} on A_{i} does not exceed the minimax risk on the entire closed unit square and $R\left(\alpha, \beta, \Delta_{0}\right)$ is continuous, the convergence
of Δ_{i} to Δ_{0} implies that Δ_{0} has minimax risk.

For $N=1$ or $2,(1.5)$ and (3.8) uniquely determine a symmetric strategy. It follows from theorem 6 and corollary 3 that this strategy has minimax risk and is in fact the only admissible strategy in \mathscr{J}. For $N \geq 3$ the situation rapidly becomes more complicated. In order to find a symmetric minimax-risk strategy Δ_{0} satisfying (3.4) through (3.8) one first has to find a general expression for the risk function $R(\alpha, \beta, \Delta)$ of an arbitrary symmetric strategy Δ satisfying (3.8). Then, with the aid of (3.4) through (3.7), one has to solve the remaining $\delta(m, k ; n, 1)$ directly using the minimax property.

To accomplish the first step of computing $R(\alpha, \beta, \Delta)$ for an arbitrary symmetric strategy, one may proceed recursively. This is especially useful if one wants to find $R(\alpha, \beta, \Delta)$ for a number of values of N. If $X_{v}=1-Y_{v}=1$ or 0 according to whether E_{1} or E_{2} is carried out on the $v=$ th trial $(v=1,2, \ldots, N)$, then $R(\alpha, \beta, \Delta)$, being equal to $|\alpha-\beta| \quad$ multiplied by the expected number of times the experimenter uses the less favourable experiment, is given by
(4.1) $\quad R(\alpha, \beta, \Delta)=\frac{1}{2} N|\alpha-\beta|-\frac{1}{2}(\alpha-\beta) \sum_{v=1}^{N} E\left(X_{v}-Y_{v} \mid \alpha, \beta, \Delta\right)$. Remembering the definition of $\pi_{\alpha, \beta, \Delta}(m, k ; n, l)$, we have

$$
\begin{equation*}
E\left(X_{v}-Y_{v} \mid \alpha, \beta, \Delta\right)=\sum \pi_{\alpha, \beta, \Delta}(m, k ; n, 1)[2 \delta(m, k ; n, 1)-1], \tag{4.2}
\end{equation*}
$$

where the summation is extended over all states ($m, k ; n, l$) with $m+n=v-1$, and where the $\pi_{\alpha, \beta, \Delta}(m, k ; n, l)$ can be computed recursively by means of

$$
\begin{align*}
\pi_{\alpha, \beta, \Delta}(m, k ; n, 1) & =\alpha \delta(m-1, k-1 ; n, 1) \pi_{\alpha, \beta, \Delta}(m-1, k-1 ; n, 1)+ \\
& +(1-\alpha) \delta(m-1, k ; n, 1) \pi_{\alpha, \beta, \Delta}(m-1, k ; n, 1)+ \tag{4.3}\\
& +\beta[1-\delta(m, k ; n-1,1-1)] \pi_{\alpha, \beta, \Delta}(m, k ; n-1,1-1)+ \\
& +(1-\beta)[1-\delta(m, k ; n-1,1)] \pi_{\alpha, \beta, \Delta}(m, k ; n-1,1)
\end{align*}
$$

starting from

$$
\pi_{\alpha, \beta, \Delta}(0, k ; 0,1)= \begin{cases}1 & \text { if } k=1=0, \tag{4.4}\\ 0 & \text { otherwise } .\end{cases}
$$

The work involved may be reduced somewhat by means of the relation

$$
\begin{equation*}
\pi_{\alpha, \beta, \Delta}(m, k ; n, l)=\pi_{\beta, \alpha, \Delta}(n, l ; m, k), \tag{4.5}
\end{equation*}
$$

which is a consequence of (1.3) and (1.6).
For $N=3$, only $\delta(2,1 ; 0,0)$ remains undetermined by the requirement that Δ be symmetric and must satisfy (3.8), and one finds $R(\alpha, \beta, \Delta)=\frac{3}{2}|\alpha-\beta|-\frac{1}{2}(\alpha-\beta)^{2}\{1+\delta(2 ; 1 ; 0,0)+[1-\delta(2,1 ; 0,0)](\alpha+\beta)\}$. After a little algebra one sees that Δ_{0} must have $\delta(2,1 ; 0,0)=1$ and that $R\left(\alpha, \beta, \Delta_{0}\right)$ attains its maximum $M\left(\Delta_{0}\right)=9 / 16$ when $|\alpha-\beta|=3 / 4$. For $N=4$ only $\delta(2,1 ; 0,0), \delta(3,1 ; 0,0)$ and $\delta(3,2 ; 0,0))$ are to be determined and

$$
\begin{aligned}
R(\alpha, \beta, \Delta) & =2|\alpha-\beta|-\frac{1}{2}(\alpha-\beta)^{2}\left\{\left(\alpha^{2}+\beta^{2}+3 \alpha \beta-\alpha-\beta+3\right)-\delta(2,1 ; 0,0) \alpha \beta+\right. \\
& -\delta(3,2 ; 0,0)[1+\delta(2,1 ; 0,0)]\left(\alpha^{2}+\beta^{2}+\alpha \beta-\alpha-\beta\right)+ \\
& \left.+\delta(3,1 ; 0,0) \delta(2,1 ; 0.0)\left(\alpha^{2}+\beta^{2}+\alpha \beta-2 \alpha-2 \beta+1\right)\right\} .
\end{aligned}
$$

Using (3.6), one finds after lengthy calculations that Δ_{0} must have $\delta(2,1 ; 0,0)=4 / 5, \delta(3,1 ; 0,0)=1 / 2$ and $\delta(3,2 ; 0,0)=1$, so that the riskfunction of Δ_{0} is given by

$$
R\left(\alpha, \beta, \Delta_{0}\right)=2|\alpha-\beta|-\frac{17}{10}(\alpha-\beta)^{2}+\frac{1}{5}(\alpha-\beta)^{4}
$$

and attains its maximum $M\left(\Delta_{0}\right)=.617$ when $|\alpha-\beta|=.654$. For larger values of i the number of $\delta(\mathrm{m}, \mathrm{k} ; \mathrm{n}, \mathrm{l})$ that have to be determined increases rapidly, and consequently the algebra involved becomes distressingly complicated.

REFERENCES

[1] BRADT, R.N. , JOHNSON, S.M. and KARLIN, S. (1956). On sequential designs for maximizing the sum of n observations. Ann. Math. Statist. 27, 1060-1074.
[2] VOGEL, W. (1960). Ein Irrfahrten-Problem und seine Anwendung auf die Theorie der sequentiellen Versuchs-Pläne. Arch. Math. 11 , 310-320.
[3] VOGEL, W. (1960). An asymptotic minimax theorem for the two armed bandit problem. Ann. Math. Statist. 31, 444-451.

[^0]: 1) Report S 399, Mathematisch Centrum, Amsterdam.
