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§1o Introduction and some basic notionsa 

The production of a continuous product is considered with a 

finite number of possible production rates a., i=1, ooa,N with 
i 

a 1=0a The production costs per time unit for production rate ai 

are denoted by c ( i) with c ( i) > c ( i-1 ) for i=2, • a • ,N and p p - p 
C (1)=0. 

p 
The product is kept in stock. Stockholding costs are c per unit 

s 
time per unit producta If the stocklevel reaches a given maximum 

amount M then the production has to be stopped. The arrivals of 

orders are described by a stationary Poisson-process with parameter 

t\, The order size L is distribUte.d according to a given distribution 

function F(y), Orders are "fulfilled immediately either by the 

available stock or by purchases elsewhere at a given higher cost 

c per unit product, Furthermore the costs of a transition from 
r 

production rate a. to production rate a" are given by c (i,j) with 
i J q 

i,j E {1,2, ••• ,N}a 
. • , • 1 ) 

We will show in this paper how the method developed in le!3.ds 

to the optimal production strategy in this problemo A survey of the 
. . . 2) 3) . · · · method is given in and "We will only state the definitions 

of the necessary functions and will derive functional equations for 

them, specialized for the considered problem" A method of solution 

for the functional equations for the function c(~;x) will be given, 

Numerical methods of solving the functional equations for the 

functions k(x;d), t(x;d) and the probability distributions of entering 

a set of states within the set of interventionstates from states 

outside this set for an arbitrary strategy 6 are considered as a 

separate subject and will not be given here" Finally the procedure 

in the strategy-improvement routine will be outlined. 

The production manager is allowed to control the system by 

changing over to another production ratea His interventions will 

depend on the state of the system, which is specified by two state 

variables: the production rate a. and the stock levels. 
i 

The state space X of this problem consists of states x=(i,s) with 

-oo < s < 00 and 1 < i < No 
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The state space is presented in figure 1,1o 

stock f 
(s) . 

2 l 

Figure 1o1c: The state space Xo 

N-1 N 

production 
rate (a.), 

l 

If the production manager does not intervene, the system is 

subject to the natural processo The natural process is defined 

for every state Xo During the natural process the system remains 

on the same production rate a. as it is in the starting state Xa 
J.. 

Additional purchases are included in the natural processo 

If the production manager does intervene then the resulting 

process will be different from the natural processo It will be 

called the decision processo In every state of the system x the 

production manager has to make a choice between the possible 

decisions in state Xo The set of possible decisions will be denoted 

by D(x), a particular decision by d E D(x)o D(x) includes the 

decision not to intervene, called the null decision. By an intervention 

in state x=(i,s) the system is transferred into state (j,s) with 

j¥i ifs> 0 and into state (j,O) ifs< Oo Between interventions 

the system is subject to the natural process, If to every state a 

~ decision is fixed, we have a strategy. We will denote a strategy 

by ~o The decision dictated by strategy~ in state x will be denoted 

by ~(x), A strategy is called optimal if it minimizes the average 

,costs per unit time in the long run, denoted by r(~L r(a) does not 

depend on the starting state if there is only one ergodic set 

of states in the decisionprocess, as will be the case in this problemo 
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A strategy~ will dictate an intervention in the states belonging 

to a closed set A, called the set of intervention states for strategy 
.g. 

-s. The state space will consist of two distinct non-empty sets of 

states: the set of intervention states A and its complement, the set 
,li1j 

of non-intervention states states where null-decisions are dictated 

by strategy -s, 

Furthermore it is assumed that there exists a non-empty set 

of states A0 where every strategy d~ctates an interventiono 

Hence for every strategy there holds: 

( L 1) 

If the maximum stock level Mis reached in this problem then the 

production is always stoppedo Hence the states (i,M) for i=2, •o•,N 

are elements of A0• Also in the states (1,s) withs< 0 an intervention 

will be dictated by every strategy. Hence the states (1,s) with 

* s < 0 are elements of A0 ). The set A0 will be given by 

A0= {(i,s) I s.::.. M,i > 1} V{(i,s) Is< o, i=1} ( 1.2) 

and is presented in figure 1o2 by the shaded intervals of So 

t M 
stock 

M M 

➔ 

production 
rate 

Figure 1.2: The c oice of th set A0 • 

*) Note that only one strategy is excluded by this choice of the set 

A0 , namely the strategy which satisfies customer demand by purchases 

at the cost c per unit product. 
r 
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§2o The determination of the strategy-independent functions. 

We will derive now the functional equations for the functions 

k(x;d) and t(x;d)o These functions denote respectively the difference 

in expected costs and in expected duration between two stochastic 

walks starting in Xo In the first walk the decision dis taken in 

state x after which the system is subject to the natural process 

until the first state in A0 is reached. The second walk is only 

subject to the natural proces from state x on. Denote by k.(s) 
1 

and t.(s) respectively the expected costs and duration of the 
1 

second walk starting in state x=(i,s). If the decision d transfers 

the system from state (i,s) into state (j,s) then we have for 

k(x;d) and t (x;d) ~ 

k(x;d) = C (i,j) + k.(s) - k.(s) 
q J 1 

( 2. 1 ) 

t(x;d) = t.(s) - t.(s) 
·. J 1 

(2o2) 

Because states (i,s) withs> Mandi> 1 are never reached in the 

decision process, it will be sufficient to determine the functions 

k.(s) and t.(s) for s <Mand 1 < i 
1 1 - -

For i=1 thereis no production. For states (1,s) E A0 we have: 

(2o3) 

Fors> 0 the walk terminates when the stock level drops below 

zero'; because then the set A0 is reached. If we denote the arrival 

time of the next order by!.. and the order size by z, then we have: 

(2o4) 
s < z 
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Taking expectations leads to the following functional equation 

for t 1(s) =~!,1(s) (t!, being 1/;\)~ 

s 
1 

= - + 
A I ( 2. 5) 

0 

Fors< 0 we have, because (1,s) E A0 : 

For s > 0 we have 

{k,( s--,::) 

~1 ( s) = C .s.:r 
s -

cr.(z-s) 

(2.7) 

s < z 

By taking the expectations on both sides of (2.7) we have the 

following functional equation for k1 ( s) = t,~1 ( s) with s > 0: 

1 
s -;\ + C r 

(X) s 

j (y-s)dF(y) + J k 1(s~y)dF(y) (208) 
s 0 

For production rates a. with 1 < i .::_ N the stock level is increasing 
J. 

linearly between the arrivals of orders. The walk terminates when-

the maximum stock is reached beeause (i,M) E A0 for i > 1. 

So wee have: 

t. (M)=O 
J. 

k. (M)=O 
J. 

(2.9) 

(2.10) 

If the stock level drops below zero then the walk continues from 

state (i,O) after an additional purchase. 
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The functional equations for t.(s) and k.(s) are derived for i > 1 
l l 

by considering the possible events C::du:it'ing a small time t:i,o 

Let the stock level at time O bes. Suppose that the first order 

arrives at time ,!_1• The ordersize will be a stochastic amount l..° 

Consider a small time interval ( 0>, b. ,] and denote the stocklevel 

at time , + b., by 2.-' o 

Then we have for s 1 ~ 

s+a.b., .!.1>!>.T (2.11) l 

SI = s+a.b.,-y T <f>.T y < s+a.r 1 
l - -1- - 1-

a. (b.T -T ) T <f>.T y > s+a. b. '.l" 
l -1 -1- l 

neglecting the case of more than one arrival in (,,T+b.,] which 

happens with probability o(b.,). 

Furthermore':: we have: 

P{.!.1 > b.T} = 1- At>. T + o(t>.,) 

For t.(s) we have: 
-1 

= A b. T 

t.(s)=b., + t.(s 1 ) 
-1 l -

+ o(t>. ,) 

(2.12) 

(2.13) 

(2.14) 

By taking expectations in both sides of (2.14) we have for t.(s) = 
l 

= t t . ( s ) with O < s < M and i > 1 : 
-1 -

t.(s) = (1-Ab.T + ~(b.,)) {b., + t.(s+a.b.T)} 
l l l 

f+ai'1 

J 

t.(s-y+a.b.,)dF(y) 
l l 

0 

00 

t.(a.(b.,-r 1)) dF(y)} 
l l 

(2.15) 
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where O < T1 ~ 6To 

Dividing by 6T, replacing 6T by~ and performing the limit operation a. 
6s➔O, we arrive at the functional1 equation: 

ds a. 
t. ( s) 

i 
i 

A 
a. a. 

i i 

S (2o16) 

;f t.(s-y)d.F(y) - L t.(0)(1-F(s)) 
i a. i 

0 i 

For the stockcosts within 6T, igno~ing higher order terms we have: 

if 1_1 > 6T 

Additional purchases are done only 

y_ s + a.T1• The costs are c (y_ -
i r 

are c ( i), ll T. 
p 

in the case that 1_1 ~ 6 T and 

ai , 1-s)o The production costs 

These considerations and the arguments used at the derivation of the 

functional equation for t.(s) lead to the functional equation: 
i 

dk. ( s) C oS C (i) 
i 

ds 
A 

=-
a. 

i 

k. ( s) 
i 

- _s_ - .,.....,P __ 
a. 

i 
a. 

,\ 

a. 
i 

(l-F(s))k.(O) 
i 

for k. ( s) with O < i 
For s < 0 we have 

t. ( s) = t. ( 0) 
i i 

k. ( s) 
i 

, k. ( 0) 
i 

00 

s 

s < M and 

( i > 1 ) : 

i 

(y-s )dF(y) - .:\ 
a. 

i 

i > 1o 

s 

f ki(s-y)dF(y). 

0 (2.17) 

(2, 18) 

(2, 19) 
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3o Determination of the strategy-dependent functions c(~;x)o 

According to the method presented in 1 ) the function c(~;x) 

for a given strategy s has to be obtained from the following 

functional equation: 

r 
+ I 

J 

A 
~ 

PA ( 1 ) (du;-s;x) c(.z-;u) 
-2" 

( 3 0 1 ) 

where u e A denotes the first future intervention state assumed 
~ 

by the system if it starts in state x. The probability of u is given 
( 1 ) 

by BA (. ;x). 

If x 5'.°s a state where the nulldecision is dictated then k(x;-s(x)) = 

= t(x;~(x)) = 0 and (3o1) reduces to 

c(~;x) = I 
A 

-s 

p ( 1) 
A 

-Er 

(du; i't~ X) C ( -2-; U) 

It will depend on the location of the set of intervention states 

A for an arbitrary strategy & in the state space how the functional 
& 

equation (3o1) specializes in this particular problem. We shall 

first consider strategies with only one set of non-intervention 

states for each production rate a. i=1, ••o,No This is no 
i 

restriction because strategies with two or more distinct sets of 

non-intervention states for some production rates can be reduced to 

the preceding class by an extension of state space. 

A representative of the considered class of strategies is 

sketched in figure 3o1. The set A is given by the shaded intervals 

and is completely specified by the~states (i,b ( 1 ))and (i,b (2 ))for 
,!! ,!l, 

i=1, ooo,N as follows: 
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1, For states (i,s) with 1 < i < N ands> b (2 ) an intervention is 
'l; 

dictated. Because in states (i,M) with 1 < i < N always an 

intervention is dictated (A0!) we have b.,s-( 2 ) < M. The subsets of 

A. with states (i,s) for each i with 1 < i < N and withs> b (2 ) 
"lr (' 2) - (2) def - -e 

will be denoted by A 1 ' o For i=1 we put b = 00 for each 

possible strategy. C~usequently the subsets 1 (i, 2 ) exist only 
~ 

for i > 1. 

2o For states (i,s) withs< b ( 1 ) an intervention is dictatedo 
- i5 

Let the set of indices of these production rates for which 

b ( 1) > 0 be denoted by I. For production rates a. with i ¢ I 
'l, - 'l, 1 .g 

we put b = - 00 • For each i EI we will denote the set of states 

withs <,z,b ( 1) by A (i,,). Notesthat for every strategy Ni I 
- 'lr .l?, -'lr 

and 1 EI • 
.g 

t M b (~ 
M M 

stock 'l, 
b 

i! 
b (2 

b (1 i! 
b ( 2) 

'l, 

b ( 1 ) 
q, 

'lr 

0 
➔ 

production 
rate 

2 1 N-1 N 

Figure 3. 1 The set A for a strategy~ of the considered class 
i! 

of strategies o 

A strategy is further specified by the decision i!(i,s) in each 

(i,s) EA. A decision means a transformation to state (j,s 1 ) with 
~ 

j¥i and s 1 =s, if it is not a null decision. This implicates that 

except by the states (i,b ( 1 ))and (i,b (2 ))a strategy has to be 
~ ~ 

specified by the dictated decision in each intervention state in A C 

'lr 
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• • 0 (i,1) 
Usually for the in practice occuring strategies each set A or 

A (i, 2 ) can be subdivided into a finite number of subsets,zwhere the 
z 

decision, dictated by the strategy, is the same for each state belonging 

to such a subseto The states that separate these subsets together with 

the decision attached to the states belonging to these subsets specify 

completely a strategy of the considered class" 

The general functional equation for c(z;x) given by (3.1) specializes 

to the following set of functional equationso For non-intervention 

states (i,s) we have: 

c(z;i,s)= 

where: 

f c(z·i u) d G.(u·s·b (1)) 
' ' i ' ' Z ( i, 1 ) 

i=1 

ue:A 
z 

I ( i, 1 ) 
c(z·i u) d G.(u·s·b ( 1 ) b (2 )) 
'' i''z 'z 

ie:I 
z 

i,#1 
ue:A· 

z 

c(z·i b (2 )\ 
' ' z / 

+ P.(b ( 2 )·s·b (1))0 c(z;Lbz( 2 )\ 
i Z ' ' Z / 

iiI 
z 

1) G.(u·s·b ( 1)) with i e: I denotes the probability that the 
i ' ' Z Z 

first future interventionstate (i,~) after starting in the 

non-intervention state (i,s) is contained in the set 

{ ( i ,~) I u .::_ ~ .::_ bz ( 1)} e: A/ i, 1), 

2) P. (b (2 )·s·b ( 1))with i > 1 denotes the probability that the 
i Z ' ' Z 

first future intervention state, after starting in the non-

intervention state (i,s), is given by (i,b (2 ))o 
z 
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For intervention states (i,u) EA the system is transferred 
z 

into state z(i,u)o We have for c(z;i,u): 

c(z;i,u) = k(i,u;z(i,u)) - r(z) t(i,u;z(i,u)) + c(z;z(i,u)) 

(3o4) 

It is easily verified that in (3.1) the function c(z;x) can be 

determined only relative to an arbitrary constanto If we put c(z;x)=O 

for one state x then the set of functional equations (3o3) and (3.4) 

will have a unique solution. 

To solve the set of functional equations for c(z;oc) given by 

(3.3) and (3.4) we shall use the special properties of the states 

(i,b (2 )). We will denote the set of states (i,b (2 ))with i=2, ••• ,N 
z z 

by B and the states of this set by Y•c Note that for each strategy 
Z i 

there are always N-1 of these states. 

Let u· 
-n n=1,2, ••• be the sequence of future intervention states 

assumed by the decision process for an arbitrary strategy z and 

starting in an arbitrary state (i,s). If (i,s) E Az then u1 d~f (i,s)o 
. 1 ) ( ) • . As proved in the sequence 2:!n n= 1,2, o•c constitutes a stationary 

Markov-process with discrete time parameter and a non-denumerable 

state space A. In the Markov-process in A there is inbedded a z z 
stationary Markov-chain with a discrete time parameter and a finite 

state space B CA . z z 
We consider now realisations of the decision process starting 

in an arbitrary state (i,s) and terminating in z, the first future 

state assumed in B. These realisations terminate with probability 
z 

one in a finite timec Before reacning z, the decision process assumes 

a stochastic number~ of intervention states B:,1 , 1=1,2, ooon with 

each u1 E .VI A (i, 1 ). The functions ck(z;i,s) and ct(z;i,s) are 
- lE Z 

z 
defined being the expected value of the sum of the contributions in 

each state u1 of the functions k(x;d) and t(x;d) respectivelyo 
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We have for non-intervention states (i ,s): 

n 
( . ) def e I ( ( ) ) ck z; 1 , s = c::. k u1 ; z u1 

1=1 
(3.5) 

n 
( . ) def~ I ( ( ) ) ct z; 1 , s = c t u1 ; z u1 

1=1 
(3.6) 

where the expectation is taken with respect to the joint probability 

distribution of .:!!.i (1=1, ••• ,.!!,) and E.• 
For intervention states u 1 we have: 

n 

C ( u 1 ; z ( u 1 ) ) + "E. I k ( u1 ; z ( u1 ) ) 
1=2 

0 

n 

[
(u1 ;z(u1)) + "E I t(u1 ;z(u1 )) 

1=2 

0 

(3.8) 

where the expectation is taken with respect to the joint probability 

distribution of u1 1=2, ·••,.!!,and.!!.• 

We consider next realisations of the Markov-chain in B, starting 
z 

in state y. and terminating in L· the first future state assumed in 
l. J 

B • For c ( z ;y. ) with y. e: B the following set of N-1 linear · equations z l. l. z 
hold: 

c(z;y. )=ck*(z;y.) - r(z). ct*(z;y.) 
l. l. l. 

+ I 
y .e:B 

J z 

P(y.;y.)c(z;y.) 
J l. J 

i=2, ••• N 
(3.9) 

where P(y.;y.) denotes the probability of y. being the first future 
J l. J 

state in B after starting in y.: 
z l. 
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The functions ck*(z;y.) and ct*(z;y.) are also related to the walk 
i i 

starting in y. and terminating in the first future state in B :y.o 
i Z J 

They follow from the relations 

ck~(z;y. )=k(y.;z(y. ))+ck(z;z(y. )) i i i i (3o10) 

ct~(z;y. )=t(y. ;z(y.) )+ct(z;z(y.)) 
i i 1 1 

(3o11) 

where ck(z;z(y.)) and ct(z;z(y.)) follow from (3.5) and (3.6) while 
i i 

z(y.) denotes the decision dictated by z in y .• If ck~(z;y.), 
1 i 1 

ct*{z;·y.) and the transition probabilities P(y.;y.) are known then 
1 J 1 

we have N-1 linear equations in the N unknowns c(z;y.) i=2, •oo,N 
1 

and r(z)o To obtain a unique solution we put c(z;J»)=O. 

After having solved this set of linear equations we consider, 

in order to compute c(z;i,s) for (i,s) i B, realisations of the 
z 

decision process starting in (i,s) and terminating in the first state 

y. assumed in the set B. The following relations holds for c(z;i,s) 
J z 

with (i,s) i B: 
z 

c(z;i,s)=ck(z;i,s)-r(z)ct(z;i,s) 

+ l P(y.;i,s) c (z;y.) 
y.eB J J 

J z 

(3.12) 

where ck(z;i,s) and ct(z;i,s) are defined by (3.5), (307),(3.6) 

and (3.8). P(y.;i,s) denotes the probability of reaching y. EB, 
J J z 

starting in (i,s) i B. 
z 

Numerically the function c(z;i,s) can be determined by simulation 

of the stochastic walks on which relations {3.9) and (3o10) are 

based. Simulation has the advantage that it can be done for every 

arbitrary strategy, but it is time consuming compared with other 

numerical methods. 
F . . . (i,1) or strategies with the property that in each set A only 

z 
interventions are dictated that increase the production rate, the 

functions ck(z;i,s) and ct(z;i,s) can be computed by numerical 

integration from the following recursion relations: 
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ck(z;i,s)= 

J {k(i,u;z(i,u)) + ck(z;z(i,u)} 
( • ) A (i,1) 1.,u E z 

(i,s;z(i,s)) + ck(z;z(i,s)) 

dG . ( u · s · b ( 1 ) 
l. ' ' z ' 

(i,s) ¢A; i EI z z 

(i,s) £ B nA z z 

(i,s) £ B 
z 

0 ii Iz; (i,s) i AZ 

(3o13) 

The same relations hold for ct(z;i,s) with ck and be replaced 

respectively by ct and to 

The probabilities P(y.;i,s) follow from: 
J 

P(y.;i,s)= 
J 

J P(y.;z(i,u))dG.(u;s;b (1), 
( . )A(1,1) l. z 
1.,u E Z 

P.(b (2 )·s·b (1)) 
l. z ' ' z 

P(y.;z(i,s)) 
J 

0 

(i,s) i A 

l. < j 

i E I z 

(i,s) i A 

i=j:j1 

l. E I z 

(i,s) i A 

i=j;i i I 

(i,s) £ A 

(i,s) i A 

i > j 

z 

z 

z 

z 

z 

z 

(3o14) 
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For the probabilities P.l'b ( 2 );s;b ( 1)functional equations can 
l \I Z Z 

be derived using the same arguments as before at the derivation of the 

function k.(s) and t.(s)o We restrict ourselves to stating the results: 
l l 

L P.(b (2 )·s·b ( 1 )) 
as l Z ' ' Z 

A =-
a. 

l 
s 

A f 
ai ' ( 1 ) 

b 

P.(b ( 2 )·s-y·b (i)dF- · 
l Z ' ' Z (y) 

for b (l) 
z 

z 

' s < b ( 2 ). 1 EI ·i > 
z ' z' 

P.(b (2 )·s·b ( 1)) = 1 
l Z ' ' Z 

for l ¢ I . b ( 1) 
z' z 

< s < 

(3o 15) 

b( 2 ) (3ol6) 
z 

i=2, coo,N 

For the density functions g (u·s·b ( 7) and g.(u·s·b ( 1) b (2 )) 
1 ''z . 1 ?'z 'z 

corresponding to G (u·s·b (l)) and G.(u;s~b (,),b (2 )) defined before~ 
1 ''z l Z Z 

we can derive the functional equations; 

s 
( 1) 

g.(u;s;b ) 
l Z 

. ) Jr . (1) ... 1 = f(s-u + g.(u;s-y;b )dF(y) 1= 
, ( 1 J z 

a 
as 

b 
z 

g.(u·s·b (l) b (2 )) = 
l ' ' Z ' Z 

A 
a. 

l 

g .(u·s·b ( 1) 
l ' '·z ' 

A 
a. 

l 

s 

I ( 1 ) 
b 

z 

(. (1) (2), . ) 
g. u;s-y;b ,b )dF(y 

l Z Z 

l :, 1 ;i E I o 
z 

( u. b ( 2) . b ( 1 ) b ( 2) ) def O 
g_ ' z ' z ' z l 

i > 1;i EI 0 

z 

(3c18) 

A - f(s-u) a. 
l 

(3o 19) 

(3o20) 
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SUI!llllarizing for strategies that dictate an increase of production 

in the sets A (i, 1) with i EI the functional equations for 
(2) f1) · (1)z (1) (2) 

Po(b ;s;b ), g 1(u;s;b ) and g 1(u;s;b , b ) have to be i z z z z z 
solved before (3.11) and (3.12) can be used to determine the functions 

ck( z ;i ,s), ct( z ;i ,s) and P(y, ;i ,s). All strategies that occured in the 
J 

iteration cycles of the numerical examples in this paper did have this 

property and the relations (3 .11) ••• (3.14) could be solved by 

numerical integration methods. This has the advantage of obtaining 

a better accuracy within a shorter computing time, than simulation 

of (3.9) and (3 .10). For strategies not having this property we will 

have to u~e simulation. 

§ 4 The strategy - improvement routine. 

~vhen the function c(z;x) is determined for a given strategy z 

then based on this function a better strategy can be determined. 

For that purpose we make use of the following definitions: 

a) The function c(d.z;x) , given by: 

( )def 
c d.z;x-:-- k ( x; d) -r ( z ) t ( x; d) + t. { c ( z ~) I d} 

( 4 .1) 

This function results from applying the mixed strategy d.z. The 

prescription of this mixed strategy is to apply decision din 

state x, which transforms the system into the stochastic state u and 

to apply strategy z after this transformation. In this problem u is 

deterministic • 

b) The function c(A.z;x), given by 

c(A.z;x) = f PA( 1)(du;x) c(z;u) 
J 

( 4 .2) 

A 
The strategy A.z prescribes the postponement of decisions according 

to strategy z until the first future state ~, assumed in the set A • 

c) The class K of all closed sets A satisfying z 

d) The set of 

X = {xi c(A.z;x) .::_ c(z;x)} 

states A' given by: 
z 

AZ' = AEK A 
z 

(4.3) 

( 4 .4) 
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th . . . Suppose that at then step of the iteration cycle we have obtained 

strategy z(n) and the function c(z(n);x). Then the following three 

steps should be nerformed. 

1. Determine the function c(d.z(n);x) for each x and d s D(x) by (4.1) 

2. Determine the decision d* s D(x) for each x, satisfying: 

c(d*.z(n);x) = min c(d.z(n);x) 

d s D(x) 

* (n) (n) The mixed strategy d .z is denoted by z 1 • 

3. Determine the set A' satisfyinP, (4.4) 
z1 

( n+1) 
The new strategy z .. is then given by 

. ( n) ( ) z1 X 

/n+1)(x) = 

rull decision 

X S 

X ~ 

A' 
z1 

A' 
z1 

(4.5) 

(4.6) 

It is proved in 1) that this iteration cycle leads to the optimal strategy 

z if there is only one ergodic set of states. The extension to more 
0 

than one ergodic set of states is also given in 1). The optimal strategy 

z has the following properties: 
0 

min 
d s D(x) 

c(d.z ;x) = c(z ;x) 
0 0 

(4.7) 

A' = A z z 
(4.13) 

0 0 
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We shall now consider how in this particular problem the iteration 
(n) 

cycle can be performed. Suppose we have obtained strategy z and com~ 

puted the function c(z(n);x) on a finite grid of states in the state 

space. Values of c(z;x) between grid points can be determined by 

interpolation, if this function is continuous in x. 

To begin with the first step we determine the function c(d.z(n);x) 

by means of its definition (4.1) for every x = (i,s) and every d = (j,s) 

with i ,j s { 1, ••• ,N} and O ~ s ~ M. Computationally this operation can 

also be performed only on a finite grid of states in the state space. 

In the second step we determine for each state on the grid the 

d ' . d* ... ' (d (:n) ) ecision minimizing c .z ;x. 

If the minimizing decisions in two adjacent grid points are different 

then we determine the point between them where the values of c(d.z(n);x) 

for both minimizing decisions are equal. This new point seperates two 

sets of states with different minimizing decisions and will be called a 

seperation point. The possibility of another minimizing decision occuring 

on a part of the interval between two adjacent grid points can be 

investigated by taking a finer grid. The determination of these sepe

ration noints can be safely performed when the function c(d.z(n);x) 

is continuous in x for given d. In practice this condition is fulfilled 

except for the discontinuities of c(z;x) in the points separating 

two intervals where different decisions are dictated by z. 

If two adjacent grid points have the same minimizing decision 

then this decision is chosen for all states in the interval between 

these two grid points. The correctness of this procedure can again 

be verified by taking a finer grid. 

When this operation is performed we have subdivided the state 

space into a finite number of intervals with the same minimizing 

decision for each state within such an interval. The separation points 

of these intervals specify completely the intermediate strategy 
z1 (n) = d*./n). 
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It should be noted that A (n).) A (n) because a null-decision in z1 z 

x E Az(n) is immediately followed by an intervention according to 

strategy z. Hence the null-decision can never be better than the 

decision z(x). For this reason the third step in the iteration cycle 

has to be performed. 

In this third step strategies A.z1(n) are considered, postponing 

decisions according to- z1 (n), until a closed set A:JA0 is reached 

where A satisfies (4.3). The boundary of the smallest intersection of 

the class K of these sets A, denoted by A'z(n) bei.·ng identical to 
z i (n+1) 

Az{'n+ 1 )\ , the intervention set of the new strategy z , can be 

determined by the observation that in its boundary points it should 

be inda.fferent either to postpone the decision according to. ~1 (n) 

or to apply strategy z 1 (n) immediately. Because the sets Az (i, 1 ) are 

reached from states outside A in a different way than the sets 
z 

A (i, 2 ) ,this property leads to somewhat different criteria in these 
z 

two cases. ( i, 1 ) 
To find the boundary (i,b( 1)) of each of the sets A'(n+ 1{;, 

we define the closed sets A( 1 ) by the states (i,u) with~.:_ b 1 ) 

In state (i,b( 1)) the effect of postponing the application of strategy 

z1 (n) is measured by the amount 

+ 
(2) 

pi (bz(n); 

( (n) . ) c z1 ;i,u d 

This amount should be compared for 

(2) 
G. (u·b(1)_b( 1 ) b (n) 

1 ' ' ' Z 1 

(4.8) 

the result of applying strateg1J z 1(n) immediately, 

c(z/n) ;i,b( 1)). 

with 
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The state (i,b( 1)) where both quantities are equal will be the 
. ( i 1) 

boundary point of the set A ' ) • 
z(n+1 

It may happen that there is more than one state where both 

quantities are equal. In that case there will be more than one set of 

non-intervention states for the considered production rate. An exten

sion of the state space will be convenient in order to solve the 

functional equations for c(z;x) for the new strategy by the methods 

described above. 

To find the boundary point of each of the sets A:~~!~) let A( 2) 

denote the set of states (i,u) with u > b( 2 ). In state (i,b( 2 )) the 

effect of postponing the decision z~(i~b( 2 )) will be that this decision 
. (" (2) (2J) T. . takes place in state i,b + db • his effect is measured by: 

+ 

( ) ( ) (2) (1) 
P. (b 2 + db 2 ; b ;b ( n)) 

i z1 

J (i,1) 
( i, usA ( n) z., 

( 1 ) 
g.(u;s;b (n) 

i z, 
(4.9) 

The effect of applying strategy z1 (n) in (i,b( 2 )) will be 
( (n) . (2)) (" (2) are measured by c z1 ; i,b • The state i,b where 90th amounts 

C ( i 2) 
equal, will be the extreme point b(f ~+1) of the set A (' 1) of the 

(n+1) z z n+ 
new strategy z • 

This condition can be written as: 

( i, 1 ) 
( i, u)E:A (n) z, 

a ( (n). b(2)) 
( n ). ( 2 ) C Z 1 ; i ' 

.c(z 1;i,b ) + ______ _ 

a b( 2 ) 

a g.(u;s;b ( 1) , b( 2 )) 
i z 1 . ( n). 

c( z 1 ;i ,u)du £ 0 (4.10) 
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If there is more than one state where relation (4.10) holds then 

we should choose the one with the smallest value of the c-function. 

§ 5 Numerical ex~~-

In order to determine optimal strategies for this problem 

numerically a computer program in ALGOL 60 has been developed. The 

results were obtained on the EL - XS of the Mathematisch Centrum. 

Data: 

Order size! exponentially distributed,t,! = 5; 3 production rates, 

a. = O, 4, 8. 
1 

Arrival rate of orders A= 1; 

Maximum stock M = 20; 

Stockholding costs c = O, 5; 
s 

Production costs per unit c (i) = O, 8, 16; 
p 

Additional purchases per unit cr = 35; [O 

Transition costs c (i,j) given by the matrix: 5 
q 10 

5 
0 
5 

Strategies, occuring during the iteration, are given for each 

production rate i by the intervals for s where the same decision (j,s) 

is dictated. 

Strategy: 
J 3 2 

1 

z 
(o) 

(-oo,ol (0,oo) 

2 ( - 00 , 19. 5) [.19.5, 00 ) 

3 ( - 00 , 1 8 • 1 5 ) [18.15,19.5) (19.5,00 ) 

( _ex, ' 14.96) ( 14. 96, 19.03) (19.03, 00 ) 

(-oo' 14.96} ( 14. 96, 19.50) (19.50, 00 ) 

(-oo' 17 .69) [17 .69, 19.50) (19.50, 00 ) 
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Strategy: J 3 2 
J. 

z 
( 1 ) 

1 (- ,2. 12] (2.12,oo) 

2 (-00 ,2.051 (2.05,20) [20 ,oo) 

r(z( 1)) = 42,91 3 (-00 , 17 .69) [17 .69, 19.50) ( 19.50, 00 ) 

z1 
( 1) (-oo, 14.42) ( 14.42, 18.33) (18.33,00 ) 

(-oo, 14. 42 I (14.42,20) [20 ,oo) 

(-00 ,19.54) (19.54,20) [20 ,oo) 

z 
(2) 

(-00 , 11.71] (11.71, 00 ) 

(-00 ,9 • 86] (9.86,20) [20 ,oo) 

r(z( 2 )) = 38,77 (-00 , 19.77) [19.71,20) [20,00) 

z1 
(2) 

(-oo, 12.41) (12.41,17.561 (17.56,00 ) 

(-oo, 12 • 41] ( 12. 4 1 , 20) [20 ,oo) 

(-00 , 18 • 83) [18.83,20) [20,00) 

z(3) (-oo, 12 • 41) (12.41,16.251 (16.25,00 ) 

(-oo, 12 • 06] ( 12·. 06, 20) [20 ,oo) 

r(z( 3 )) = 37,97 (-00 , 19 • 03) [19. 03 ,20) [20 ,oo) 

z (3) 
1 ( - 00 , 12 • 52) ( 12. 52, 17. ooj ( 17. 00 ' 00 ) 

(-00 , 12.52] (12.52,20) [20 ,oo) 

( - 00 , 19. 30) [19.30,20) [20 ,oo) 

z (4) 
(-00 ,12.52) ( 12.52, 16.95 I (16.95, 00 ) 

(-00 , 12.51] ( 12. 51 , 20) [20 ,oo) 

r(z( 4 )) = 37,93 ( - 00 , 19 , 68) [19.68,20) [20 ,oo) 



Strategy: 
1 

2 

3 

J 
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3 2 

(-00 , 12,53) ( 12.53, 16.95 [ ( 16.95,00 ) 

(-00,12.51} (12.51,20) [20, 00 ) 

(-00 , 19.68) [19.68,20) [20, 00 ) 

(-00 ,12,53) (12,53,16.95] (16.95,00 ) 

(-00 , 12.51] ( 12.51,20) [20, 00 ) 

(-00 , 19.68) [19.68,2p) [20, 00 ) 

The computation time was 20 minutes. 
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