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1.1 Introduction. 

A firm sells a single product. The stock is reviewed at the start of 

each period, at which time only an order may be placed. The length of 

any period is one unit of time. Between delivery and order we assume a 

lag of T periods, where Tis a known nonnegative integer. When delivery 

is made it takes place at the start of a period. The order quantities 

are discrete. The firm can store at most M units. Let c(p} be the cost 

of ordering p units. For any unit the cost of storing it fort units of 

time is given by c 1t. 

Customers, who ask for the product, arrive according to a stationary 

Poisson process with intensity A. The demands of the customers are 

mutually independent and each customer demands k=(0,1, ..• } units with 

probability pk. We assume p0<1, lPk=1 and Lkpk<00 • 

When demand exceeds supply, the excess demand is backlogged until it is 

subsequently filled by a delivery. For any unit which is delivered 

subsequently t,Q units of time the penalty cost is given by f(t}=c 2t+c 3 . 

No discounting will be used. 

The stock on hand is the quantity which is stored (negative when a 

shortage exists). We define the economic stock as the stock on hand 

plus outstanding orders. When at the start of a period the economic 

stock is less than or equal to a known integer a,we have to replenish 

it at least until a known integer B. It is wellknown that both for an 

infinite planning horizon as a finite one the optimal policy depends 

only on the economic stock. For this reason we consider hereafter only 

policies which are functions of the economic stock. 
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An infinite planning horizon will be considered and the minimization 

of the expected mean cost per period will be used as criterion for 

selecting a policy. Under some general conditions it can be proved that 

an optimal policy exists which is of the (s,S)-type: When the economic 

stock i.s._s (s<S), order S-i units; otherwise, do not order [6,7,10,11]. 

The wide use of ordering policies of this type in practice may be a 

reason for determining the best (s,S} policy, even when an optimal policy 

is not the (s,S}-type. 

Markov-programming is a branch of dynamic programming. For an introductory 

treatment the reader is referred to the excellent book of R.A. Howard (4). 
More advanced methods are given by W.S. Jewell [5}, G. de Leve [8) and 

others. The simple properties of a (s,S) policy can be exploited by the 

methods given in (BJ. A formula for the expected mean cost per period of 

a (s,S) policy can be easily derived. Furthermore an iterationprocedure 

can be formulated which enables us to determine a policy at least as good 

as the best (s,S) policy without in any iterationcycle a system of lineair 

equations is solved. A trick will be necessary to draw up such an iteration

procedure; a special class z0 of policies (containing the (s,S) policies) 

will be considered*). 

Before we apply the theory of G. de Leve to our problem, we give some 

numerical results and we present a review of the methods developed in (a). 

-) I am indebted to G. de Leve for this trick. 



1 c 2 ·numerical results 

Let 

c 1 = 1 

c(p) = cp + Ko(p). 
~\ 

I 
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For different values of the other parameters an optimal policy 

and the corresponding average cost per unit of time reduced with 
00 

c~ I npn are given in the tabels" 
n=1 

Tabel 1 

p 1 = 1, f(t) = 20t ~ c(p) = cp+4o(p), 

R 0 1 2 
I ···-----· ···---r 

3 (2,6)96,799 (6*11)i8,144 ' ( 10i 15) ,9c216 

4 ( 3 9 '7) • 1, 989 (8_,13),9c468 (13,18),1100671 

5 (4~7),9,025 ( 10, 15), 10,670 (16,21),11o987 

6 (4,8).9,825 ( 12, 16), 11o 703 ( 19 ,24) '13 0 173 
.. 

Tabel 2 

p 1 = 1 , f ( t ) = 20t • C ( p) = cp, 

r>z 0 1 2 
- .,.,. ___ t-- ____ .,.,. __ ,,,, ___ .,...,.._.., ---,.,....,,.. 

3 (3~4)~3,969 ( 8' 9 ) ~ 5 0 44 7 ( 12, 13), 6, 625 

4 (596).4,711 I <10,11).6,325 ( 1 5 ' 1 6 ) ' 7 0 64 5 

5 (6.7).5.3w12.13),7.167 ( 18, 1 9) '8 0 627 

6 (7,8),6.040 (14,15)07,973 (21,22),9,568 

Tabel 3 

p 1 = 1,, f(t) = 20, c(p) = cp+4o(p), 

i>Z, 0 1 2 
----~ . i-----·------- -

3 (4,8) ,80499 ( 7' 12) 9 9, 809 (11,16),100740 

4 (5s9J,9,972 ( 1 0 • 15) • 1 lo 480 ( 15,20), 120659 

5 ( 6, 1 0) , 11. 272 ( 1 2 ' 1 7 ) • 1 3 0 021 ( 18, 24) , 14, 348 

6 (7,11),12,393 ( 14319), 14.415 (21,27), 15.923 

*) 6(p) = 1 for p ~ 1 and o(0) = 0, 

3 

(13,19),10.114 

( 1 7 , 23 ) , 11 e 693 

( 21 , 26) , 13. 208 

(25,31),14.406 

3 ....... ~.--. ....... 

( 1 5 ' 1 6) '7 0 607 

(20,21),8.772 

(24,25),9.861 

(29,30),10,903 

3 -----
(15,20),11.572 

( 19, 25) , 13 e 598 

(29,30),15,451 

( 28 '34) , 17 0 1 3 7 
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4 

5 

6 

-.? I 

4 
Tabel 4 

p 1 = 1, f(t) = 20, c(p) = cp 

(5,6),50522 

(7~8),606-77 

( 9, 1 0) '7 0 058 

( 12 ' 1 3 ) ;, 8 C 333 

-- 2 ------ - 3 ! 
(13~14),8,166 (17,18),90087 i 

(17,18),9,643 (22,23),100736 

(8,9),7,587 

(9,10),80556 

(14,15),9c589 (21,22),11,033 

(17,18)~10,657 (24,25),12,206 

(27,28),12c258 

(31,32)!113,636 

-- --·--· 

Tabel 5 

p0=0-5, p 1=0o1~ p2=0,3, p3=0c1, f(t)=20t, c(p)=cp+4op 

o ---··-·r-···-----· ,-·------·--·1 
I I 

2 ! . 3 

.;\ ',.i 
----"'.------ ····•··--· .. --·· .. 

3 

4 

5 

6 

(3,7),8.120 

(4,8).9,408 

(5,9),10.561 

( 5, 1 0) i 11 • 5 85 

(7,12),10-456 

( 1 0, 1 5) , 12, 003 

(12,17),13-378 

( 14 3 19) • 14 -631 I 
I 

( 1 2 , 17 ) , 1 2 • 1 62 

(15,21),13,950 I 

( 18,24), 15,539 

(21,28), 16,997 

( 1 6 ~ 21 ) , 13, 608 '. 

(20,26),15.601 i 
! 

(24.31) l 17,386: 

(29,36), 18. 996 \ 
, __ __._ ___ •H••••••••• •«••••• •••••••••• ••• • " ··--·-·· -- -

Tabel 6 

p0=0c5, p 1=0-1, p2=0,3, p3=0cl, f(t)=20t, c(p)=cpc 

r-----; T ! ~~----·----,.-------=-.. 
0 1 

. 
2 3 

A-....,, 
,, 

--1 . ------·-- - .. ... --- . -t·- --~ ·• ~ -· •.. -- -- -. ---- - -- ' 

! 

I 3 (5,.6),5.752 (10, 11 ),8.185 i ( 14 , 1 5 ) , 9, 982 ( 18, 19), 11. 509 
; 

4 (6,7)s6.631 ( 12, 13),9-367 l 1 8 , 1 9 J , 1 L 44 7 I (24,25),130265 

5 (7,8),7-474 (14, 15), 10,500 · (21,22), 12c760 (28,29),14,662 

6 (8,9)$8,280 I ( 17 , 1 8) , 11 - 49 l • (25,26), 13,961 l 33 , 34) ' 1 6 C 068 
----- ·~--..---. -----~----- --- -.-~-- ~- .. - •-""u-••---t" 
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Tabel 7 

-~----

X 0 1 2 3 

3 (5,9},10.337 ( 9, 14}, 12. 367 (13,191, 13.811 ( 17 ,23}, 14.974 

4 (6, 11), 12.049 ( 12, 17), 14.424 ( 17 ,23), 16.142 (22,28), 17 .540 

5 (8, 12}, 13.611 ( 14, 20), 16. 272 (21,27), 18.251 (27,33),19.861 

6 ( 9, 14} , 14. 987 ( 17 ,23), 17 .962 (24,31) ,20. 163 (31,38) ,21.969 

Tabel 8 

:'Z' 
·•·----..... ~--

I 
I 

-ah••,' -~- ... -·-···-··- - ... 

. I A I 
0 1 2 3 

'·--· ··----- •-•---r-~- . ..,,..-•-~•~ --••~--~--•--•-.,.•~ 

3 (7,8),7.966 ( 12, 13 J , 10 . 197 ( 16, J7) , 1 J • 723 ( 19,20}., 12.965 

4 (8,9),9,356 I ( 14, 15) , 11 . 890 (20,21),13.697 ( 2 5 , 26} , 1 5 . 177 

5 ( 1 0 , 11 ) , 1 0. 5 33 (17,18),13.412 (24,25),15.498 ( 30, 31 ) , 17 , 200 

6 ( 12, 13} , 11 . 732 (20,21}, 14.838 (28,29}, 17 .169 ( 3 5 . 36 ) , 19 . 0 71 
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Problems of the type to which Markov-progranmung can be applied 

are always related to some physical system, In our case the system 

comprises the stock on hand and the quantity on ~he books, 

At each point of time the system is in some state x, In the mathematical 

model a state of the system is represented by a point in a finite 

dimensional Cartesian space, The set of all possible states will be 

called the state space L 

Besides deterministic transformations the state of the system may be 

subjected to random transitionso Owing to the latter transitions the 

system performs a random walk through the state space. In case no 

decisions are made. this evolution is called the natural ;erocess, 

A condition for application of Markov-programming is that for each 

initial state of the system the underlying natural process can be 

described by a s_tationar;z s_trong Markov-process in X 
. ~,;. )- J 

A family of n-dimensional random vectors L~t, t .;;. 'I' I is called a 

Markov-process, if with probability one, 

P,ix '- X I ~u' u .::_ t \ = Pt~t+s < X I 
l-t+s -- ~tj ( 2 - 1 ) 

for each xe Rn and every s 't' €,. T, s > o, 
Roughly speaking; If we know the "present" then the additional know

ledge of the "past" does not contribute any relevant information about 

the "future", 

The term a stationary Markov-processs will be used, if the probability 

distribution of (2,7) does not depend on t, If the foregoing also holds 

when the arbitrary but fixed time tis replaced by a random variable 

2.,_, which satisfies certain regularity conditions which are given in 

[8], the process is called a stationary strong Markov-process, 

-) 
Measurable functions on a probability space, which assume their 

values in an-dimensional Cartesian space, Random vectors, called 

random variables if n = 1, are underlined, 
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In addition the following definitions are given with regard to a Markov-

process in state space X with some time parameter. A subset S of X 

*' is called ergodic if the system remains with probability one in Sas 

soon as it has assumed a state of S. A ergodic set is called simple 

ergodic, if it contains no disjunct ergodic sets. The set T of states, 

which does not belong to any set from a given system of simple ergodic 

sets is called the set of transient states, if T does not contain an 

ergodic set. A decomposition of the state space into simple ergodic 

sets and a transient set is not always unique. In this paper it is 

assumed that always a decomposition is given with disjunct simple 

ergodic setso We note that if the state space is finite or denumerable 

a decomposition can be given, such that an ergodic set Sis a simple 

ergodic set, if every state in Scan be reached from every other state 

in S. The simple ergodic sets are in this case always disjunct. 

In decision problems losses and gains play important roles. It 

is no restriction to consider only losses (gains are negative losses). 

In general the decisiorunaker wants to influence the natural process 

by interventions, basically a finite number in each finite time interval. 

An intervention causes a transition in the state of the system. A 

transition is assumed to take no time, The behaviour of the system 

in each time interval between two successive interventions is described 

by a natural processo The initial state of that process will be the 

state into which the system is transferred by the intervention at the 

beginning of the interval concerned. For that reason for each initial 

state the natural process has to be defined. It is convenient to assume 

that at each point of time a decision is made. The decision will be 

primarily to decide whether to intervene or not and secondly which 

intervention to choose, The decision not to intervene is called a null

decision, In many situations decisions result in a random transition 

in the state of the system. For that reason a decision is defined 

mathematically by means of the probability distribution of the state 

into which the system may be transferred by the decision. By a null

decision the system is "transferred" with probability one in its 

present state. Decisions which lead to deterministic transitions are 

also defined by "concentrated" probability distributions, but now in 

the new state, 
",_--r;---, ' ,,, ' 

) Suppose that this probability is defined, 
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To each state x 6 X a set of feasible decisions D(x) is assigned. 

The solution of a decision problem is given in the form of a strate~. 

Such a strategy dictates at each point of time a feasible decision 

on the basis of available informationo The result of the natural 

process and the extra transitions caused by the strategy is called 

the decisionE_rocess. Let Z be the class of strate6ies z, which base 

their decisions on the present state only and add to each state x a 

feasible decision d = z(x). Since we have only interventions and null

decisions each strategy z 6 Z partitions the state space into two 

disjunct sets, one denoted by A, comprising the states in which 
z 

always interventions are made, the other consisting of states in which 

always null-decisions are dictated. 

From now on only strategies z ~ Z are consideredo Under some general 

conditions it can be shown this is no restrictions Further it can be 

proved under certain weak conditions the decision process corresponding 

to a strategy of Z is also a stationary strong Markov-process, 

In order to find out which strategy is the best one we need a criterionc 

As criterion for an optimal strategy we shall adopt the expected mean 

costs per unit of time, when the system is considered for an infinite 

period of time, 

Suppose the intersection 

A d~f n A 
0 Z IS Z z 

( 2·. 2) 

is not emptyo Assume that in the natural process from each initial 

state the set A0 can be reached within a finite time with probability 

one. Note that each strategy of Z dictates an intervention in any 

state of A0 o 

Choose the sets 

(i = 1,2), (2.3) 

such that the sets A0 1 and A0 2 are not empty and they can be reached 
' ' in the natural process from each initial state within a finite time 

with probability one, 
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For each i = l ,2 there corresponds to every state x and decision d 6 D(x) 
O,i d,i O, 1 ( 0,2.) ... two random walks.!!. and.!!. o The walk.!!. w has x as initial 

state and during this walk the system is subjected to the natural 

process. The walk wO' 1 (wO' 2 ) ends as soon as the system assumes a 

state of AO 1. (AO ~). The walk wd' 1 (wd'2 ) has x also as initial state, 
' ' In state x decision dis made,by which the system is transferred 

(instantaneously!) into a random state and from this state on the 
d 1 d 2 system is subjected to the natural process. The walk.!!.' (,!!.' ) ends 

as soon as the· system assumes a state of AO 1 (AO 2 ), 
' ' Let the functions k9(x) and k1(x;d) represent the expected costs incurred 

during wO, 1 and wdt respectively. Let the functions t O(x) and t 1(x;d) 
0 2 d 2 . be equal to the expected durations of w' and w' respectively. 

We define, 

k(x;d) = k1(x;d) (2.4) 
and 

(2.5) 

d . . d,i O i Note that ford= null- ecision w and w' are identical, and 

consequently 

k(x;d) = t(x;d) = O, d = null-decisiono (2.6) 
It follows from their definitions that k(x;d) and t(x;d) do not depend 

on any particular strategy, Hence we need only~ for all to determine~) 

the (x;d)-function k(x;d) and t(x;d) 

~) 

Let f.!n} n: 1 be the sequence of future interventionstates if 

Sometimes it can be advantageous to alter the natural process as 

soon as the system assumes a state of AOo By doing so and/or by 

a proper choice of AO 1 and AO 2 the determination of the k-and 
' , 

t-functions may be simplified greatly. It can be shown that it is 

allowed to change the natural process as soon as the system assumes 

a state of AO• Note that situations caused by such a change does 

not occur in reality, because in each state of AO the decision

maker has to interveneo 
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strategy z ~ Z is applied. The sequence {Io, n .::_ 1} constitutes a 

stationary Markov-process in A with discrete time parameter. The 
z 

probability that I belongs to some Borelset A if the system has x e: X 
-n 

as initial state, will be denoted by 

p(n\A,z;x) , n = 1,2 •• , (2.7) 

Under some general conditions it can be shown the Markov-process 

{Io, n .::_ 1} has a stationary probability distribution ~(A;z;x) (roughly 

speaking: the distribution of I for n ➔ 00 ), that satisfies~>, 
-n 

~(A;z;'x) = lim J. 
n n ➔ co 

n 

I 
k = 1 

If x1 and x2 belong to a same simple ergodic set, 

(2.8) 

(2.9) 

If z '=::Z is the strategy applied and if the decisionprocess has x as 

initial state, let .!sr (z;x) be the costs incurred during the period 

[O,T). Under certain conditions it can be proved that, 

lim ~ ( z;x) 
T ➔ oo 

(2.10) 
T 

exists with probability one, Note that this limit represents the 

random mean costs per unit of time, 

If the initial state x belongs to a simple ergodic set, it can be 

proved that with probability ones 

t 
. k_ ( ) A l k( I; z (I) ) ~ ( dI; z; X) 

ll.I!l. ~ z;x zJ 

T ➔ oo ---- = -----------T A jt(I;z(I))~(dI;z;x) 
zJ 

(2.11) 

From (2.9) it follows that the right-hand member of (2.11) is constant 

on a simple ergodic set. 

*) i. The Cesarolimi t lim _ 
n ➔ oo n k 

lim a =a.The converse 
n n -+ oo 

n 
I ak exists and is equal 

1 
is not always true. 

to a, if _ 
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Let for ergodic(= non-transient) states x the function r(z;x) be 

defined by, 

r(z;x) 

r 
A jk(I;z(I))¢(dI;z;x) 

def zJ 

= -A-j t_(_I_; z_(_I_)_H_(_d_I_; z-;-x_)_ 

Z' 

(2.12) 

The domain of definition of r(z;x) is extended to the whole state space 

X by 

r(z;x) d~f Er(z;z_). ( 2. 13) 

where z is the first ergodic state taken on in the decision process 

if xis the initial state, 

Note, by (2.11) and (2.9), that the mean costs per unit of time are 

constant with probability one if the initial state is ergodic, further 

r(z;x) is constant on a simple ergodic set, 

However if the initial state is transient the mean costs depend on the 

first ergodic state assumed, and therefore, they are random. 

Hence, by (2.13), the function r(z;x) determines the expected mean 

costs per unit of time for all initial states x. 

The function r(z;x) (the criterion!) may be determined without calculating 

the stationary probability distribution of I. A function c(z;x) can 
-n 

be introduced which in a sense enables us to value the initial state x 

with respect to the total expected costs. 

The x-functions c(z;x) and r(z;x) jointly satisfy a system of functional 

equations and they can be used in an iterationprocedure for obtaining 

optimal strategies. 

Suppose the Markov-process {I , n > 1 \ in A has m disjunct simple 
-n - z 

ergodic sets E. Choose in each set E. an arbitrary state e .• 
J J 

Consider next the following functional equations in r(z;x) and c(z;x): 

r(z;x) = Er(z;_!.1 ) (2.14) 

and 

c(z;x) = k(x;z(x)) - r(z;x)t(x;z(x)) + Ec(z;_!.1 ) (2.15) 

(2. 16) J = 1' • 0'' m:, 

where _!.1 is the first future interventionstate if xis the initial 

state and strategy z is applied*), 

*) Er( z, I ) = 
' . '-1 A 

z 

r ( 1 ) 
lr(z;I)p (dI;z;x). The same holds for Ec(z;_!.1). 
J 
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Note that from (2.6) it follows 

c(z;x) = Ec(z;_!,1), if x ~Az. 

The function r( z;x) is constant on a simple ergodic set, hence r( z;x) 

indicates the most favourable simple ergodic set to start, but not the 

most profitable initial state in this set. 

That state can be determined by means of the function c(z;x). 

It can be shown that for two states x1 and x2 in the same simple ergodic 

set the difference in total expected costs is finite and is given by 

C ( Z ; X l ) - C ( Z ; x2 ) • ( 2 • 1 8 ) 

By means of the functions r(z;x) and c(z;x) the strategy z can be 

improved. An iterationprocedure can be given, which yields a sequence 
' i (i) ' 1 2 .l • h . d' . of strategies ,.z ,1 = , •••J of whic , under certain con 1t1ons, 

the following interesting properties can be proved: 

a) r(z(i);x) ~ r(z(i+l);x) (2.19) 

) . (. (i) ) . ( ) b lim r z ;x = min r z;x, (2,20) 
l -+ oo zf; Z 

for each x~X. Proofs and conditions are given in [8} and will be 

omitted here. We shall restrict ourselves to an intuitive explanation 

of the procedure. First some introductory definitions. 

Let the mixed strategy d.z with zEZ dictate the decision din 

the initial state and then decisions in accordance with z. We define 

the functions r(d.z;x) and c(d.z;x) by 

r(d.z;x) = Er(z;~) (2.21) 

and 

c(d.z;x) = k(x;d) - r(d.z;x)t(x;d) + Ec(z;~), 

where u is the random state in which the system is transferred 

(instantaneously) by the decision din the initial state x. From the 

definitions and (2,6) it follows that for both null-decision and 

d = z(x), 

r(d,z;x) = r(z;x) and c(d,z;x) = c(z;x), (2.23) 
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Consider now the following problem. Suppose a decisionmaker has to 

make his decisions in accordance with a strategy z. In the initial 

state however he is free to choose a feasible decision. The decision

maker certainly looks for that particular decision, such that the 

expected mean cost per unit of time is minimized. Each drop in this cost 

leads to an infinite saving in an infinite period of time. If in the 

initial state x the feasible decision dis chosen and thereafter strategy 

z is applied, the expected mean cost per unit of time is given by 

r( d·.z ;x}. Hence we determine for each state x~ 

min r(d.z;x} 
dED(x} 

(2.24} 

Let D (x) be the set of minimizing decisions dcD(x}. In order to determine 
z 

which d has to be chosen if D (x) contains more than one decision, we note z 
that it can be shown that the difference in total expected cost of the 

mixed strategy d.z and the strategy z is given by 

c(d.z;x) - c(z;x) , (2.25) 

The difference will be in general finite. It will now be obvious that 

in case D (x) contains more than one decision, we determine 
z 

min c(d,z;x) 
dED (x) 

z 

(2.26) 

We add now to each state x a decision of D (x) which minimizes c(d.z;x). 
z 

(if d = z(x)ED (x) and it minimizes c(d.z;x) we choose d = z(x)). By 
z 

this procedure a (possible new) decision is added to each state. We have 

then constructed a new strategy z 1. The following important result can 

now be proved, 

r(z 1 ;x) .:::_ r(z;x} xEX. (2.27} 

Hence the strategy z 1 is at least as good as the strategy z. However 

from (2.23) it follows easily that each intervention state of z is an 
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interventionstate of z 1 too, hence A encloses A. It will be obvious 
z z 

that we need a mechanism which may caricel an intervention. With the aid 

of the foregoing we shall now determine a strategy z2 which is at least 

as good as z and with the property that A is contained in A . Let z z 
strategy zEZ be given and let strategy z 1 te determined in acc6rdance 

with (2,24) and (2.26). We now introduce mixed strategies of the following 

type: 

(a) The mixed strategy (z 1)z dictating 

1) first an intervention in accordance with z 1 
2) then interventions in accordance with z. 

Put for abbreviation z = (z 1)z. We define the x-functions r(z;x) 

and c(z;x) for XE.A by, 
z1 

r(z;x) = min r(d.z;x) (2.28} 
dED(x) 

c(z;x) = min c(d.z;x) (2.29) 
dED (x) 

z 

(b) The mixed strategy A.z, where A is a closed set satisfying 

A0 C ACA z, (2.30) 

This strategy interdicts any intervention up to the moment that the 

system assumes a state of A for the first time. From that time onwards 

the mixed strategy z is applied. 

We define the x-functions r(A.z;x) and c(A.z;x) by, 

r(A.z;x) = Er(z;y) (2.31) 

c(A.z;x) = Ec(z;y} g (2.32} 

where vis the first state in A taken on if xis initial state and 

the mixed strategy A.z is applied. We note that the probability dis

tribution of y is determined only by the natural process and the 

set A. 
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Consider the following problem. Suppose the decisionmaker has to make 

his decisions in accordance with the mixed strategy z. But he is allowed 

to determine the point of time where upon z comes into operation. This 

will be done by choosing a closed set A satisfying (2.30). The mixed 

strategy z comes into operation at the moment the system assumes a state 

of A. The expected mean cost per unit of time of the mixed strategy A.z 

is given by r(A.z;x), while c(A.z;x) - c(z;x) measures the difference in 

total expected cost of A.z and z. 
Let X(z} be the class of all closed sets A satisfying (2.32) which have 

the additional property that for each xEA 
z1 

either 

r(A. z ;x) <. r( z ;x) (2.33) 

or 

r(A.z;x) = r(z;x) c(A.z;x) ~ c(z;x) . (2.34) 

It is easily verified that for each state xQC either (2.33} or (2.34) 

holds if AEX(z). It can be proved that the intersection of any finite 

number of sets of X(z) belongs to X(z). 

Let 

A .... ' z 
= n A 

AEX(z) 

If A .... 'EX( z) it can be shown that the strategy 
z 

def{z 1(x) 
z2 ( x) = 

null-decision 

xEA .... ' 
z 

otherwise 

is at least as good as the original strategy z. 

(2.35} 

(2.36) 

From the definitions it follows that relation (2.34) with the equality 

is contained signs holds for A= A , hence A .... 'CA , in other words A 
z 1 z z 1 z 2 

* From the foregoing it can be easily deduced that a strategy z E Z is optimal 

if it possesses the following properties 

* min r( d. z ·;x) = r( z .,...;x) x8C (2.37) 
dED(x) 

min c(d.z..,....;x) * = c(z ;x) xEX (2.38) 
dED -..-( x) 

z 
I 

A .... * = A *-• z z (2.39) 



These formulas present us a direct approach, with which an optimal 

strategy can be determinedo 

In the most cases an.optimal strategy will be determined by means of 

an iterationprocedure. Several formulations are possible [B], we shall 

give one. 

Prepator;Y" part. 

Determine the (x;d)-functions k(x;d) and t(x;d). 

Iterative approach 
( n-1 r . . . ( ) st . th Let z be the strategy obtained at the n-1 cycle, the i 

cycle runs as follows: 

1) Determine the functions r(z(n-1);x) and c(z(n-1);x) by solving the 

functional equations (2,14), (2e15) and (2.16). 

2) a) Determine the functions r(d,z(n- 1);x) and c(d.z(n- 1);x) by using 

the relations (2.21) and (2.22). 

b) Determine for each xE.X the subset D (n-1)(x) of decisions 

, . . . ( n-1) z 
dED(x), which minimize r(d.z ;x). 

c) Minimize for each x€X the d-function c(d,z(n- 1);x) subject 

to deD (n- 1 )(x). 
z 

d) Add to each state x a solution of c). If z(n- 1)(x) is a solution 

of c). this decision will be added to state x. 

{jhis instruction has been made in order to advance the convergence 

of the sequence of strategies {z(i) ,i .::_ 1}}. 
(n-1) As soon as operation d) has been performed a new strategy z1 

has been constructed, 

3) Determine r(z(n-1) ;x) and c(z(n-l) ;x) for x€ A 
z1 

(c.f (2.28) and 

(2c29)], 

4) Determine the set A,..(n- 1) [c,f (2.40)]. The new strategy /n) 
z 

is given by 

= 

th End n cyc_le, 

{ 
(n-1) ( ) z 1 X , 

null-decision, 

I 

if x€A .... (n-1) 
z 

otherwise, (2,40) 

An optimal strategy has been reached if the strategies in two successive 

cycles are identical. 



Notes, 

a) The functions r(z;x) and c(z;x) are determined by functional equations. 

If these equations cannot be solved analytically they often can be 

solved numerically by Monte Carlo methods. 

Sometimes it is much easier to determine the k- and. t-functions 

numerically by simulation, in stead of to determine their values 

from the analytical formulas, . 
b) The way in which the set A,., can be determined depends heavily on 

z 
the structure of the decision problem considered, 

I 

In the boundary points of A,., it will sometimes be indifferent to 
Z I 

intervene or not, This property may enable us to construct A2 . 

c) Computations may be reduced considerably, when it is realized that 

on a simple ergodic set S the function r(z;x) is constant, say 

r(z), and 

r(d.z;x) = r(A,z;x) = r(z;x) = r(z) , x E. s. (2.41) 



3o Preliminarieso 

Suppose customers arrive at a firm according to a stationary 

Poisson process {,!!(t),t.::, o} with intensity A and they ask for a 

single product. Each customer demands k units with probability 
00 00 

I' \ pk where l pk=1, l kpk < 00 and p0 < 1, Let the demands of the 
k=O k=O 

customers be mutually independent, 

Three important properties of the Poisson process are 

(a) the number of arrivals in any time interval (t,t+h] has a 

Poisson distribution with mean Ah (h > O)o Hence, 
( . n 

, -i\h Ah Plw(t+h)-w(t)=n~ = e .--). , '- - , no n=0,1, 0 0 0 ( 3. 1 ) 

(b) the interval from O up to the first arrival and thereafter the 

intervals between two successive arrivals, are independently 

distributed with common exponential density Ae-Ato 

(c) given an arbitrary but fixed point of time, the waiting time 

to the first future arrival has an exponential density with 

parameter A, irrespective of the pasto 

Let 

y(t) d~f number of units demanded in the interval 

(O,t] , t > Oc 

Define 

y( 0 )=Oc 

(3.2) 

(3.3) 

From the properties of the Poisson process and the assumed 

independence of the demands of the customers it follows 

(1) for any t,s ~ 0 the random variable y(t+s)-y(t) and y(s) are 

identically distributedo 

(2J if O ~ t 1 ~ t 2 c , •• < tn (n ~ 3) the differences 

v( t 2 )-y(!,1), o eo , y(!n )-y( t 0 _ 1) 

are mutually independent, 

(3.4) 



(Hence the numbers of units demanded in disjunct intervals are 

mutually independent), 

From the theory of generating functions[3] it follows 

and 

00 

l p [~( t )=k} 
k=O 

Ev(t) 
00 

= At ' L, 

n=1 

k s =e 

np e 
n 

(3,5) 

(3.6) 

If p.=O for i > N the power-series expansion of (3.5) enables us 
l 

to write down the coefficients a (t), where 
n 

a (t)=P{v(t)=n} , n=0,1, '"° (3.7) 
n -

Theorem 1 

Let pc=O for i > N then_, 
l 

and for N > 1 ,, 

a (t) = e 
n 

rnJ 
\ 
l 

j =O 
1 

N-1 

for N=1, 

[ 
N-2 

n- L _ (N-k+1 )j 
k=1 k 

-----·--'~ ··--

2 

I 
jN_,=O 

N-1 
n- I 

k"·'1 
( N-k+1 )j l 1 

... L-C' 

(n- L ( N-k+ 1 ) j k) J 
k=1 r 

Where 1jc] is the largest integer less than or equal to x. 

(3.8) 

(3,9) 

Let !k be the interval from O up to the epoch on which the kth 

unit is demanded, mathematically 

!k = inf {tl~(t) .::_ k] , k > 1. (3.10) 
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Obviously, 

P{tk < t} = P{tk 2_ t} o (3.11) 

From the definition it follows, 
00 

P{tk 2- t} = P{,!_(t).::. k} = .I aJ.(t)o 
J=k 

(3.12) 

Next a number of theorems will be proved and in the proofs the 

well-known theorem of total expectation , 
-t 00 

r 
Ex = I E(~ll.=y )aP{l..:. y} 

will be frequently usedo 

Theorem 2 

Et = -k 

k-1 
I 

i=O 
Et + l p. k . A 

1 - -1 

(3.13) 

k > L (3, 14) 

Proof Let u be equal to the waiting time to the arrival of the 

first customer , Under the condition that the first customer 

demands i units., where O 2.. i ~ k-1, !.k is equal to u+tk-i . 

_!k-i and~ are mutually independent. Given that the first 

customer demands more than k-1 units tk is equal to u. 

Obviously~ has an exponential distribution with parameter"• 

By applying (3,13) the theorem is proved, 

Generalisation 

k-1 m oo 

Et m = , , (m) Eum-s s , m 
-k L P· L s Etk-i + l p. Eu. 

i=O 1 s=O i=k 1 

Theorem 3 

Ev = -k 

k-1 

I 
i=O 

00 

p. Evk. + L ip1. 
1 - -1 i=O 

def 
where vk number of units demanded in (O,!,k]. 

Proof 

Use the same arguments as in theorem 1, 

( 3. 15) 

(3.16) 

(3, 17) 
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00 

Generalisation 
k-1 

m = \' Evk t... 
i=O 

p. E(vk. + i)m + l p. 
i - -i i=k i 

.m 
1 e 

Theorem 4 
00 

Ev = AEtk I np o 

-k n=1 n 

Proof By inductiono 

Theorem 5 

where 
1 

L(x)=/ 0 

k-1 
I 

j=O 
a.(t)Etk . 

J - -J 

if X ~ 0, 
if X < 0, 

(3, 18) 

(3.19) 

(3.20) 

(3.21) 

Proof Given an arbitrary but fixed point of time the waiting time 

to the arrival of the first future customer has the same 

distribution as the interval between two successive arrivals, 

irrespective of the past, Hence under the condition that in 

(O,t] i units are demanded the expectation E{(~-t)L(!,k-t)} 

is equal to E~k-i'where 

t = 0 if n < 0. (3.22) -n 
The theorem is proved by applying the theorem of total 

expectation, 

Theorem 6 
k-1 

' a,(t)Etk . -Etk+t. 
j~O J - -J -

(3.23) 

Proof 

(3.24) 

'rheorem 7 

(3.25) 
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Proof 

00 00 00 

f P{ tk < u} = L P{ v ru) 
k=1 k=l 

> k} = \ P{ 
L. 

l:.=O 
v (u) > k}. 

For each integral valuec random varia~le a> 0 holds [3] 

Hence 
00 

\ 
l 

k=1 

00 

E ~ = l P{a > n}. 
n=0 

P{t < u} =Ev lul = ;\ u 
-k - -

co 

' l 
11=1 

np 
-n 

The theorem :00:1_1ows nm- froTI (~.?fl) E,nd the re lat ion 
t 

J 

0 

Let 

k > 

and 

* -K-~ 

~k = number of uni ts derns,nded in I o, !k J . 

(3.26) 

(3.27) 

(3.2'.3) 

(3.29) 

(3.30) 

(3.31) 

Theorem 8 

k-1 
* I a. ( 1 ) * E t = E tk . + 1 -k 

i=0 
l - -l 

(3.32) 

and 
k-1 00 

* \ a. ( 1 ) * \ 
E~ = l E _-y:_k-i + ;\ l nn 

i=0 l n=1 
-n (3.33) 

Proof 
---The interval (0, !k*J encloses the interval (0, 1]. Given that in 

( 0, 1] there are demanded i units with 0 2.. i < k, ~ * (respectively 

v, *) has the same distribution as 1 + !., . ~-(resnecti vely i + v_,p • *). 
-K -~-l - -n.-l 

Under the condition that the number of units demanded in (0,1] 

exceeds k-1 then !k* (respectively _-y:_k*) is eq_ual to 1 (r"s:11ectively i). 

By applying the theorem of total ex~ectation theorem 8 is nroved. 

(Note Lia, (1)=Ev(1)=;\ L npn). 
i=1 l n=1 



Theorem 9 

00 

* * E4t =>-E~ l 
n=1 

Proof By induction. 

We introduce for j>O, 
00 

u( j) = l a. ( n). 
n=O J 

23 

np. 
n 

(3.34) 

(3.35} 

We note that a0(o) = 1 and aj(O) = O for j>O. Furthermore it 
->- t ( 1-p } follows from (3,5) that a0(t) = e O • Hence 

(3.36) 

A simple probabilistic argument shows that for n.:,.1, 

J 
a.(n) = l 8k(n-1} aJ.-k(1). 

J k=O 
(3.37) 

Hence 
J 

u( j) = l u(k) a. k(1} 
k=O J-

j>O. (3.38) 

Theorem 10 

k-1 
E ~k * = _l u( j}. 

J=O 
(3.39) 

Proof 

* P{~k =n} = P{y(n).:_k and y(n-1)~k} = 

= P{v(n)?k} - P{v(n-1)>k} = 
c,:;"- - oo- -

= L a.(n) - I a.(n-1) = 
j=k J j=k J 
k-1 

= L {a.(n-1) -a.(n)}. 
j=O J J 

The theorem follows now from 

00 

E t * = ' n P{_tk*=n}. -k l 
n=1 
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When the economic stock at the start of a period is equal to j we say 

that the system is in state j. Suppose that the initial state is i 

and assume that neither at the start of the initial period nor at the 

start of any succeeding neriod an order is placed. 

If the initial state is i and A is a given set of integers, define 

SijA = probability that j is the first state in A assumed by the 

system. (3.40) 

Let for i > 1 

fik d~f probability that the system is in state k at the start of 

the period in which the economic stock falls below l for 

• 
i 
~ 

@ 

• I 

@ 
i 

j ➔ Ga 

the first time, if the initial state is i • (3.41) 

• 

) . 

figure 1 

The® marked points belong to A. 
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From the definition it follows: 

1 ) i £ A f J = i, 

S. , A = l 0 ,J 'f J.. 
J.J 

2) J. £A 

s. "A.= 0 ,J CA or J > l 
l,l-

The recursionformula 

s. 'A = I a. k ( 1 ) sk "A 
J.,J i < k < J J.- J • 

follows by using a simple probabilistic argument 

If 

A= {j I L < j .::_ s} 

(3.42) 

(3.43) 

(3.44) 

(3.45) 

where L may be - 00 , an analytical formula for (3. 'A can be gJ.ven. 
J.J 

Let J. >sand L < j < s 

00 i-s--1 
8ijA = 

\ \ P{_!(n-1) = h, _!( n) - v(n-1) = i-h-j} = l l 
n=1 h=O 

00 i-s-1 
= I I P{v(n-1) = h} P{_!(n) - v(n-1) = i-h-j} = 

n=1 h=O 
00 i-s-1 

= \ \ P{_!(n-1) = h} P{ v( 1 ) = i-h-,j} = l l 
n=1 h=O 
i-s-1 

= \ u(h) a., .(1). (3.46) l 
h=O J.-.1.-J 

Note \ 8ijA = 1 if L (3.47) l = - 00 

j.::_s 

For the probability fik holds, 
00 

fik = I P{_!(n-1) = i-k, _!(n) - _!(n-1) > k} 
n=1 

00 

= \ P{_!(n-1) = i-k} p {_! ( 1 ) > k} = l 
n=1 

u(i-k) (1-
k-1 

aj ( 1 ) ) = \ J. > 1 and 1 < k < J. (3.48) l ' j=O 
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Suppose the econonomic stock is i,, 1 at the start of an initial period, 

say period 1. Assume no orders are placed if the economic stock is 

positive. Define the integral-valued !:(i) by 

!:(i) = min { k I ylk) ~ J I (3.49) 

Hence in the !:(i) th period the economic stock falls below 1 for the 

first time. No order is placed at the start of any of the periods 

1, ••• , !;'(i). 

l----, 

A realisation P(i) of !(i). 

Let for i 

d \ [ ' N(i) ~fk~i E {c3+c 2l_!l(i)-Jk+T)J ,(!;(i)-!kj (3.50) 

where c2 , c3 and Tare given constants. N(i) can be interpreted as 

the expected cost of subsequent delivery corresponding to the excess 

demand in period_!:'( i). 
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It will be proved that 

l 

[ 1' ; 
k 

l( 1c!k1 N(i) = \ u(i-k) np ')' E(1-~k) + l C2l2 L L, 

k=1 n=1 
-n 

j=1 

00 i-1 
+ ( c2 T +c3) 0. I npn I u( j) - i) , i > 1 • ( 3 .51) 

n=1 j=O 

Proof 

where 
00 

I Edi( i )-_!:k) 
k=i+ 1 

( 3 .52) 

and 
00 

(3.53) 

Using a simple probabilistic argument it follows 

(3.54) 

u(j)-i). 

3y the theorem of total expectation 

It will be obvious that for j > k and O < t < l, 



Hence 

E{ll-~JJ ,,1-tJ)l~k-"=--1}= 

F'rom (3. 48) it follows that, 

fik = u(i-k) P{_!k < 1}. 
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Ei.( 1-t ) ·,( 1-t ) };P{ tk < i}. 
-J -J ·-

(3. 57) 

(3.58) 

The assertion follows now from (3.25), (3.54), (3.57) and (3.58). 

-ve note that N(i) can also be computed recurively. A simple probabilistic 

argument shows that, 

co 00 

IHiJ = Cr, 
~ .. ,_, 

k.=i ➔- l 

E{( 1-t1 ) d 1-t 1.)} ·t- (c 0 T+c~) 1 E ,_( 1-~-k) + 
- ( - ,<;: C.. .) L, -

k=i+l 

i-l 
+ ; a,, 1 ) rH i-J). 

J;;O J 

'l'he definition of the -.-function implies that, 

It is easily verified that, 

00 

I.. 
k=i+l 

= >.. 

w 

\ 
I.. 

n=·1 

\J-:L)a.\1) == 
,J 

i-1 

npn i + \ - I.. 

j=O 

(3.59) 

(3.60) 

( i-J ) a. ( 1 ) • 
J 

(3.61) 

In this appendix we shall describe another approach to cal

culate the probabilities a , t J, which may be more convenient from a 
n 

computational point of view. The probabilities a ,t) are uniquely n 
determined by the power-series development of 

f'( s) (3.62) 
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Obviously, 

where 

f(s) = e 
-µt( 1-

jl = :\(1-p) -o 

qk = pk/( 1-po) 

co 

k .::_ 1 • 

(3.63) 

(3.64) 

(3.65) 

It follows from (3.63) that it can be e~uivalently stated that the cus

tomers arrive according to a Poisson process with intensityµ and 

that each customer demands k .:::_ 1 units with probability qk. Let the 

behaviour of the customers be described by this process. 

A simple argument shows that, 

and 

where 

e. (t) = P{ no arrival in (o,tJ} = e-µt (3.(-/j) 
0 

a (t) = 
n 

n 
l 
l, 

k=1 
P{k customers arrive in ( □ ,t), the 

total demand of the 1~ Cllstomers 1s n} = 

n 
= l c(n!k) e-µt(µt/ (3.67) 

k=1 k! 

c(nlk) = probability that the total demand of k customers is n. 

(3.68) 
It will be obvious that for n .::_ k ::_ 1 , 

n-k+1 
c(njk) = L P{the first customer demands i units and the 

where 

= 

i=1 

n-k+1 
\ 
l 

i=1 

1 
q(nlo)={0 

total demand of the other k-1 customers is n-i} = 

q. c(n-i jk-1), 
1 

n - 0 n-:/: o. 

(3 .69) 

(3.70) 

~-Je note that c(njk) 

if p.=O for i ~ N. 
1 

= 0 for k ~ n. Furthermore c(nlk)=O for 1 .::_ k 2-[~] 
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4. Application to the inventory problem. 

4. 1. As is stated in the introduction the stock level of a single 

item is reviewed periodically, at which time an order may be placed. 

An order placed at the start of period n(=1 ,2, ... ) is delivered at 

the start of period n+T, where Tis a known nonnegative integer. 

Excess demand is backlogged until it is subsequently filled by a 

delivery. Hence when at the start of a period just after ordering the 

economic stock(= stock on hand plus orders outstanding) is i and the 

demand in the period is v, the economic stock at the end of the period 

is i-v. It is wellknown [7] that the optimal policy is only a function 

of the economic stock. This is the reason we need only to consider 

policies which base at a review their decisions on the economic stock. 

A frequently used policy is the (s,S) policy: if, at a review, the 

economic stock i~s, order S-i units; if is, do not order, Using 

results given in [6,10,11] it can be shown that for our problem 

generally a (s,S) policy will be optimal if the ordering cost 

c(q) = c.q+Ko(q) , where K.::::._0, 6(0) = 1 and o(q) = O for q/0. 

When K = 0 thens= S-1 for the optimal (s,S) policy, If c(q) has not 

the simple form as above, in general a (s,S) policy is not optimal. 

However it may be interesting to determine the best of the (s,S) policies. 

For that purpose we consider the class z0 of policies, which is rather 

artificial at a first glance. A policy of z0 is the following type: 

"Once the economic stock has been replenished until Sin future each 

time when replenished it is done until S". In our model the economic 

stock may never exceed a known integer M. If, at a review, the economic 

stock is less than or equal to a known integer a it has to be replenished 

at least until a known integer B. 

4.2. Definition of the state space, 

The following state space Xis considered, It consists of the points: 

(a) (i,t). Where 0.::_t.::_1 and i.::_M, i integer. This state corresponds to 

the situation that the economic stock is i and a fraction t of the period 

considered is dapsed. 

(b) (i,S,t).Where O_::__t~l, i_::__S and S = B,., o,M. This state corresponds 

to the same situation as the state (i,t) does, The meaning of Sis: 
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"in the past each replenishment was until S". The choice of zO implies 

states (i,S,t) to describe the behaviour of the system. 

We shall later see that the state space X contains all information that 

we shall need in the sequel if we choose the set A0 , 1 in a proper way. 

We note that the points (i,O) and (i,S,O) correspond to an economic 

stock i at the start of a period, at which time an order may be placed. 

From now on the states (i,O) and (i,S,O) will be denoted by (i) and 

( i ,S). Let 

x0 = {(i)li2.M}V{(i,s)li2.s, S=B, ... ,M}. (4.2.1) 

In the states x4x0 only null-decisions can be made. Each decision d 

will be represented by the economic stock just after the decision. 

Let D(x) be the set of feasible decisions in state x. 

D(x) = 

{ d Ii .:_d 2_M} 

{dli<d2_M} 

{d=i, d=S} 

{d=S} 

x=(i), i>a 

x=(i), i<a 

x= ( i , S ) , i > a 

x= ( i , S ) , i <a. 

(4.2.2) 

It will be obvious that zO is the class of strategies which dictate 

in each state xcX a decision dED(x). To each strategy zcZO the set Az 

corresponds, which consists of the states in which z dictates a non 

null-decision. Obviously, 

The natural process results from the passage of time, the demands of 

customers and the delivery of orders. In each state the natural process 

can start. However in the natural process no orders are placed by the 

decisionmaker! 

The non null-decision d=S made in state (i) or state (i,S) transforms 

the system into state (S,S,O+). The system runs then successively 

through the states (~,S,t), where~ is the economic stock t (O<t2_1) 

units of time after that decision. At the start of the next period the 

system assumes a state (i,S). The null-decision made in state (i) or 
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(i,S) transforms the system into state (i,O+) respectively (i,S,O+). 

4.3, Determination of the k- and t-functions. 

Assume from now on that a>O. The case a<O can be treated analogeously. 

To determine the k- and t-functions we may change the natural process 

when the system assumes a state of A0 . This is allowed because in each 

state of A0 the decisionmaker has to intervene. Hence situations which 

may arise if the natural process is changed in A0 never occur in any 

decisionprocess (= in reality). This remark enables us to derive the 

k- and t-functions in a simple and direct way. Choose 

A0 , 1 = {(i)li:.:_o}U{(i,s)ji.::_o, S=B, ... ,M}. (4.3. 1) 

and 

A0 , 2 = {(i)li.::_a}V{(i,S)li....:..a, S=B, ... ,M}. (4.3.2) 

When the system assumes a state of A0 with negative economic stock it 

is supposed that in the natural process an order (called a natural order) 

is placed. The order size is equal to the absolute value of the economic 

stock, The ordering cost is zero and the time of delivery is T periods. 

Furthermore it is assumed that no customers arrive if a natural order 
. 0,1 d,1 . 

is outstanding. When the walk!!_ or w assumes a state of A0 with 

negative economic stock we may change the course of the walk. The walk 

considered does not end on that moment but it remains subjected to the 

natural process and it ends as soon as the natural order is delivered.*) 

The function k(x;d) is the difference in expected cost of the walks 
d 1 0 1 

w' and w' having x as initial state. The function t(x;d) is the 
. d 2 0 2 difference in expected duration of!!_' and!!_' . 

* ) This can be roughly explained as follows: Add a state Q to the state 

space, where Q corresponds to the moment of a delivery of a natural 

order. Let each ztZ0 dictate some null-decision in Q. (Note in any 

decisionprocess Q is never assumed). Take 

A0 , 1 = Qv{(o)}v{(o,s} IB.::_S.::_MJ. 
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Obviously, 

k(x;d} = t(x;d) = 0 

Furthermore it will be obvious that 

d= null-decision. (4. 3.3)_ 

k ( ( i , S } ; S} = k ( ( i} ; S} and t ( ( i } ; S} = t ( ( i, S}; S}. ( 4. 3. 4} 

0 1 S 1 . Consider the walks~' and~' having (il as initial state. For any 

unit which is kept in stock fort units of time the storage cost is c 1t, 

while for any unit which is delivered subsequently t>O units of time 

the penalty cost is c2t+c3 . Storage cost corresponding to units from 

the initial economic stock i belong both to the cost of the walk 

!!.o,, as !!.8 ' 1. The same holds for penalty cost which may incurred for 
, S 1 

these units. In the walk!!.' we have storage cost for units of the 

last order S-i if after the delivery of that order the stock is 

positive. That expected cost(= difference in expected storage cost of 
S,1 d 0,1) . . b the walks w an w is given y, 

(4.3.5) 

where 

G 
i>O .+ i = 
i,o . (4.3.6) 

S 1 In the walk w' we have penalty cost for units of the last order S-i 

when units of this order are demanded for its delivery. That expected 

penalty cost is given by 

(4.3,7) 

O, 1 d S, 1 • • • • For any of the walks w an w in some period the economic stock is 

less than 1 for the first time. The definition of the natural process 

for states of A0 implies that the penalty cost of that excess demand is 

N(i) respectively N(S). Where for k>O N(k) is given by (3,52) and 

N(k) = O for k<O. Hence the difference in expected penalty cost of 

th lk WS,l and w0 ' 1 . . b e wa s is given y, 
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(4.3.7) + N(S) - N(i). (4.3.8) 

0 2 S 2 Consider next the walks w' and w' having (i) as initial state. 
0,2 - S,2 The walk w respectively!!._ ends as soon as at the start of a 

period the economic stock is less than or equal to a. 

Hence, 

t((i);S) * ...,.. 
= E b_a - Et~ 

u -1.-a (4.3.9) 

where 

* ~k = 0 for k<0o (4.3.10) 

Using (3.20), (3.23), (3.35) it follows that, 

S k-1 

I
( c(S-i) Sl< + (c 1 +c2) kL, mlo :m(T) E ::~ 

+c (T-E t ) + c 1 (1- l' a (T)) 2 -k 3 l m 
.i k=i+1 k=i+l m=0 

k((i);S) 

and 

l 

= \ +N(S)-N(i) i.::_O, max(i+l,B)2.s2.M, 

\ c(S-i)-c(S)+k((0);S) i<0, B<S<M . . \ 

t((i);S) = 
S-a-1 

\ 

l + 
k=(i-a) 

u(k) max( i + 1 ,B) :_S.::_M. 

We note that, 

t((i);S) = t((j);S) for i,j:_a. 

4.4. Determination of an optimal strategy. 

For each strategy zEZ0 the set 

E ( S ) = { ( i , S , t ) I i :_S, 0~ t .::_ 1 J 

(4.3.11) 

(4,3.12) 

(4.3.13) 

(4.4.1) 
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constitutes a simple ergodic set of the decisionprocess. The 

transient set is given by 

T = {(i,t) [i_::._M, O<t<1}. (4.4.2) 

Hence for each decisionprocess the state space can be decomposed in 

M-B+1 disjunct simple ergodic sets and a transient set. When in a 

decisionprocess in state (i) the non null-decision d=S is made, the 

system is transferred into the state (S,S,0+)£E(S) and the system 

remains for ever in E(S). For each x~E(S) the criterionfunction 

r(z;x) has the same value, say r 8 (z). Hence, 

xEE(S). (4.4.3) 

Consider the functional equations 

r(z;x) = E r(z;1_1 ) (4.4.4) 

and 

c(z;x) = k(x;z(x)) - r(z;x)t(x;z(x)) + Ec(z;1_1 ),(4.4.5) 

where I 1 is the first future state in A assumed by the system if the 
- z 

initial state is x and strategy z is applied. From (4.3,3) it follows 

that 

c(z;x) = Ec(z;1_ 1) xfA. z 
(4.4.6) 

To solve (4,4,4) and (4.4.5) we choose in each simple ergodic set 

E(S) an arbitrary state e(S) and we put 

c(z;e(S)) = 0 B<S<M. (4.4.7) 

Choose 

e ( S ) = ( S , S , O+ ) . (4.4.8) 
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* Let 1 1 be the first future interventionstate, if the initial state 

is e(S) and strategy z is applied, We note that 17 = (i*,s). 

From (4,4.3), (4,4,5) and (4,4,6) it follows that 

c(z;e(S)) = Ec(z·I*) = '-1 

=E{k(_I7;z(17) )-r8 (z)t(17;z(1_7)) }+ Ec(z;l~), 

(4.4.9) 

where l~ is the first future interventionstate given the initial 
* state 1 1• When the system has x as initial state and z(x) = S, the 

* first future interventionstate has the same distribution as 1 1, hence 

0 = Ee ( z ;l~) = Ee ( z ;l~) " (4.4.10) 

From (4.4.9) and (4.4.10) it follows that 

(4.4.11) 

When once r 8 (z) has been calculated for S=B, ... ,M the other unknowns 

can be easily determined [c.f. (2.14), (2.15) and (2,17)). 

If (i,s)¢A then, 
z 

c(z;(i,S) = k((i);S) - r 8 (z)t((i);S) + Ec(z;_!.1 ) = 

= k((i);S) - r 8(z)t((i);S). 

If (i,8)¢.A (hence i>a) then, 
z 

c(z;(i,S)) = Ec(z;(J,S)), 

(4.4.12) 

( 4. 4. 13a) 

where (J,S) is the first future state in A assumed by the system. 
z 

Using the theorem of total expectation it follows that c(z;(i,S)) for 

(i,S)(A can be computed recursively, 
z 



If ( i )EA z 

If (i)<f:A , z 
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00 

c(z;(i,S)) = I ak(J)c(z;(i-k,S)). 
k=O 

and z((i)) = s, 

r(z;(i)) = rs(z) 

c(z;(i)) = k((i);S) - r 8(z)t((i);S). 

00 

r(z;(i)) = Er ( z ; ( _j_) ) = I ak( I )r(z;(i-k)) 
k=O 

00 

c(z;(i)) = Ec(z;(_j_)) = I ak( i )c(z;(i-k)), 
k=O 

where (_j_) is the first future state in A. 
z 

(4.4.13b) 

(4.4.14) 

(4.4.15) 

Consider next the functions r(d,z;x) and c(d.z;x). From the definitions 

(c.f. (2.21) and (2.22)) it follows that for d=null-decision 

r(d.z;x) = r(z;x) , c(d.z;x) = c(z;x) 

(4.4. 16) 

and ford= s,i, 

r(d.z;(i)) = r(d.z;(i,S)) = 

= r(z;e(S)) = r 8 (z) (4.4.17) 

and 

c(d.z;(i)) = c(d.z;(i,S)) = 

= k((i);S) - r 8(z)t((i);S) + c(z;e(S)) = 

= k((i);S) - r 8(z)t((i);S). (4.4.18) 

We note that, 

min r(d.z;(i)) = min{r(z;(i));r8(z)\s = max(i+1,B), ... ,M}. 

d{D ( ( i) ) ( 4. 4. 19) 
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Hence if (i)fA then ~.f. (2.281), 
z 1 

r ( z ; ( i ) ) = mm 

M.::_S..::_max( i+1 ,B) 

From (4.4.20) it follows that, 

(4.4.20) 

r ( z; ( i) ) .::_r ( z; ( j ) ) i<j and (i), (j )fA . (4.4.21) 
z1 

The relation (4.4.21) simplifies the determination of A~'. 
z 

It will be obvious that for the determination of an optimal strategy 

we can restrict ourselves to the states of x0 • 

Let us define for x,y€X0 , 

p (z) = probability that y is the first future interxy 
ventionstate if the initial state is x and 

strategy z is applied. (4.4.22) 

Define for convenience of notation the sets of indices 

B(z) = {il(i)EA} and B(z;S) = {ij(i,S)€A }, 
z z (4.4.23) 

and the sets of states 

C(z) = {(i)j(i)EA} and C(z;S) = {(i,S)j(i,S)€A }. 
z z 

(4.4.24) 

A simple argument shows that [c.f. (3.40)], 

p (z) 
xy 

(ss,j,B(z;S) 

~ 6i,j,B(z;S) 

= I 6s,j,B(z;S) 
s. . ( ) \ l,J,B z 

·~ 

X = 

X = 

X = 

X = 

(i,S)(A , y = (j ,S) 
z 

(i,S)fAz' y = (j,S) 

(i)EA, z((i)) = S, y = 
z 

( i )¢ A , y = ( j ) . 
z 

( j ,s) 

(4.4.25) 
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Using (4 4.25) we can write (4.4. 11) as 

= l 13s · B(z·s/((j);S) / I 13s · B(z·S)!:((j);S). 
jfB(z;S) ,J, ' /jtB(z;S) ,J, ' 

(4.4.26) 

In particular it follows that the expected mean cost per unit of time 

of a (~n) policy (s?O) is given by, 

r(s;S) =.I a(s,S,j)k((j);s)/I a(s,S,J)t((j);S) 
J~ J~ 

(4.4.27) 

where [c.f. 3.46)~ 

S-s-1 
a(s,S,j) = I u(k)a8_k_,(1) 

k=O J 
j .:_S • (4.4.28) 

The range of the summationvariable in the numerator of (4.4.26) can be 

reduced to a finite one, because t((i);S) = t((j);S) for i,J,.::_a and 

\ 
.l 13s,j,B(z;S) 
J.:_a 

= , - I ss . ( s ) . . ,J,Bz; J/a 
(4.4.29) 

We shall later see that the range of the summationvariable in the 

denumerator can be reduced to a finite one too if the ordering cost is 

linear from some ordersize. 

Next it will be shown how the set AA can be determined. We note firstly 
z 

that each set A contains only a finite number of states for which the 
z 

null-decision is feasible. Hence (c.f. (2.35)] the intersectionset Az 
is only determined by a finite number of sets A, thus 

AA 'EX( z). 
z 

(4.4.30) 

Let A0CACA . When the system is subjected to the natural process with 
z 1 

initial state in C(z 1;S) respectively in C(z 1) then the first state in 

the set P assumed by the system belongs to C(z 1;S) respectively C(z 1). 



40 

Hence to determine which states of A belong to A~ we can consider the 
Z. Z 

sets C(z 1) and C(z 1;S) separately, FrJm the definitions (2.31), (2.32) 

and (3.40) it follows that, 

and 

r(A.z;x) = L' B r(z;y) xyA 
yr£A 

(A ~ )-'B c(z;y). 
c .z;x - L A 

yf.A xy 

In particular for xeA, 

r(A.z;x) = r(z;x) and c(A.z;x) = c(z;x) 

From (4.4,20) and (4,4,31) it follows that 

r(A.z;(i))5r(z;(i)) 

Furthermore 

r(A.z;(i,S)) = r 8 (z). 

for ( i )€A 
z1 

(4.4.31) 

(4,4.32) 

(4.4.33) 

(4,4,34) 

Conclusion for the determination of A~' we need only to compare 
z 

c(A.z;x) and c(z;x) for xtA 
z 

[c.f. (2,34)], Another way than (4.4.31) 

to calculate c(A.z;x) for x/A follows from the theorem of total 

expectation and definition (2.32), 

c(A.z;x) 

r I ak ( 1 ) c (A, z; i-k) 
k=O 

I 

= i ; I ak( 1 )c(A.z;(i-k,S)) 
t k=O 

'S-

X = (~f A (4.4.35) 

x = ( i ,S )¢A. (4,4,36) 

Firstly we shall determine which states of C(z 1) belong to Az'. The 

latter set encloses A0 hence it contains the states (j) with j.::_a. 

Let the initial set H be defined by 

H = {(j)lj.::_a}. (4.4.37) 
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We shall build up H to Az'AC(z 1}. 

Calculate successively for i=a+1, ..• ,M-1, iEB(z 1} 

c(H.z;(i)) - c(z;(i)). (4.4.38} 

State (i) belongs to AA' if and only if the difference is positive. 
z 

We add (i) to H if the difference is positive, otherwise not. Note 

that c(H.z;(i}) = c(z;(i)} if (i}~H. Some reflections about this procedure 

show that the finally obtained set H consists of the states of C(z 1) 

which belong to AA'. 
z 

Analogeously we determine the sets C(z 1;S)AAz' for S=B, ... ,M. 

Define for fixed S the initial set 

H(S) = {(j,S)lj.::_a}. (4.4.39} 

Calculate successively for i=a+1, .. ,,S-1; i.EB(z 1;s), 

c(H(S).z;(i,S)) - c(z;(i,S)). (4.4.40) 

We add (i,S) to H(S) if and only if the difference is positive. The 

union of the final sets H(S) and His the set AA', 
z 

M 

Az' = s::'B H(S)VH. (4.4.41) 

We are now in position to give the iterationprocedure for our problem. 

It will be obvious that in the present formulation of the problem we have 

to consider a denumerable number of states. However we can restrict 

ourselves to a finite number of states if for some N~l and some real 

c,U: 

c(q_) = cq_+U q_..:'...N. (4.4.42) 
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Assume from now on that (4.4.42) holds. When the ordering cost c(q) is 

replaced by 

* c (q) = c(q) - c,q, (4.4.43) 

the expected mean cost per unit of time of each strategy is reduced 
00 

with CA l np (= c times the expected demand per unit of time), because n 
1 . k d . excess demand is bac logge . Hence we reduce our model to an equivalent 

one when we consider c*(q) instead of c(q). For this reason we refer 

* to c (q) hereafter as the ordering cost. From (4.4.42) and (4.4.43) it 

follows that, 

* C ( q) = U q~N 

Hence [ c, f. ( 4. 3. 11 ) J , 

k((i);S) = k ((j);S) i,j2._L(S) 

where 

L(S) = min(O,S-N) . 

Furthermore we have already ( c. f. ( 4. 3. 13 )) , 

t((i);S) = t((j);S) 

If i<a then, 

min r(d.z;(i)) = min rd(z). 
d€D((i)) B<d<M 

Let D be the set of minimizing decisions d. Let 
z 

def 
L = L(B) = min(O,B-N) 

(4.4.44) 

(4.4.45) 

(4.4.46) 

(4.4.47) 

(4.4.48) 

(4.4.49) 

From (4.4.45) and (4.4.47) it follows that for each state (i) with 

i<L 
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min c(d.z;(i)) = 
d€D 

z 

min {k((i);d) - rd(z)t((i);d)} (4.4.50) 
dtD z 

is reached for the same d. 

By means of the test quantities r(d.z;x) and c(d.z;x) the strategy z1 
is deduced from z, The formulation of the iterationprocedure (see 

page 16) implies that when we start with a strategy z satisfying 

z((i)) = z((j)) i,j<L, (4.4.51) 

we meet thereafter only strategies of this type. Hence z0 contains 

an optimal strategy which satisfies (4.4.51). From now on we consider 

only those strategies z of z0 with z((i)) = z((j)) for i,j..:_L, 

Using (4,4.45) and (4.4.47) it is easily verified that, 

c(z;(i)) = c(z;(j)) and c(i;(i)) = c(i;(j)) i,j..:_L 

c(z;(i,S)) = c(z;(j,S)) and c(i;(i,S)) = c(2;(j,S)) 

i,j..:_L(S). 

(4.4.52) 

It will now be obvious that we need to determine the function k((i);S) 

only for L(S)..:_i..::_S-1 and t((i);S) only for a..:_i..::_S-1, where S = B, ... ,M. 

Furthermore an optimal strategy is found by applying the iteration

procedure only to the states (i) with L<i<M-1 and the states (i,S) with 

L(S)..::_i..:_S-1. 

We shall now formulate the iterationprocedure. 

1. Let strategy z be given, Determine for S = B, ... ,M: 

S-1 
I S8 • B( ·S)k((j);S) + a(l;S)k((L(S));S) 

j=L(S)+1 ,J, z, 

S-1 
. l s8 J. B(z·S)t((j);S) + a(2;S)t((a);S) 
J=a+1 ' ' ' 

(4.4.53) 



where 

a,( 1 ;S) 

a,(2;8) 

For L(S).:_i_:_S-1, 

c(z;(i,S)) = 

For L_:_i~M-1, 

r(z;(i)) = 
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= 1- I s , 
j~L(S) S,J,B(z;S) 

= 1- I s . . S,J,B(z;S). 
J>a 

k((i);S) - r 8 (z)t((i);S) 

i-L(S)-1 
I ak(1)c(z;(i-k,S)) + 

k=O 

00 

+ l. ak( 1 )c(z;(L(S),S)). 
k=i-L(S) 

i-L-1 oo 

(i,S)!A 
z 

(i,s)¢A . 
z 

I ak(1)r(z;(i-k)) + ~ a1/1)r(z;(L)) 
k=O k=i-L 

c(z;((i)) 

= f k((i);d) - rd(z)t((i);d) 

\ i-L-1 oo 

j L ak(l)c(z;(i-k)) + ~ ak(1)c(z;(L)) 
I k=O k=i-L 
\ > 

2. Determine for L_:_i~M-1, 

min r(d,z;(i)) = min{r(z;(i));rd(z) ld,i, dfD((i))L 
d€D( ( i)) 

Let D ((i)) be the set of minimizing decisions, Minimize 
z 

(4.4.54) 

(4,4.55) 

(i)4A. 
z 

( )+, 4. 56) 

z( (i) )=d>i 

( i )(A . 
z 

(4.4.57) 

(4.4.58) 

c(z;(i)) d = null-decision 

c(d,z;(i)l = 

(4.4.59) 



with respect to d'Dz((i)). Let z1((i)) be a minimizing·decision [Take 

z1((i)) = z((i)) if z((i)) is a solution]. 

For each state (i,s)¢A we take z 1 ((i,S)) = S if 
z ' 

k((i);S) - r 8 (z)t((i);S)<c(z;(i,S)). (4.4.60) 

Otherwise z 1((i,S)); z((i,S)). For states (i,S)€Az we take z1((i,S)):S. 

3, Determine 

(we use the recurrence relation [c.L (4.4,35) and (4,4,51)), 

i-L-1 oo 

c(H,z;(i)) = l ak(1)c(H.z;(i-k)) + f ak(1)c(z;(L)). 
k=O k=i-L 

A similiar relation holds for c(H(S).z;(i,S))j. 

4. Define 

Numerical example. 

xl::A .... ' 
z 

otherwise. 

Suppose that the following numerical data are given: 

T=O 

,\=4 

M=8; c(q) = c.q+4 for q~1 ; c 1 = 

P = 1 ' C = 20' C = 0 ' a= 2 
1 ' 2 ' 3 ' 

Hence [ c. f. ( 4. 4. 46)] 

L = L(S) = 0 

B = 4. 

(4.4.61) 

(4.4.62) 

(4.4.63) 
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To begin with we determine once for all the quantities ak(1), u(k) 

and the functions k((i);d) and t((i);d), 

Tabel 1, Tabel 2. 

~ ak ( 1 ) u(k) ~ 4 5 6 7 8 

0 .0183 1 , 0187 0 18.7501 20.6003 22.6042 24.4834 26.4147 

1 .0733 .0760 1 -6.8730 -5.0228 -3.0190 -1.1397 ,7916 

2 . 1465 01 577 2 1. 4797 3,3299 5,3337 7.2130 9. 1443 

3 . 1954 . 2258· 3 4,4689 6,3191 8,3230 10.2022 12. 1336 

4 . 1954 .2582 4 5 .,8502 7,8540 9,7333 11. 6646 

5 . 1563 ,2617 5 6.0038 7,8831 9,8144 

6 , 1042 ,2546 · 6 5.8793 7 .8-io6 

7 .0595 .2494 7 5,9313 

The ak(l) and u(k). The function k((i);d). 

Tabel 3, 

~ 4 5 6 7 8 

2 1. 0947 1. 2524 1 .4782 1, 7365 1. 9982 

3 ,0760 .2337 .4596 ,7178 ,9795 

4 . 1577 ,3836 .6418 .9035 

5 ,2258 .4841 .7458 

6 .2582 ,5199 

7 .2617 

The function t((i);d). 

To determine an optimal strategy we need only to consider the states 

(i) with 0..:_i<7 and the states (i,S) with 0..:_i,::_S-1, S = 4, ... ,8. 

We shall now apply the iterationprocedure, 
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1. Let the initial strategy z be given by: 

z((i)) ={~ 
""-

and for S = 4,,.,,8 

z((i,S)) = {: 

After some calculations: 

Tabel 4. 

s r 8 (z) ~ 
4 9.824 0 

4 

7.996 

0<i<4 

5.::_i.::_7 

i = 0, ... ,min(S-1,4) 

otherwise. 

Tabel 5. 

5 6 7 

9.742 10.227 9,956 

8 

9.619 

5 8.670 1 -17 .627 -15,881 -15.396 -15.667 -16.004 

6 8.373 2 -9.275 -7,528 -7.043 -7,314 

7 8,366 3 3,722 4,293 4.475 4. 197 

8 8.405 4 4,483 4.642 4.364 

5 .414 .142 

The function 6 -.274 

7 

The function c(z;(i,S)), 

Furthermore, 

r(z;(i)) = r8(z) i=0, . .,,7 

and 

c(z;(i)) = c(z;(i,8;) i = 0,.,.,7. 

2. Applying step 2 of the iterationprocedure we find that 

0<i<6 

i = 7 

-7.651 

3,900 

4.070 

-.186 

-,596 

-.318 
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and 

z1 ((i,S)) = z((i,S)) 

For states xEA , 
z1 

Hence, 

c(z;x) = min c(d,z;x). 
d€D (x) 

z 

for each (i,S)" 

c(z;(i)) = k((i);7) - r 1(z)t((i);7) i = 

c(z;(i,S)) = c(z;(i,s)) i -
s = 

After some calculations: 

0' ... ,6 

O, ••• ,min(S-1,4) 

4, . .,,8. 

c(z;(i)) = c(z;(i)), i =-o~ ... ,4 c(z;5) = 3.833 ; 

c(z;6) = 3,719. 

3. By applying the cutting procedure given in step 3 we find that, 

4, 

A~ ' = { 0 , 1 , 2 , 3 }U { ( 0, 4 ) , ( 1 , 4 ) , ( 2 , 4 ) }l/{ ( 0 , 5 ) , ( 1 , 5 ) , ( 2 , 5 ) , ( 3 , 5 ) } U 
z 

U{ ( o, 6) , ( 1 , 6) , ( 2, 6) , ( 3, 6) l V { ( o, 7) , ( 1 , 7) , ( 2, 7) , ( 3, 7) } U 

U{(o,8),( 1,8),(2,8),(3,8)}. 

O<i<3 

O<i<2 

i=3 

and for S = 5,, .. ,8 
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0<i<3 

4<i<S-1 . 

With strategy z2 we repeat the iterationcycle. 

1). Let strategy z be equal to strategy z2 found in step 4 of the 

previous iterationcycle, 

After some calculations: 

Tabel 6. Tabel 7, 

s rs(z) ~ 4 5 6 7 8 

4 9,767 0 8,059 9,983 10.688 10.611 10.364 

5 8,477 1 -17,565 -15.640 -14.935 -15.012 -15.259 

6 8.061 2 -9.212 -7.287 -6 .582 -6.659 -6.906 

7 7,989 3 2,983 4,338 4.618 4.468 4.266 

8 8,032 4 1,884 2.557 2.475 2,232 

5 .639 ,550 .310 

The function 6 -.093 -.331 

7 -,237 

The function c(z;(i 2 S)). 

Furthermore, 

r(z;(i) = r 7(z) 1 = 0'. 0 • '7 
and 

=rz;(i,7) I o, ... ,6 1 = 
c(z;(i) 

1-.001 1 = 7, 

2. After some calculations we find that strategy z 1 is equal to strategy z. 

3. After some calculations we find that, 

A,.' 
z 

= A ( =A ) • 
z l z 
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Hence we find as optimal strategy the-strategy (3;7): if; at a review, 

the economic -stock is less -than· or·· equal to 3; replenish it until 7. 

As by-product-we find an optimal strategy-for each replacement level S. 

4.5 Remarks. 

1. Often it is assumed that the storage-cost-incurred during a period is 

a function h of the stock on hand·at·the start of that period; The penalty 

cost for a·periodis a function·p of the shortage at·the end of that period, 

The functions h·and pare taken-zero for negative arguments. 

The difference in expected storage cost of the walks }!8 ' 1 and w0 ' 1 is 

then given by, 

where 

S-1 i-1 
l ak(T)H(S-k} - l ak(T)H(i-k), 

k=O k=O 

H(i) 
00 i-1 

= h(i) + l l a.(n)h(i-j) = 
n=1 j=O J 

i-1 
= l u(j)h(i-j). 

j=O 

(4.5,1) 

(4.5,2) 

The difference in expected penalty cost of the walks w8 ' 1 and w0 ' 1 is 

then given by, 

T-1 i-1 S-1 T-n S-k-1 
l l l a.(n-l)ak_.(1)[ L l {at(m)p(k--i+t) + 

n=1 j=O k=i J J m=1 t=O 

00 

+ at (m-1) l av( 1 )p(k-i+t+v)}J + 
v=S-k-t 

where x.; is given by (3.31) for k>O and x.;=o for k<O. 

(4,5.3) 
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2. Suppose that only a single order can be outstanding. The resulting 

problem can be solved analogeously. The modification of the state space 

will be obvious. The states-(j) and (j,S) of the new state space 

correspond to the situation that at the start of a period the stock on 

hand is j and no order is outstanding. 

Only in those states·can be intervened; The solution of-the new problem 

runs parallel to that of the original oneo Assuming that-(4.4.42) holds 

the iterationprocedure (page 43) can be simply transmitted, provided 

that we change the formulas fork- and t-functions and for the quantities 

r 8 (z). Those formulas become, 

where 

s 
k((i);S) = c*(s-i) + c1 ~+ E{(!_k-T)·_(1k-T)} + 

k=i +1 

s 
+ i+ E{(c2(T-.!_k) + c3) ,(T-.!_k)} + 

k=i +1 

00 

S-1 
+ I ak(T)N(S-k) - N(i), 

k=O 

S-a-1 
t((i);S) = T + I ak(T)E~-k-a 

k=O 

rs(z) = A(S)/B(S), 

S-L(S)-1 S-k 

* Et. 
--i-a 

(4.5.4) 

(4.5.5) 

(4.5.6) 

A(S) = I ak(T){ l SS-k . B( ·S)k((j);S) + 
k=O j=L(S)+1 ,J, z, 

+ (1 - L S k((L(S));S)} + 
j>L(S) S-k,j,B(z;S) 

+ (1 - I ak(T) k((L(S));S) 
k<S-L(S) 

(4.5.7) 
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s-a-1 S-k 
B(S) = l ak(T){_ l SS-k. B(z·S)t((j);S) + 

k=O J=a+1 ,J, ' 

+(1- Is , · )t((a);S)}+ , S-k,J,B(z;S 
J .,a 

+ (1 - l ak(T) t((a);S). 
k<S-a 

(4.5.8) 

3, Until now we have supposed that only at the beginning of a period an 

order can be placed, Suppose now that at each point of time an order 

may be placed (2]. Between delivery and order we assume a lag of T units 

of time, where T nonnegative and real. The same assumptions about the 

various cost and the behaviour of the customers hold as in the periodic 

review case. Only at the moments a demand occurs we decide whether or 

not to place an order. This can be done without loss of generality 

because the customers arrive according to a Poisson process. An arbitrary 

number of orders may be outstanding. Following the same lines as in the 

periodic review case it can be shown that the average cost per unit of 

time of a (s,S) policy (s.:::_0) is given by, 

Where, 

with 

r(s,S) = l f(j,s,S)k(j;S)/ l f(j,s,S)t(j;S). 
j.::_s j.::_s 

s 
k(i;S) = c(S-i) + c 1 ~+ E{(ik-T):(_ik-T)} + 

k=i +1 

s 
+ i+ E{(c2(T-_ik)+c3):(T-_ik)} + 

k=i +1 

y(T) =C T>O 

T=O. 

(4.5.9) 

(4.5.10) 

(4.5.11) 
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t(i;S) = Et - Et. 
'-=-8-a -1 -a 

(4.5.12) 

f(j,s,S) = P{the first economic stock level ::_sis j if the 

initial economic stock is Sand no orders are 

placed}. 

(4.5.13) 

f(j,s,S) = P{to reach j from S without the system assumes an 

intermediate economic stock level}+ 

S-s-1 
+ I P{to reach S-k from Sand to reach j from 

k=1 S-k without the system assumes an inter-

mediate economic stock level}= 

= (4.5.14) 

fk = {
1 

P{to reach S-k from S} 

k=O 

(4.5.15) 
k> 1. 

Using a simple probabilistic argument it follows that, 

f = 
k 

k 

I p.fk. . Q l -1 
1= 

k>1. (4.5.16) 

The range of the summationvariable in the numerator of (4.5,9) can be 

reduced to a finite one, because t(i;S) = t(j;S) for i,jfa. When (4.4.42) 

holds we can reduce the range of the summationvariable in the denumerator 
* . to a finite one too by replacing c(q) by c (q). Automatically the ranges 

of the summationvariables are finite if p.=O for i>k for some k. In 
l 

this case f(j,s,S) = 0 for j~s-k, 
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Analogeously like in the periodic review case an iterationprocedure can 

be formulated to determine the best policy of the class z0 of policies 

(In the non-periodic review case the probabilities p. play the role of 
l 

the a.(1) in the periodic review 
l 

case). Furthermore the case of a single 

outstanding order can be treated in the same way. 
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