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Preface.

In differential geometry many mathematical
tools are used that are made or should have been
made in the workshop of the analyst. But from the
point of view of the analyst these tools are so
simple and uninteresting that he prefers not to
spend much time on them and to spare his time and
energy for more difficult oroblems. The result is
that in textbooks of analysis e.g. the theory of
regular systems of equations is dealt with in a
rather superficial way and that we look in vain
for a general theory of supernumerary coordina-
tes, so Ifreguently used in all branches of mathe-
matics. So differential geometers had to do what
properly was not their job, and this is exactly
what they have done or at least have triecd to do.

- These lectures given in 1947 at the Mathe-
matical Centre of Amsterdam form an introduction
%o My courses on tensor calculus, theory of
Pfaff's vroblem and its generalizations and other
objects of differential geowmetry given or to be
glven. |

Now many of the points considered in this
preliminary course are dealt with more claborate~
Ly in Pfaff's problem and its generalizations® by
Mr. W.v.d.Kulk and me, Clarendon Press, 0xford
1949 (hereafter referrcd to as P.P.) and some
also in my “"Tensor calculus for ohysicists® that
will be published by the Clarendon Press in 1951.
Nevertheless the Clarendon Press has kindly agreed
with the appearance of these leetures in the
scripta of the Mathematical Centre of Amsterdam,
and 1 wish to express here my most hearty thanks
for this to the English editor.

My personel view is that most students, after
having studied this scriptum will be eager to
study in the more elaborate books the numerous
applications of the theories developed in this
short publication. Many references will be found
in the text and at the end there is a list of the
Literature referred to.

Epe, October 1950. J.A.Schouten,




§ 1. The arithmetic » —dimensional manifold CZﬁ 1),
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Every ordered set of 72 real or complex values
of n variables g P K= Ty-s s, 72 is called an __a.r;.th—-»
metic point and the totality of all these ‘points an
arithmetic manifold or (Z,, . The % are ‘called _the

AlLLT i

omponents of the point and the voint is shartly

mbioglt a8

alled “point Y

A polycylinder in (F,is the tcballty of all
points satisfying inequalities of the form

1.1) , l?_&k/ﬁs

where thucx are arbltrarlly Ziven. real or complex
nuabers and the/e arbitrarily given 905111ve U=
bers., o R r

A gset of arithmetic points afiﬁ@w is ealled
a region of (¥, if: | | |

1.. the set is oven i.c. every point of. the
set belongs to atileast,one polyceylinaer consig-
ting only of voints of the regions:.

2. for every choice of two goints of The
region there exists at least one finite chain of
yolycylinQErs, each consisting only of points'cf

_ gl AT Be® g Ml e TR A VLI O TSV i WS-

1) For § 1 and § 2 cf. Veblen and Whitohead 1932.1;

@

Behnke and Thullen 1934.2; Schouten and v.d.

Kulk 1949.1 (heresafter referred to as P,P.)
ch II § 1,2.

52) In this publication the five 1nd10as¢c » N s s Vg

J always take the values Tomt 3y 72 o



-~ 2 -

the region, such that the first point lies 1in the
first and the second in the last polycylinder and
consecutive polycylinders have at least one ’pciz%t
in common. | |

Obviously every polycylinder 1s a region and :
the whole (Z, 1is a fegic}n; But not every region iy
a polycylinder. Every region is called =a neigh-—
bourhood of cvery one of its points. For nelghe--
pourhood® of g’ " we write shortliy %(g)

L&)

anci

i B g

eometric 7t udlmen51ogal manifolds X,

il it ML

§ 2. The
e

He consider a set M of elaoments of some kind

Whieh are in one-to-one corresypondence to the poin
of a region %? of O{f?z_. With resoect to the element
of M we only presume that they are no voints of

7

7
in 72 variables or polvhnomials i degree 2.7, in

. They may e.g. be homogeneous lincar forms

one variable or wmoints of an axithmetic manifold
gifferent from U, . The one-to-one correspondence
between M and & is calléd a cpordina ’ ate system

over M ., If the polnt g" corressonds %o an element.
of M we call thbg‘the coordinates of this element

e, el . sl 07 P oy mmm“

. ¥ s DL e T - Mﬂﬁw

with respect to the coordinate system (k) anci’ we

wrltcg instead of g if they are considered as
coordinates of an element and not as components
of anar;thmetié point,

Now we make use of the following theorem,
proved in every reliable textbook on analysis:



theorem I (Theorem of inversion)

o il T P R, e

It in Tthe Sgstel of eguatﬂens

2.1) f(?) =7, 7

| v e o
the functions f’ axre anal T,T'blc1)111 g (hence in an
A
ﬁ(g)/ ) and if the fqﬁz}‘g_ja_%p}@_]___‘ de%ermﬂlnan‘t"
of these functions |

i ol - b el - A - .. il

2.2) - def-‘pﬁl (a§/§) =TT

is ,-é O in g (nbnce £ 0 in an 2’?:(?) Py, the

mw-ﬂ
ﬁC

g gan be solved from (2,1) and in thls solutlom'

£

2.3) f(?) '; )c’:.-'%’,u._,n'}‘
. N

| A
the fuﬂCtanaf axrce aaal;gtz;g__ in an W(g),g
belng deflﬂed bg ¢

'
¥ -

"

| fc.’ K .
’2.*.‘?{) §'~'—ff (E) I

/

S #
The functlonal determinant of the f_}_:g}_ £ i
9

O T MRS kit o . Bt ol b e . L

equal to A

_ﬂﬂﬂ- ﬂ—ﬂ-“ﬂﬂwm-ﬂ——“ Suian. kgl

'1) A function deflned in an 3’2(?) ig said .
_to be analytic in ? i€ there “exists an 2?"‘(("?)
| whe;;e Lt can be exnandeé into a power serles

in £~ £ , convergent in this latter 2’2’(5) .

¢



As a consequence of this t:leoreu there

exists in Et(é’) a nelghbourhoodae of g’ and in
32(55",) a, nelghbourhoed X' of f for the "oolnts of
Whlch the equations (2.1) anad ale (2 3) establish '
& one-to-one correspondence.

Now let us presume thaté"&’ 18 contalned
in 36@ . Then there exists in /& a subset R of arl‘t:h-

metic points whose elements are in one~to-—one cor-
respondence to the points of & and therefore also
in one-to-one correspondence to the points of R'.
This latter corres_pondence i1s, according to our
definition, another coordinate system over &
This coordl.ﬂate system we denote by (K7 and we

write f_?"c for theg’ if they are consideredas coor—
dinates of the elements of # . (fig.1.)

The eqvatlons (2,1 3) represent. a Ealn't
transformation in C¢Z, and 11;5 1nverse, If the §' f

are replaced by g’ , &% we get the equations



representing a coordinate transformation in A in
M . A transforms

form

tion of elements in A has the

P — A A
2.6)  ppf= F(ET) "
or,
with respect to another coordinate system (K%

7 !"C!:: ?K!(gg‘f) .; ﬂ.':; ’;L..‘: ;?;3 .. ‘;72—-.';\;

Collecting results we have:

o

A coordinate systen over a set cf elemcnts

e, s ks s e e Wk el S e B il . e ln i A el i

g, - . [F T 3 B S T

AR 1s a one-to-one corrcspondence between the

sl . — AR .

wmmuﬂﬂ

eilements of £ and the points of a region of (i, .

nnd a transformation of coordinates in & means

e 7 A, T s, W i TR b ok il 1 iy, W o i B e B e By e U T T w e e - il i Kl

passing to another one-~to~one corregmnondence be-

T e P s B i ¢ . T SN it o OO I

tween these elements and the »noints of another

= o b LA
ﬂeﬁlon of OZ :

o e o IRTATEE - il s W il Wk . AR

1} Cf. Veblen and Yhitehead 1932.1, p.32. Ve
consider here only ordinary coordinates,

For sunernumerary coordinates see § 9.



At the beginning we have to agree upon

the coordinate transformations to be allowed. Ofteén

it is required that this set of tfar;;?;fpeméﬁions

forms a
‘15

~+tible linear homogeneous transformations:

5.

But the

The Setéf’ of all invertible transformations ana-—
1lytic in some region is not a group. 1f a transfor-
mation 7; transforms a region #"into &' and some

'the group of all permutations of coordi-

"nal. transformations (One -of the properties |

group, i.e.

the result of two transformations of the
set, applied after each other, is in the
sets | L

if a transformation is in the set its
inverse exists and 1is in the sets

the set contains the identical transfor-
mation. ; |

natess - -

the affine group &, of all invertible
linear transformationsi B

the special affine group G, of all inver-

the orthogonal group G, oféll-orthggéﬁ |

+ 1 but this is not -

E

of this group is:a
a sufficient condition for orthogonality).
the group gwef all rotations ( 99,& with
A = + 1). I . N

group property is not alwavs reguired. E.g.

|

 other transformation 7, a region &”into #& , the




| - -
transformation 7,7,  can be formed 1T and only
£ and &” have a voint (hence a I‘E&Q‘li}l’l) in
common. »uch a set is called = osovdoﬂggauﬁ

e a5t
The result of two transformations of 2 pscudo-

group, if exlsting, bclon 24s! ic tie gseudcwgrcup1)f

The set K equisned with an original coordi-
nate system and with all allowable coordinate

Aoy i . o . gl 1 . £ i

systemsi.e. all coordinate systems that can be

derived from the original one by means of al-

lowable coordinate tr~ stormations is called an

7 ~dimensional geOJetrlc manifold, The elcments

A R . e W Sl Bl

are called geometrlc noints or Shortly points.

] Mwm Al et il o N e B el 5, SRR

The cholce Ofﬁe c.m.c ol Ul«u allos e“‘*blz,, coordie

nate systemszs cntlreTy free. These choices fix
the geometric propverties of the geometric mani-
fold., ‘

If we choose & arbitrarily, and @ , we get
thekggszthgi space of ordinary generalized dif-
ferential geometry.

If we choose .c?'_-_- (%n and Qa we get the f?z,

The snace of ordinary 72t ~dimens 1onal afflne geo—
.metry.

If we choose 3?.:::’6)2 and 9{0 we get the cen-
tred &,, the spacce of ordlnmry'“ ~dimensional af-
fine geometry with flKud origin.

1) Cf. Veblen and %hitehead 1932.1, p.38.

wid
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If we choose & =0Z and ¢, we get the Koo

o 7L

e gpace of ordinary 72 -~-dimensional metric geometry..
R3; = ordinary space.

L

In an X, the notion of polycylinder can not

be used because there is not a preferred coordina-
te system. Instead of polycylinders we use cells,
a cell being defined as a set of points satisfying
the inequé.lities ,

2.7) ' lgﬁl?"

in somne a.llowable coordinate system. A pf}ll‘l't set :
R in X, is called a region if there exists an

allowable coordinate system (x) determining a one-
to-one correspondence between the points of K and

the arithmetic palnts of a region & of U, .3 is

called the fun@__a:zentgzl rcgion of £ with respcct to

(K ) 1} Evidently every cell is a region., But nod
every region needs to be a cell. Also the Xyp 1tself
18 a’ region and every reglon in Xﬂ ig itself an X,, .
BEvery X, that is a reglon Of another X;, 18 said %o
be imbedded in the latter. _;"very region of an X, is
called a neighbourhood of ecvery one of its points.

Tty sk ¥ PRLINE LSRRI

For nel ghbourhood of g " we wrlte shortly Z’Z(E)

A 1is sald to be analytic 111 § if for anmy
choice of the coordlna.te system (xS in R /D ig a

meplile stine WINES gy g T g TR v WEERF Sk JL R yessks cpmbel Talwi S wO

1) A region in an.X, can also be defined in the

same way as a region in (Z,, by lsing cells instead
of polycylinders.



fTunction of theigﬁ

2.8) pP=F(ET)

and 1if f is analytic in § this conaltion 1is

satisfied and if &) 15 another allowable ceor~
dinate systen and

K’ i P | . J
2.&9) . - ? :f (5 ) J‘ K,:-".?Ij‘;*'j?z,! e

it is well-Known from the theory of functions of
several variables that

2.10)  F(FHER)

is analytic iﬂ_g', Hence analyticity is invariant
Tor all allowﬁblb ccordlnatu %run foruations. 1T

£ is analytic in §’ there o l?ts an %(f%here
,0 is analytic in every noint. ) > o

o

§ 3. The null form of thc %uati”ggs of an X, in
§ XT;“57“*~ e -

il e oo il camibal g ek

ﬁ“ﬂmum A A S

1) We always consider anelytic functions. But many
of the theorems dealt with here can also be
formulated and proved if only the existence

and the contlnulty of the derivatives up to a
certain order is vresupposed.

2) C¢f. K&nler 1934.1; P.P. Ch. II § 3
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. 3 T 'y
We consider N functions & (g') 8 =N, -, ,
analytic in §'K » The matrix of the nA derivatives

of the & % W%.‘t?h respect to the gﬁ
e A e
B | e 2 |
3.1 Ui

1s called theh functional matrix of The system G o

Sl Bl — e e : B A M

and its rank "{..? in g the rank of the system in
that point. Dvidently <z s and TSN « Hence <
1z the maximum nuaber of llnearly 1nc1e nendent
differcntials among the d@ © in ? |
If we form the matrix of ‘-*t:m, 22 derivatives

of the # < with respect to #t'<92 of the variables
§ the rank +’ of thls matrix in g is called the
rank oi‘ the ezstem g * with respect to these Va—

o e fegmfy s 5 SR g M

rlabla,s 1:1 tha"t; _point. ZHV1dent;3r 'L n’ 3 "a_;._; N 3
s T . ' | |
: e~ X : /o :
he functions &  are said to be (functionally)

111 eggndan‘c :m .??:(f'f) 1f in Q’Z(?) none oi‘ “t;hem. can
be ‘expressed as a function of the oﬁhé:ﬁ's and (functw

ionally) dependent in the other case.

- The proof of the followlng ‘theoreﬂz Wlll be found
in avery rellablg textbeck -on ane lysis.
1) A matrix has rank -« if it conteins at least one
non-vanishing subdeterminant with « rows but none
with ©+7 Irows.
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Theorem II (Them. em_of indcpendency).

-l - e e g A e .--t-hﬂ_

N functions C‘W(g ) D= At N, analy_

tic in ?Z/g) arg independent in EfZ/g/ if and onlz
_f the rank %~ of thce system SL“'O‘ is equal - ‘bo N

- NN, e,

in a2t least one wnoint of grzag) : S

- Sy el o A ol ‘
-

fod o

|

|-

According to this thcorem the flmc*tions F
are always denendent if A>2e , IT the & “are

indenendent and if 2 = A/ the following theorem
holds:

Theorem III  (Theorem of; adaption).

If Ng 7 functions ?m(fij H=Nyo N\, are
analytic in an :;?‘Z(/g) and if z-A/in c¢very voint

P A el T —— F R .‘.—.:—-—‘J

of Q‘Z(g) there exists an allowable coordinate

e el o ey g A . e Addelie. £ A Ll T L g B il ey, bl Rl . - eI it

SyS‘bem g A A o0, in fg‘c{g"? ¢ Such that

' radB & 4 94 |
.*3,2) F = £ 3 U= AW

Proof.

We take 922 _ A/ Ffunctions

3.3)  FUTNED - EFET),

analytic :;_{n Q'Z/E ) such that the rank of the
system & 3 Aar,---,x. is72 in cach point of
?Z/? K‘) . +hen the transformation

<



- 1% an allow:_{ble doordinate 'tr‘é.nSférmé;'tian and consed
qyently the F 7V form an allowable coordlnate system‘
in 92:(? A I

Now we consider a system of # equations
o SN
 3H”_-- &_(? )mC)5*ﬂEmﬂ1”;§$k

with functions gf’f analytlc in %(E“)

Z_Jvery po:.nt of? f?Z(f )satlsfylng (3 5) is called
a nullgo:m”c of (3. 51 and the set M of all nullpoinis
the null munlfogﬁ of (3.5). |
The system (3.5) is called 'the null form of M«
“The rank of tho systen F* in a null point of (3.5)
is called “the rank @f (3.5) in that point; the
rank of the systema’- “with respcct to 22’ of the ?’(

in a null point of (3 5) is evalled the rank of (345)
- with respect to these vAriablesin that point.

Two systems of oquatlonsg having the same null

301111;5 in ?Z‘.(E} are said to be e lw
chn; A

It has to be rz.,ma,rk:ed +that 1‘: WO egulvalent

pgoints. (Eagﬁ =0, Y= _oand x%0, y o in the point
zMOQ?MQ) “
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g” a null 'Ooll'l't of (2.5). If % is the rank “
ahd if z=A& in g’“" ( and consequen'tly also
/Cg"y 3o, (3.5) is said to be mln:}_m'xl e
4 C. . The number sz.A 1s called the di—
of the null manifold in g" . '.mdmtly
N7 . If a system is mlnlﬁzal regular
j/l voint §' < there cxists an ?Z(g) where
pEm 1s mlnlmal regular in all ‘Oolnts, From
,}Ill'tl{}n it follows 1z.u1udlatb1y that 1f a
48 mlnlmal regular in é? eva_,rv OM its

f‘.‘_ gy e o sevbuniion oy ;. vu- Sl

yuls 18 alse 13:111:11&&1 regular in § The
\ ot —Soitlbat L1l

”'“mlnlmal regulc..r*‘ end"dimension are in-

N

W

far all allowable ccocordinate transforms-

ysten (3. 5) wlth thb nall point EK being _' |
neére are four possible casess

there does not QKZLS'E an egquivalent system
in an aﬁ(g"j mln:;_mf:f.l regular in ,{fk :

13 the systém is ca,lled irregular 1:1 g ;

1 manifold has no dimension in E’

there exists an cauivalent syste.& , mini-
-ular of dlIﬁLIlSan??‘z in ? but among the N
ntials «& Zin g? there exist no 7 - .
‘e lincarly 1ndepenuf~=n'b¢ Then'the'system ‘
ed semi-regular of dimension mlng

&g under 2 but among the A&/ diff: ﬁrcntlals
there exist 7e-772 « A lincarly independcent®
-‘h&ﬁj the sy"éftem is called (ngernumerar;gi
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regular of dimension 7z 1in g"‘: 1);

)
4. as under 3 but 7 .722=+~ . Then according

to our definition the system 18 mlnl‘faal reg_u_le,r" in

ES. . . .
’ The notions irregular, semiregular, regular
and minimal regular are invariant for all allowable:
eeordlnate ﬁransformatlons,_ | | I - ‘
Here follow some cXamples in Z? | |

le Xty=0 § xX2=0 ¢ 1rregula.r in %<0, ¢= o,_
5

2. X%z 0 y=0 : semiregular in x=o, 5/,,._0 72=7.
3.6) 3. X220 3X=0 j y=0 1t regular inX=0,4=03m=7.

be X=0O . y=0 mlnzmal regular inxs o?y...o}

A S}zbsystem'éf a system regulap of dimension
7T 1in ;fix need not be regular in g“' 1T & system is
regular in § there e}tlsts alwaya an 2’2.’(;) where
the system ILS rcgular of dimension 7z in every point.

If a systen has in ?z(g‘) an equivalent sube-
system, minimal regula:}:* in g*“ it is cevident that
it 18 regular in ? . Convcrselys a system regular
in ? alwa, scontalns an cquivalent subszsteml'miniw
mal regular in § . The proof will be postponed +till
we ecan make use of the first basistheorem (theorem

Iﬂlnﬂﬂﬁ“-_““-‘i mﬂmmmumﬂ“w

1) We ado;o't here the definition of K&hler (1934.1,
p. 12). Other authors, c.g. v.Weber 1900.1, S A8
call regular what we call minimal regular. Our
exposition differs from that given by Kahler by
the introduction of the notions "semiregular'
and "minimal regular® and by its form, which is
a little more adapted to geometrical applications



. - 1
Accordingly a supernumerary regular system dzi.:f-s-
fers from a minimal system only by ceontaining some
superfluocus cguations., But it is not always conve-
nient to drop these equations, beczuse it mav hdp-
pen that the remaining system hasg not an invariant

form.

A mall form of a manifold, minimal regular
of dimension »e in the null pﬁint EX being given,.
according to the thcoran of adalatgon 11 it is
always possible to choose the coordinates £° in
such a Way that the System takes the formﬂ

5

3,7) g ..,"':.:C:Ji ;?-‘: 7?21"7:3*“_572.

The E™ ; ot=7,---372 can be uscd as coordinates

in the null menifold. Now the _gs&udo—groupﬁ CON-
sists. of .2ll invertible analytic trensformations
of the ?K and this psecudo-group contains the
subwpseudowgraupﬁ‘ of 2ll analytic transforma-
tions of the §°" ;X=x 7,--+,72 leaving the § s , -
F=m+ninvariants Consequently £ induces into!
the null menifold the psucdo-group & and this
means that this manifold is an X, . The X, is

said to bc imbedded in the X,, . Hence 2 system

EAT JEREELE O BENRREC TR BN R R ot W Y

' - » [ K
regular or minimal regulaer in £ )renresents ex),
) 1 o |

X1y, imb¢dded in X,, in gn 9‘:(5‘7 s .

F ) Eccording To our definition an Xy, in X, is al-
ways free of singularities. Hence an X, in or=
§inexy; 2pace. Can PR YT HRE F4SREE28E §IEE 1RE-

such” & surface free rrom singularities,



the 7.2 equations

”,

If an X,;1a /- througa g is represcnted v

. : . x : I ""-.-;-r | ' |
3.8) 0 CTEDs0 memany

the guantity

| oy s -, . |
3.9) G E 9, Oy xeamana
i LI . ' K |
has the rank‘¢z'nz in an G?_) « 1T another co-
ordinate SVSbLm.(ktPiS 1ntroduoed (3,8) nasses into
CX g ) def LS ) Karienm’s q)
3.10) CHE )L CTE )05 ,Z 00T L

If then

, o . e X ' X f i F
3.11) CEEl 3, CHEX) ; Ketheyn's Xavnsn oy
wWe nave

% = & & F_ R ___¥ ___ & _ WU W T ey ]

1) e remark that the definition (3.10) is not ac—
cording to the custowm in the theory of functions
because the €% in (3.8) and the €% in (3. 10)
stand for differcnt functions. “hls Glscrepancy
can be avoided by not using the C* as function
symbols and intfc&uciﬁg extra function symbols,
8.8, C¥z @X(E<) = w X(&X) . In fact this must
always be one in more COByllCth ¢ cAses.where.
anblvulty could arise. But in the simple case
here We prcfbr the shorter notation (3. 10)



-

| x A X A ofef A el O , 1
,12) A::g rCa ; Q’azé aﬁ!g ; 8){:: g}n?&* 2 )
A= ?;“‘}‘?’Z 3 L= WA o X |

e matrix of #7% having the rank 7z , 1t follaws"'
10t ;fhas the rank ?1~0ﬁ, and thait consequgnﬁ_,
7 (3.10) is & null form of the X,,, minimal re-
ler in §”C. Once more we sce that the notion
irmensien“ ig really invariant for all allow-
ble coordinatc transformaetions.

The functions & G?E) in (3. 8) are said
> form a basis of the X,,,in ; . Hence to
rery null form, mlnlmal rcﬁulmr 1n1§? there
cists a definite basis. The relation between
ifferent bases are dealt with in the follow-
12 two well-known theorems:

el iy winaks TR e RS Sipi Slepl (AL AnehE et e geegy PeEE SR Ryl SR

) We shall usc the summation convention: if in
one term the same index appears twice, once
as an upper index and once as a lower index,
summation over it has to be effccted. (3.12)
stands for (?;f..—:%ﬁ?;i CD;( .

) We define a basis in another way as K&hler,

 who allows also systems of more than 7.7z
functions. (1934.1, p.13).



Theorem IV (Pirst basis theorem)

If a function S(g""") is analytic in an Q’Z(? ) and
zero in all noints of an X,, in 92(?? thrcugh Z-

with the null Torm (3. 8)2 minimal regul?_r_" an ?”a |
there alwazs exists an %[g"f) such that § sat:.sfim

in this %{g’j an equation of the form i

3.13) S=@ (E*)CT ; xamusn, veym

where the functlans o

7UE").

Procf

are analytic in this latter

According to the theorem of adaption III there
exists a coordinate system g’ﬁ s A=A, ,e. SUCh that
the equations (3.8) take the form . '

3114) gx:O g o= KON N

We may choose the §'Cy‘; ="
that gﬁz ¥ 3 {x N

?

- -y 1IN 8uch a way
-, « Now § being analytic
in 32?;’5) there exists an 32’.(2? f) where § can
be expanded into a convergentpgwer geries in the

§”{ . S vanishes in every point of X,,, hence all

terms of this series not containing at least one of

, x
the variables £7; 2= rwsa,---,n as a factor must

necessarily vanish., Consegquently in this latter



QZ@?éO can be written in the form
£ ‘
3.15)  S=y (BR)ET= e (E)CHE")
where the Y, 8re analytic in,anh’QZfo?*
o

Theorem V (Second basis theorem)

P - " [T, e o

e T N o, e R - AP g P e

If both @%; xamasn, -y and €=
2 ={paany, ;m constitute each a basis in ~ of

ol o i o

an X4n through §"““" , there exigt (z-m2) func—

tions ;(g’@ ; anal}['tic in an E‘ZC&’ “)  such
that in this FYEX)
‘ o

' 4 7 _ . ) ;
316)  CFLEFET | xmrmen ey wanaoree

and

3.17) Det(CF ) %o

This theorem Tollows immediately from the
Tfirst basis theorem, We call the transforaations
(3.16) basis transformations,’

From the second basis theorem V we see that
the index x is subject to linear homogeneous trans-
formations with coefficients analytic in an
n(g*-‘) ,” and a non-vanishing determinant. As a
conaequence of (3.16) we have
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3.18) CF=CFCE 2 CX9, CF § xarnsn,en s )

x’ﬂ'(%*ﬂwrg“‘Jmi 3

hence in all points of X,,

X’ X' x
3# 19) GA -;‘"2..' ex GA i
If a coordinate transformstion and a2 basis trans—
formation are effected simultaneously, the trans-

. i AR . .
formation of i?f.,‘ in all points of X,, is

_ .‘-~h ; ’ A 'x" '1—' . xz"';"t‘s.:-"rﬁ PR 2 VL e Ly .\“',H*{-\:’.
3-20) Ci:ﬁﬁcx GA S = 7’,-‘?..‘,7*;‘. ] ol

C Ax is called the covariant conneclting guantity
of the X, in X, .

Using the first basis theorem we can now give
the proof vostponed on v.14. Be (3.5) a systen re-—
gular of dimension 77z in E‘k . 1t is always wnossible

3
to choose a subsystem ofn.-7z equations having in

?K the rank .72 , Thils subsystem i1s minimal
regular in E‘K and we will prove that 1t is equi-
valent to (3.5) in an Z?’ngxj . By interchanging

&

the indices ¢z it can always be attained That

3»21) g‘?}mrgk):a N - AL SN SV
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in the subsystem.

Now let g‘m’(g’f)zo be & minimal rcgular
systent, equlvalent to (3.5). Then, in ccnsequence
of the first besis theorem the ‘”“(’é’"‘) can be
" expressed Linearly in the g"“ in an 27‘(/;"')

3.22) w&(g? p%g?:(gx) ; 2’y ~e*='"'\z"'?z%"w"

and "in thls exnr9881on Dez‘(p )¢0bec&use both

o’ ~ o o
F and g have rank 7t.772 . llence the & _:.orm_.

a ‘oasz_s for the X, in an ?Z(?”) and accordlngly
the & can be expressed 11nuarly in the g i:n_
Zh g\ ?z(g "“) That provc,s that the eau@tlons & 7

form an equivalent subsystem of (3.5).

§ 4. The paranetric form of the eiuatlons of an

X, in X, ).

7e consider an X,, with the coorﬂnatesvg“

N
i

Ayt and a-systenm .of 92 eguations

4:1) gt_m Bk('?m); o= ﬂ;'_**,m

with functions 7" analytic in 7% . If the mat ix
o
of

ik, ppamal Frve Y ik g . eunl ppami gyt gl gk W R ey il e

1) Cf P,P. Ch, II § 4.




1.2) BIEo BT s Gy g S ??

has the rank »z in :?a, the equations (4.1) establish

a one-to-one correspondence between the points of

X in an ?’i(/ ‘z) and certain points of X,, in

an ?‘Z(g’j ?k"wﬁ'ﬁz‘ﬁ '
Consequbntly every point of this ?’Z( “) can

be identified with its corresponding *‘oclnt in ﬁff *)

This process we call the imbedding of an X, into Xi.

We call (4. ‘l) a parametric form (also: parametric

e o A gy . S B vl

of di d1¢1en51on e in 2% and ,73 the CGILt&i%lan_t_J
connecting guantity of the X.mln X

This definition of an X,,in X, 18 1in accor-

dance with the definition of § 3 because (3.7) can
be written in the form -

XK o 4 .
xg s Awmw Ty o 7L sgzm-’:fﬁ“‘ﬁﬂ”*

£
4.3) %= o
and the 2% can be looked upon as parameters. Then th:
system has the »arametric form.
If in (4.1) the g and m* are transformed simul |
tanceously we get another paramctric form

4‘4) gxim %K"(oz‘ﬁj ; a:r: A\fj" . %m:_; Kf:.: 7,’.‘ .. 3"?’2-r




minimal regular of dimensionne in oz“’ and the ?3;
¥ | * . ’ a
transform in the following way

a:’ x 5 - ‘ = N

S2na ey s Bla Ny
fc‘i_.-_-f’,“-;'?z.“-

If (3. 8) and (4.1) represent the same Xglln.X

we have ) | |

4‘#6) ex(B‘c@Za))::O | | "i?. ’ - e

identical in the'%fzand from this, by differen-

tiation, we get . . .

£.7)  BFCX=0 5 ben,esane jX=xONA

1dcntlcal in the*?

As we have segn mbOVL it 1S EOSSlblu to de—
rive a minimal reauliar paremetric form of an X,
from a —inimael 7ogular null. form by means of a

transforaati~rn of coordinceces. Tne conversion 18

also true. 3. having the ~znk e in -~ , by means
; e T .

of interchan ing of the inli.es &« 1v can always

o , _ -
be arranged .hat the determunant of the Be

K= Ty re- o7, 5 B= Nyr o ynee, dOGS not vanish, Then the
transform “ion



4.‘,8) gk:u B‘(g“)-;- J;g""; Cuz A o =0y OO0 3 1)

XK= reOueh , o0 m y WU,

1s an allowable éoordinate- transformation in' an
QZ(E’#) . Bffecting this transformation we get
from {4.1) o |

@) BUEY= B7%) 5 asrrmiwsr, o ,m

4.9) 4) Bg(g"‘)fdfg"i Bg@?;xzmw\w‘ww;

‘qzm'?"?"}‘*‘pfn :

The determinant of /u: is # 0 in ;)Zq, Hence, accor-
ding to the theorem of inversion I the 7% can be
solved from (4.9a) as functions o the < in an -
3’6(;? . 73“:?“ being a solution, this is the only

solution for which ';z‘zz g‘x . Hence (4.9b) is equi~
valent to 7 ' '

e
4.10) E7= 0 S o A T NI

Sy i [ divia- M NS WS S . S 2k Yl i aling: Sl SR TN

1) d, is the generalized Kronecker symbol. T+t
stands for + 1 if x and x have corresponding values

€. g, 777  and’ Ao , and for zZero in all
other cases.
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and this system is minimal regular in §%i.

At i1s-also possible to derive 2 minimal
regular parametric form of an‘X}Qin Xy from a mi-
nimal regular null form and vice versa without
using coordinate transformations. IH‘OTaQT te Pro-
ve the first sssertion we need thej%heofém. o

g

Theorem VI (Existence theorem of implicite
functions)

;iﬂthe system

P R

4111) gf“{g"c)_—:o s M= Nyt rr oo BN

is regular of dimensionwein F and if by inter-
changing the indices ¢z it has been attained that

4.12) FTEED=0 5 o'sn.e i

PN

. 1 oo ,
gular in §“‘ s, the indices < can be inter-

is an equivalent subsystem of (4.171) minimal re-

Tl il il . o ., = -

changed in such a way that the rank‘cg_(g;jglﬂwifhmw

AN et i e o il g, o T il ol i G TR 1. L i Lt W o M D

respect to the ?g , 8= 7#7,-.-,72 18 equal to

72 - 77¢ . Then an FYE") exists in which the g7
can be solved frem.(4112) |

-

e v— e -l Snmi ) il gy wrienll iy k. dggey ‘mlinighe

1) That this is always possible was proved above.
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4.13) §£=f€(§u) XS Ty WL 3G = TITET T

and for the gxthe eguations

&

g‘?ﬁf@(’g@f) 3 XK= Tyv e 0Ty GETLAT 00, T2
Q

hold1).

et D, il

" Thée proof of this theorem will be found in
everyv reliable Lextbook on analveis,
g

Now if we comnlete the svestem (4.13) with the
identities ’ - |

4*15)t I gmﬁ gtx

we have in fact a parametric form of the X,,, minimal
e 4
regular in ; renresenting the same X,,as (4.11),
Conversely,to derive a null form from a nara-

metric form we need the theorem

il o s kil “ﬁ_-ﬂg Mgt e syt T adcoiel s

1) The thesrem of inversion I is a s.uecial case
of this theorem. In fact, the system (2.1),4n

4

* . K 9 . .
the 272 variables & , ¥ 1s minimal regular

: : : k' .

of dimension 7 in g_?“ , £ and the rank.with .
- &

respect to the £ " is 22 .



~ o7 _
" 172)

Theorem VIT (Theorem of elimination '°7.

Ay "

1f a system of A equationsis given, regu-—

éég;gglggggﬂgguma7n;ln g’ and if the rank with

FREETT R R R T PN provrey e . b roe oy

respect to E7,...,g" “in an 9¢K§f) is K<n-m,
L
from these equations a system of at most »e.w2-.%

M’+7 g A : ' .
equations in -, 7 can be derlvgdz valid
1n.aﬂ,'??@§“)‘and mlnlm%;_rggp%gp_lﬂ . The

converse is also true,

R AN L o SR L A -

Proof. The given systes be replaced by an
equivalent subsystem.of«n_mwa equations, minimal
regular in E' . Thé'differentials of the. left
hand sides of the other equations being 11nearly
dependent on the differentials of the left hand
sides of the chosen equations, the rank of the
subsystem with respect To gf,* . ,,?M ig also R
Consequently, after a switable interchange of
indices the‘subsystem.éan be written in the form

?Q@”‘):o ; _'Def(aﬁg?{j;&o 111 9‘5@5’&)

4.,16)

A ) Alp dosits Siih. gy Sy o N Sn.t RSN wmts gl

1) Cf. e. g;vWeber 1900.1, p.50. Though very im-
portant, this theorem.ls not always stated
explicitly in its most general form.

2) A geometric illustration of this theorem

will be given in § 7.



. 28 _

According to "L_;sle existerce theorem of 1mp1101te
functions VI the 5“ can be solved from (4 16a) in an

%(E) and conseouently (4. ‘!65,)' ca.n be reolaced by
the system

17 CTEVE B FTEY 0 am R s 5m R

minimal regular in gc . Hence (4.16) is equivalent
O
to

@) GYE")=o | | | B
N = Y Em Ty Ry A= RAT e T
4.?8_2 | '6/ | g@(g"?xa “ |

and thls s;stem is minimal regular in ? . I we re-
place: § by f&&f@ (4 18b) passes :mta

| = o
w9 g EYES Y, f)-—-, g R

and (4. 18) 1nto

W GTEV w0 wnre s R s demRerse ey
€ G )0 e=Rerium

we will prove now that the system (4.20) is minimal
regular in g‘f. N.a.s. condition 1s that the matrix

4,20)



e O re— T R

; A | T g aan .
/% oo SR =Ty o I 5 AG = R Ty* 2y 72777
| HE: “e b A7, oy 72
421}??*23 (6“" G = > 3
m 1 N ’_\ -:l, '

N A

has the rank ﬁzmﬁn.ingﬁiﬁ Tence it is n.=a.s.

AL & - w . -
that 2g g has the rank =e.?2z_.& in é‘-_?’f g
: L } | ‘ | 2
in other woras, Tthat no equations *

A.22) AR iz 8@9 =0 i A= RpT, i T2 G KA P

exist with coefficient <« That do not alil

| . . o A ' - . ) | ,

vanish in £ . According to (4.17, 19) the egua-
»

tion (4.22) is eguivalent %o

. C-ﬂ.d,g’ Xz 7y ZE’ VS = P-»‘:?;*“,'?Z.
4. 23) /uftg(\‘?? a‘é’.‘*’" ""'f“‘.-qg(@xg )" :,«'g KoATy =y 72- 7L

and from (4.20a) follows the identity

3 :{:&-“ “‘525
| 4— 24—> -—/‘:‘Q(e(a )‘2{39 7‘/‘{;@(8 =05 j;/i ;Q,,&'fsv‘ » o TL-PFL

_"_‘n-

Now (4.24) and (4.23) together exoress that the
matrix



; :3}89@{ E),._; ga{ Eﬁ Kz Tyg= -~ > Q >
4.25) 1 SV IRSGEE
§
o Ty I % | | g E*"ﬁ > 7L
VN FE 0, 7%

has*a'_fgi‘nk < 7 -2 in E’K . But this is :"Lriitpc:;ss:’tblei
because (4.18) is'minimal regular in £~ . Hence
(4.20) is really minimal regular in g’g . Consegquent-
Ly & "’“‘x ¥ and likewise g g/ig caenstl'tu"te a . ba-
sis of the X, represented by (4.16), and also by
(4.20). According to the second basis theorein every
basis can be transformed into every _@'theér' bagis by
a linear homogeneoirs transfor nation and this 1m—

plies that the rank 2 of g‘wa5 &€ with re&pect +to
g7, s, Y dis the same as the rank cf § . 9"‘3
with respect to these same variables (cf. (3.16,17))
The matrlx of the derivatives of 9 § Wi‘tﬁ‘

respect to “g""’; - e ?M has the fOI‘ﬁl
D _ ;'? B g ~ M-—-fz? .
B | | R b A 7
R ; ‘ I
UL P B | . ) ,", R o
4‘26) . Q= omm e 7 -;E’g,‘,f: LT T T - Mf
X .U O Bﬁ*?gﬁff _ aMgR+r
&= '?’2,,.??2_)? : i N = i
I O-- - -~ - - - O e . - a“fgﬁﬁm*]
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Now if one of the derivatives of the 9"'{‘3 with
respect to g"e*i--»ag“ were # O, this matrix would
have a rank > & . Ccnsequently all these deriva-
tives have to vanish and that means that the 9’@
contain only the variables g"‘*”*"ﬁ .., g7 . Hence
the equa.'blcms (4.20b) do not contain g g v ,g’?’
and the rank of this systen has to be =m.7272_. X
because otherwise the rank (4.21) could not be '
72 _727¢. . That proves the first part of the theorem.
The conversionJis}tri?ialg

Now De

4.27) = 7‘3"‘(42“)

) parametrlc form of an Xmll’l X, , minimal regu—
lar in "7Z . The equatlgns

4.28) g . B (%) =0

constitute a system in the 72772 variables *g"'ﬂzf,
minimal regular of dimension ». in ®, 7%, The
rank of this system with respect %o the® 75"2 18 77z,
According to the theorem of elimination VIL there
exists a system of »z_.7» equationsin the £~ only,
minimal regular in g"“ . This system is the null
form of the X,,looked for.

If a system of 7z egquatlions



_ | . o
4'29) gK:B 6802:) ; Or:.ﬂ’\,'--‘.,‘&\
C e e o o
1s given with functions 737 analytic in 7 and

.o - . o
if the matrix of

4.30) é;ﬁ"f@%fék s &= N, oY

has a rank - <M 1in an ’?Zﬁz 0") the rank of the
' o
aystenm

4.31) g!&:“ éif(yzc’z):o 3 Tt= A, W

in the n»A7 variables £%,7% % is 7o , and mz is the
rank with respect to the variables '»Z “ in an
E) ; ETEBRY). |

Aoccrﬂlnb to the theorem of Ellﬂlll’l«u”ﬁlon VII it lS

pogsible to derive from (4. 31) a system of at most
7%~ eguatlons. 1ln the g*, minimal regular in
E’x .  fo 2 suitable interchange of the indices x it
can be arranged that these equations take the form

This is a parametric Torm of an Xmin X5 » minimal . «

regular in E’ . Therefore we call a system of the
form (4.29) with functions 3" analytic in en
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3‘22(72 W) and with B; haV1r1g the rank m«cM j.n

that region a supermumerary re 1lar arametrlc

form of dlmension 7. 1T & supe‘rnumerary regular
_parametrlc form of an X, is glven, a, mlnlmal re— |
gular parametrlc form can always be Dbtalned by

| replaclng M 772 Well—-chosen parameters by constants*

| 5. Irregs_g_.lar Zstems of egu_atlolsj_)t

In order ta deal with 1:r'regular systems we

neec‘i sone results of the theory of functions of__“
_s,everal varlablesz); If an Xm 111 an :?Z(g) 18 '
‘given by a system

o7 = “\3"‘3“4’:\;_-%

v

we know that this system is minimal regular in
all points in 3Z(§") . 1T now'??f/g’*) 1s enlarg-

ed but always within a region whefe the functions

gz"a‘&

System (5.1) is no longer minimal regular. If

are analytic, points nmay appear where the

?f:’ is such a @0111‘1: and if a system exists equl-»:
valent to (5.1) in an ?‘ZC“?@ and minimal regulax

—— “#“—ﬂm“““““” el -~ R T R T

L1) Of.. P. P. Ch. II Txerc 9 and 1g._We give here
a more elaborate treatment - |
2) CE. Behnke and Thullen 1934,2.
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in g §’ may be looked upon as an ardlnary poin
of the enlarged Xom » But 1f such a system does not
- exist, é’ is said to be a boundary point of the X,n.
An X, w:Lth its boundary points lS called a cc:mgleted

X, 1) | )
| E.g, the system x?.¢, y=o0 ‘inh).’g is not mini-
mal regular in the point x=-0, ¢y=0 , but it can

be replaced by the minimal regular system Xx=0,¢=0.
The system x2_ y3=0 1in X, is m:.nlmal regular in all
null points exce;ﬂ: the point x=« O, 4=0 and ‘bhls poil
is. a boundary point. Each of the two brachnes of the
curve forms with this boundary point a compieted X, .

In the ’bheory of Tfunctions of several varlables
the fellewing theorem is orovedg

o | - Theorem VIII.
If g’c isa null point of the equation
- — - .

kYo —

5.2) F(E") =0

with a flmctlon & analytic in g the null points

S S o S e | e

:Ln a sufflclen‘tly small Q‘Z@’ ) cclnc:z,de with the

i e oo i i

PGll‘l‘tS of a finite number of completed X, °% through

RN T W . WP I TRy T ey

£ 4in- %ﬁg )« E is either an ordinary point
o <&

or a boundary_ gornt of each of these X, ,°>g,

,—i-ﬂ’ﬂ-ﬂ-##ﬂ*“ e v i, W Sl .

1)Cf. Behnke and Thullen 1934.2, p.25. Our boundary

points are his "uneigentliche wesentliche Randpunk
2)Cf. Behnke and, Thullen 1934.2, p.59.
| _f

S
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Ihis theorem may be used to prove the theorem

P

Theorem 1X
If g"is either ordinary point er boundary point
of a compl cted@X, and also of a completed X g PSY
in *Q’CQ 2%), the ewnmnon points of Xp and XYy in a
sufficiently small ?ch’v eoincide with the
peints of a finite number of complebed X.’s;s=prgz,
*c ey p for prg-n>0o and $= o0,---, o for
- |

LA+ g-72 X 0O a f"t is either erdinary poing
or boundary point of each of these X’ s.

PI‘ G Of a’
Be

5.3) E = @) 5 a=nsuv

a parametrie form of Xp with functions /fanaly—
tic 1In -?ZC: satisfying the equation
o e

~ kK kS @

’ = o= ANyt ©

5.4) g 4 c:»z ) ; .

and minimal I‘e’gﬁlézz’c‘ in some ';po:‘izzt ”Zd of Q‘cﬁﬁz Q); N
7 O

Be

5.5) FHE)=0 5 o= axn,

gzﬂﬁ.

 null form of Ay wWith functions analytic

g " * 4 : - » x
in £° and minimal regular in some null point £
& <
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of az(g"‘) Then the functian

5.6) - 9 d\am(? a.) de:" o O ’\6{9 (‘72 a))

is either identically.zero in the. 7% or analyt’ic--'in
72"2 . In the latter case according o tae@rem VILIT
the null points-. of g‘f’v’”‘ co:um:*.de Wlth the po:z_nts of
3, flnlte number -of . co&npleted X,o..‘ s through- -)Z
in the, Xe' of the 2% . If gc‘*""'\ is 1dentlea11y
zero we go:on with- co,%""‘(d If g"*f*“(vg"‘) ik not
1dant10a11y zero and if S

L} Tt

.L* ‘ “’L ’ f - " l." .- . x L-.'. . - -. ..1. ﬂ. -L " -
5*7) '72’:{': @a(gﬁ) ; 61*:: J\fﬁ s & = 3(.\?“(\‘){
with
5.0 AN Y 4" f,:z.") '. f
2 ) ZZ - (é*' (:;g

is'a'parame‘tric form of enéféf'the X,@ 7 g W:Lth
functions @ analytlc in €2 and minimal regular

in some point ?a of 35(’3 a)

5.9), &‘fo‘v“"m(ga.) a’ef D\,%me/fv (@a(ga))/z

; the-functlon

is either identically zero in << or analytic in
’?a . In ﬁhg 'latfcer cesge _all null. fp“'Oin_ts of &fc"m‘

o . s :
coincide with the points of a finite number of

F

completed X o 5°s through $% in the Xg-, chosen.

| | e .
Going on in this way the proof is Tinished after a
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finite number of stens.
Now it is possible to prove the theorem

Theorem X

1f a system

5.10) T E ) no 5 cr=ns-rcsW

with functions gfognalxﬁ%q_ln the null_polnt
| g""} is irregular in g the null points in a
sufflclentlx small ﬁtfg’v coincide with the
points of a f%ggﬁgwpggbgy_of completed X . s;

S = Oy7Ts = ~o72-7 & g ig either an ordinary

point or a bouﬁdarx point of each of these
Xg’s |

Proof. According toc theorem VIII every

equation of (5.10) represents a .finite number

of completed X.,_,°8 through ;K. Hence we get
all null points if we choose in all possible
ways one of the completed X, _,'sg of each equat-
ion and determine for each choice the intersect-
- ions of these W Xm-7 8. Repeated applibation“
of theorem IX leads then to a finite nunmber of

gs’sx; S= 0,7, +,7t-7, each of them con-

taining § elther as an ordlnary point or as a

boundaryp01nt o - | - 8



§ 6. The local € 4 1)".

If
6.1) E = f (")

1l1s a transformation of % » by differentiation
we get ¢ )

6.2 a'g L Ar cz'g A?“”"’“"’”@ g’ Deé@*)#a

ané-fygm this3it leleWS?fhat tle;pseudo-groupﬁg§
indugeS;in;eve@y;point;ﬁhﬁﬁhe.SQ@Clal.afflne group
C #o (cf. § 2). The centred £, of this group we call
the lamik_f}p_jxgthE‘point considered. To every
point of X, there belongs a local En . It is usual
to identify the centre of the local &,, with the
point of the X, to which the &,, belongs, and to

call 1t the contact point, In differential geometry

sometimes the &, in B* is identified with an "infi-
nitesimal neighbourhood" of £* in the X, . This is
not in any way correct but in a few cases it may have

. ‘ 2
some heuristic value ).

iyl DU P iy S S sl Tt el e S onn et T S AR s

1) gf Schouten and Struik 1935.1, p,‘65; P,.P., Ch,II
5, | |

2) If an X 1s 1mbedded in an» ?,a, y N> the 1o~
cal &, of a point of Xy may be 1dent1fleé{ with
the tangent &, . But a difficulty arlses here,
Two tangent g‘ >s in different points may inter-—
gect and this has to be ignored because the local
E.¢0f two different points have nothing in com-
mon and are wholly independent.
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In every local E;lghmﬁtltIES may be introdu—
ced. They are distinguished by the behaviour of
their components under the transformations (6.1).
This behav1our is called the manner of transfor-
mation, We only'mentlon a fTew cases, useful here—

afterq)
P Centravarlant vector v X
6.3) vrL Ak

The geometrie image is an arrow in £, .
2. Covariant vecbor -,
6&4‘) ’w)\ = Qaf "EU‘A
The geometrlc image is a system of twe narallel

87L > ° g oliven in a deflnlteuuréﬁr.‘
To every coordinate system (k) in X’ there

"belong in every'pclnt*n.wontravarlant &m@ 7 Qo=

Y g i TSl T U i il

Varlant mﬁasurlng Vectars with the components -

A T A, T AL A Sy _ | Sl s

- '- o . "\‘ 2)3)
ey Koo K K 3 K D
- 5‘?2; f%-"é;é‘ 5 JEA:ﬁ Iy
13 6r. Senoaten and Struik 1935.1, .63 Schowten

3938.2, p.2; Schouten and v. Dantzlg 1940, 1.

Dorgelo and Schouten 1946.1: P.P.Ch.I. § 4,
Ch. II § 5; Schouten 1951. 1, Ch.II, IV.

2) We use the sign & to expre?s that)the'valldlty
Pet.0
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3. Contravariant p -vector 2%/ Xp

¥

; . K, ... K . .
‘Z’-.K?ﬂs-— pmﬁ ,?‘ qu 7-—'.—: p
k’ - K
z -~~~ %p

This quantity is said to have the valence o and is
alternating in all its indices, viz. |

6:6) vkr.-‘#xpzv[k?.‘-ﬂ:é]- . i)

sl Syt SNy S g P cel R WY NI T P lusls i S Ayl S

footnote 2) continued:

of an equation is only ascertained for the coordi-
nate system or coordinate systems that are uded in
the equation. Hence for every equation with =
there may exist coordinate transformations that do
not leave the equation invariant.

footnote 3) of preceding page:

Jf 18 called the Kronecker symbol. It is defined
as follows:

JK_ 1T for k= A

AT O for xeA

A is to be considered as a set af 2 scalars, hence

1t 18 not transformed at all with coordirncate trans—
formations.

1) vl %pl 55 the sum of all terms arising from
permutation of the indices, the terms with even
permutations of «;---kx, being provided with 2o
+ 81gn, the terms with odd permutation of a,---xp
being provided with a -~ sign, and this divided
by the number of terms (viz. p!). T



o= A1 -
A p ----vector ig ealled simple if :1.1: is the alter-—
natlng produ_ct of p Jectorsﬂ . |

6,7) :.. I';Zj;-k-;_-‘xp _ [ﬂ:‘{ :‘_é}_ 7

N.a.s. conaltlons for a p ~vector to be sﬁnple
are, as can be proved, | . |

6.8) ke ke g K Ap Lo
The image of 'a simple cdrirljr_a.variémfc’.”;b.i-%vector

18 a part of an gp with a 2o —-dimernisional screw
sense 1n it (1nner orlentatlon) If (6 8) is

valid the % ~"%Xp can be used as homcgeneous
contravariant Grassmann coordinates of the

€p s through O . A p —vector has (5 )indepen-
dent components and an €p through O Qanbe fixed
by ,o(n;pj numbers. He’i{cé“ a ‘_Sim}:_:}le. Jo —vector |
has pf7-p)+7 independent components and among
the equations (6.8) there are just (:’:)ap(?zup)n
indevnendent ones. They will be determined here-
after.

- ]

4. Covariant g —vector Wy, ... '“»cz

e e e A .\ : '
Wt A 1o Ag
ARy = /f? Py wa,,._.,,;cz

A1l that has been sald under (3) about valence,
alternating propérty and szmple contravariant
P —vector holds mutatis mutandis for covariant
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p-vectors. The image of a simple covariant
¢ -vector is an 7 ~dimensional cylinder w:Lth an

(72-7 )-dimensional hypersurface consisting of

oo % " parallel 8,1 -g s provided with a @ -dlmen31ona_

screw sense around it (outer orientation). The com—

ponents ot simple covariant ¢ -vectors can be
used as homagene:}us covariant Grasumann coord:z,nates
of the 8,2 sthrough O .

5. Affinor of contravarlant valence L aﬁ.d

csvarlant valence o ) s €.&.
pm ‘:/QT*"“""""/“. PEX
= Mxane o3 P25 g1

An afflnor P A renresents a homogeneous 11near
transforma'tlon in the local g

f/k: OJCA I."A

A special case is the unity affinor defined by
S AL E S _
correspondlng to the 1dentical transform&tlon,

T By

1T the components of a quantity are given
a8 functions of the gkwe get a field. If the guan-
1ty is only defined over an Ay imr. KXrn s The X, is

called the fleld reglon andm 'bhe field dimension.

1) P is the number of upper 1nd1c:e8=
g the number of lcwe&r :Lndlcesﬁ,
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A fleld is said to be analgtlc 1nw§ if 1ts comr

panents with respect to any allowable coordainate
system (k) are functions of the g~ analytie in

Eﬁc,,QV1dently analytlclty of a field 18 1nvar1ant
for all allowable coordinate transformatlons.

1f a set of quantltles with arbltrary'valenm
ces ;s_glven, each carrylng an. upper (Lower) in-

dex < , all other indices can be5replaced by the

values belonging £0 them.(fﬁl.ék by g-*~,ﬂ.;

A" by 7.,  ete.). Then we get a set of A
contra (co-) variant vectors and the nﬁﬁber of
11nearly 1ndependent ones among thew is called
the Kﬁ.urank of the set., 1_; Thls rank 1ls inva-

(R W—— il o il A il

riant for all allowable coordlnate transfermathns,
- The rank of a quantlty Wltﬂ valence 2 1l tuae
same with respect to both lﬂdlC€u and equdl to .
the rank of the matrix of the components*-
BE‘%-tﬁe«K'-fank of a given set of analytlc .
fields in an 3@ﬂfk) If this xank has its maxi- .
mum,value Zmpin E’ all (z+7)—rcwed subdetermi~
nants ol the matrlx of the vectors used for “the
determination of z vanish in £ .an-dfat leagst one
”;t:ﬂrewed subdetefmlnant 18‘2 O in thls point.
Consequently there exists an ?T(E') where. the
K —rank has the value T,y 1in every pqlnt Su;h L
a region is called a region of constant if_wrank,-
Thé suédeterminants being analytiec, the K ~rank
mast_have the value Z,, in every reglcn of constant

A sl il SRS S iR sskebuy: g

1) Cf. Schouten and Strulk 1935. 1, p.19 P P. gh I




K —rank because an analytic function 1s identi-
cally zero if it is zero in some region however
small this region'may be., That implies that the

e

points Where tcfzmnever flll a region of X

§ Te Sectlon and reductlon”.
The simplest set of imbedded X,,,°s in X,,
is given by equations of the form -

s 1) ES-cSi0 gmmire,m

with -7 arbitrary parameters c? with respect to
an a‘fbitfary allowable coérdinata”--s‘ys‘tem; These

- Xon’s are wvalled coordinate X,,’s oftk). Every set
of 0o ™ Xm’s in an a‘z(g"f) that can be written as
coordinate X,, & of some allowable coordinate sys-
tem is called a normal system of X,,°¢ . Two diffe-
rent Xs;’s of a normal system never have a point
in common and through each point of the region

considered there passes just one Xm of the normal
SYS'@EH}. | |

- ¢ The m"“m'X?ﬁ"s of a normal sys‘tem can be
considered as jfpca._iﬁts of an (ﬂ-m)—-éimensional mani—
fold. If the system is written in the form (7.1)
the 'C’&)’;’gcan'be used as cebi‘dina'tes in this manifold.
The pseudo group ﬁ induces in this manifold the

pseudo group of all :anertlble analy'tlc transfor-
mations of the & ° xleavulg 1nvar1ant the g 30( 7,*“-,;??1

A ST W gyl L e g M WA N SNy e Sy ERNp Sl

$) Cf. P.P., Ch.I'§ 9, II § 4, 7.



= 45

Hence the manlfold is an X, ,, . We call the PTO-
~ cess that leads to this X 1o the reduction of |

. s y

- Xy with resgect to the glven no_gmg}.ﬁ system of |
Xm S . o

NOW be

712,)‘ G (gx):O o W m AOL A gt
a minimal regular null form of an Xm_ an;ii
7.3) g5 BK(’IZQ) ; @ = Ay -y oo

1its minimal regular parémétric form. In every
point of X, there exist three local affine spaces
1. the local £, 0of the X, |
2, the « --—space, vzz. the local gmof the Xm,
3. the x —-space, ‘viz. the gﬁ_mof the index &X.
Thése local spaces are connected by the connecting
quantltles Bk and @ s With the relation
BrCrE e,
Every contravariant vector w % of Xy COTT €S
ponds to one and only one vector 2 “of the X, :

7.4 | Tl 2#‘2_8;'

gl PN iy AV ey Bl g SRR, st SVa TEg ekl g e W

1) Cf. Schouten 1938.1:; Schouten and v.Dantzig
1940. 1. |
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These corresponding vectiors épar; an E’min the local

. &, and this &€,, can be identified with the « -space.
After this identification we call the &,,,the tangent
&, cf the Xmln the point considered and we look
upon v Xand v%as two different kinds of compcnants
of one and the same vector that may be considered

as a vector of X, and as a vector of X, as well.

This justifies the use of the samc-kernel letter o
in (7.4).

Every covariant vector w of X,, corresponds
to one and only one covariant vector ‘Z{{‘g of the X

.. 8 ; =t ' - Il
7.5) UL = Wy //85
We call ’wé the section of 2oy with the X, s . The sect-

ion vanishes if and only if the' (»2-7)-~direction of
LA contalns the tangent E s«

Bvery covariant. vector: wy, of the x-—gpace
corresponds to ome and only one vector @, of thelX
7.6) w}t:—'wy@;{s’ T
The. (igz,%;v)y--dir@ct’iens of the corresponding vectors
ccntain all the tangent E. . If the local £, is re-
duced with respect to the’}nofmal sjrsﬁem of a}.l‘g?;z‘jg
parallel to the tangent Erp We cet an & -2 and
the corresponding vectors pass into-covariant-vec-
tors of this gyg_..,-,;-z,:-. "Hence :the x -gpace’ can -be
identified with this Esi. . After this identifica—




Jar -
’clcn we call the é‘?n 72 the ____;z-- E’n-m of j;he Xm
in the point con51derad and we Look uponfwm‘and
w,, as two dlfferent kinds of com?onenta of one

and the "same vector that may be cen51dered ag.a
vector of X5, and as a vector ef the by-gm.m
!ThlS Justlfles the uﬁe of thc same kernel letter
Ca0- in (7 6).

Avery contravarlant V@ctor'v~ of )gzcorres~

'f\-.‘

ponds to one and only one vector-v* Gf The

by"‘ 8?2"7’?2 4 x'-’ s

s

7*7) f’U"x:_::C) ‘U’k 5 x;—im*«,--»,,@

Je call o™ the reduction of @~ with respect te
the X;. The reduction vanishes if and only if
% 1lies in the tangent &.p. o

In the same way co- and centravariant p -vec—

tors can be dealt with., We use’hereafter the scc-

tion of a covariant q—rvector Ury )\ of Xn with
| ‘ 'f g .
ar X;za '

7&8) fw,‘g’,.._,éq = 8"6 ....8.8 m ‘_‘aq .

The notion of reductlsn of anikf can be used
to give a geomamxwrlllustratlon of the theorem
of elimination VII. If the X, is Teduced with

respect to thse normal systam of )@, S

. 7’9) . | §M+7 C’C?.??St ...y g UC?}?Sf
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we get an X,,_ 4 and every Xm"-in X3 o having 3Just
an X¢ -ixn common with each of the X,, 's of the nor-
mal system, is reduced to an Xm-.,a‘ in this X‘:zz,'_M .
Now the equations (4.16) represent an X,,and this

Xsp i# 8lso represented by (4.20). (4.20b) contains
only the variables g”wﬂ ooy, ™ and consequent-
iy thijs system represents an Xm.. Mo 2 1n the

: Xq'z,,y‘ of these variables. Hence  §s= A% and
this peans that from the equations of an )Gnln;)(
just 72-72- R equations in Z7 ..., 27 ‘can bé
deduced if and only if the KXm has just an Xu p
in common with €ach of the JX}fjs (7.9) or, in-:
other words, if and only if the X, reduces to an
s Xon. m+®  if the Xy, is reduced with respect
to the normal system.(7,9}

A

’§.ﬁ§_-“@ecg;ggc>§1’glon of g regular szstem accor—

ding to Kahler
A subsystem of a regular system need rmt
be regular. If a rco"ular system contains a regu-—
lar subsystem the following theorem holds*g)
Theorem XTI (Theorem of decomcosz_tlon

of ‘regular systems) *

; Let a system of M cquations
. B VW ]
8.1) & (g ).-.--o R TENCPRTN

iy yiesiy S gl peie gl fel iy S mﬂ--ﬂ“-ﬁ-*—

1) Cf P.P. Cn. II§8

2) K&hler, 1934.1, p.30 uses a part- mf this theorem
without proof.
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analytic in the null point EF,
. ikl > \ T e el Sl el O

- _' Lt o et 4 M hi:‘;_ * w ".‘-: & LU . | .

contain. a 1{:‘_11_bs stem ’ij AN equations,. regular . .-

with functions &

i i A

of dimension 22’2 722 - A" in gk .
q*f 4.' . . o a . . 2
11, using th\.e_‘ cxigstence theorem of implicit

. i e M T Sl 3 o S e B

functions VI, we solge 7.2z’ of. the £% from these

i - .

N equations as functions of the other »n‘ (here

TR e A i bl o AL AP, . JELE

called g"“’ ) and if these solutions are intrgduced

. ATy TP T+ S Aol el T+

into the remaining AN A egua_;t;ﬁns of (8.‘!%! the

S g | o I ST - A ——

? o

~arising A, A7 equations -in the BT constitute a . -

Mh-—‘d——%m

regular systewm of dimension =z in ;’“ if and only
if the system, (8.1) is regular of dimemsion 7 ..°

}E g}c ‘
o

Proof. By interchanging the indices o it can

‘always be arranged that .the equatiors
L s X , '
8.,2) ; g‘. (E,_)'::O s O = ’»\g...._-:}%f K

constitute the segular subsysteém of dimension me’
and "

LY

C';';w# .A'-‘ . .. ff. z
5.3) TR0 atean s

a system equivalent to (822) and minimal regular
in &?K + By interchangingthe indiae*s_,xr*if: can al-
Wa,y:::_ be arranged that the g? s =LA, - > 72 can
be solved from (8.3) as functions of the g“;

N A (A



8.4)  G¥E") G‘a’eé’g FHED =0 Of-n;iw;m’ ;

(8.3) and also (8.4) represents an Xy in Xi
which the § ¢an be used as goordinates. Substitu-~
ting the solutions (8.4) into (8.3%) we get a system
of the fafm ‘

0.5) VTS EDosrin s

TLzAyene sy

that reduces itself to a s-ystem of /v.../v" equations
8?6) w‘ﬁ(’?m)zﬁ N Xé’?:: ‘\&’%ﬂg**‘,,“;_oc= ?’,***,‘?‘)’il
because the #  ; oz’=,---,W vanish identically

in the g% . |
By différentiation” of (8.5) we got

+

8.1 W = QF Tr (0 F oy T=(0F “)A ""Q; %f )
- Looking upon (8.4) as a paramctric form of the X

with the parameters £°, the contravariant connect-
, . ~ K
ing quantity B, is



Hence (8,73 can be written
o A ol 4 | , | |
8;9) 0,352" = 18/3 5‘3#‘ 3/3::?'3*-‘??2 3 C‘t*‘\b""‘;“

‘and this equation expresses that for every value

} s

of o the covariant vector 8, Hx ig the sec-
tion of the Covariant wector @A?C‘? with the X,

il ey R T

ik, potiuliey AL e rwt

Be n-s the rank of & * in g""‘ . Then in
thls point ‘the A  covariant Vectc}rs & " FRZSANEAN

span an $ -dlrectlen and this §- dlrectlon has
to be centalned 11‘1 the tangent E’ fof the X
”represented by (8. 4) because (8 2) is a subsys-
tem of (8.1)., Prom this sp801al position of the
s~ direction it follows that it also must be
spanned by the &/ sections 9,3::92""’& of the &, 3»0::
with the X,,. . Hence the rank of 8¢# % in £
has to be 7»’-s . But the aﬁﬁﬁw’being zero the
rank of @géf'g in g’ is also 78 .
Now suppc;se that (8.1) be regular.of dimen-~

sion 7z in :‘é’ . Then (8.1) represents an X,, and
S=72 . This X, is represented in the X,,/ by
(8.6). The rank of %9&”0‘ in g’ ig 72~ 72 and

consequently (8.6) is regul{zr of dimensionm in

° Conversely, if (8.6) is regular of dimension

772, 1N 50‘, é?i"’ghas the rank 72 -77t. 1N §’ . Hence
* $' 7 (8 6) ruoresents an Aoy 1N sz‘ ané this

same X??z.-ls,. represented in X5 by (8.2,6) or by



| dznates in an Xp,in X,

-. 52 -~
(8.1), equivalent to (8 2,6). The rank of §,& ¥
is 7 -m and consequuntiy (8.1) is regular

AP :'?,,_;-' . .'&
- 1 o
§ g, Subernumararz cocordinates ) .

The g’ can be used as supernumerary. coor-—

2) Then there exlst 7T - 772

,1ndependent relations betwe&,n the g viz. the

equa.tlons of’: a mlnlmal regular null form of the Koy

and fhe pon.nts of the X,,are in one-to-one corres-

pondcnce to the sets of values: £” satisfying these
relations., - | | | |

. o 'The Kompgeneeus- coordinates 1n cordinary
projective gecmetry represent another -kind of
supernumerary coordinates. There exist no relations

between these coordinates. Every 'sef.of values cor-
responds to onc point but: every point -corresponds
to oo’ set of values., ‘ ,: |

An &, through the orlgln in a centred E’

can be fixed by its ¢ontravariant Gras_smann coordi-

nates o Xr-c- K and also .by its ‘b.avariant
(ef. § 6).

- .

Y -

Gra;ssmann coordinates L0 VI S "y

Between these coordlnates the relations

| (K, - K 7o A , .
9.1) UET mv'kl; M =0 5 W[A:,,.Amwk?],%,/(mrﬁ

i

“’__l“ -y “m-ﬁ -—‘—-“u ﬂh-'“““”“
4 ; # bt

1)Cf Schouten and V., Bantz;lg 1935 2, P- 33 P P Ch.
G .

2)111 Schouten 1924.1 'l:his method is freq_uently used.
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exist and %o ‘every &, there correspoad co’ sets
of values,

From these examplés we seeithat there exist
different kinds of supernumerary coordinates.
Though supernumerary coordinates are very Ire-
quently used, a general theory of thcem does not
seem to exist. Je need-such a theory to answer

“he important question whether the regularity o
a system of equations recmains 1nvarlant xf supexr-

v o i ey e o, . . . K mmm*-‘ =

numerary coordinates are 1ntro&uceé (§ 10)

N The most general supcrnumerary'ceordlnates
,:m an Z’Z@’) of an X arc defined by the eguations

a> g = fé’k(?a) s =Ty, MArEAE, ) €20 1€220
9_.2) . E,a&&’zg?';’/g:.«y“w“‘

¥ 2 %) =0

‘subject to the ccndltlons o
1. There exists a set of solu’clons 72",{ of the

o
equatlons ;

gi‘(r(gff(,?a‘) ; ng:,\.";bﬂ"&i?*‘gz-rg
Wﬁzﬁz) ., ‘fg:"\ﬁ"‘&“’

such that the ¢ X are analytlc 111%@&116
the rank of ¢ is 2 in that regionj

2. The system.C9.2b) is regular of dam9381on
71- €,  in 73' {hence it represents an
X'}m&sz y 111 the A £ €, of the '?Z“ ) 3

A E, ot
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3., Among the 7t+AN’ diffez‘entials ol )
Aw® there exist exactly s+¢, linearly

independent ones in cvery point of an
T (7 %), '
&

If ¢€,=0 , the 7“ are uniquely determined
by (9.3). This is not true if  £,%0 . But if in
this latter case '7 is another solution of (9.3)
in a sufficicntly small ?Z(?Z"‘) it follows from

the form of our conditions that 'they hold for ')?
as well. Hence '7 is in no way preferred.

Every sot of values 72 satisfying (9.2b) cor-
responds to one and only one point of X, but conver-
sely every point of X, corresponds to oob2 (002 7)
sets of valucs 7% satisfying (9,2b).
The fkﬂ , looked upon as coordinates 1in an X o
in X, are supcrnumerary coordinates with £,=7z-7t 3
£,=0 ., The 7m+»7 DPprojective coordinates in ordi-
nary 7z -dimcnsional projective geometry arc super-
numerary coordinates with €,=0 § E,=7. For the
- Kr---%m  ag coordinates of the 8m’s through the
origin in.a centred &, we have ¢, :(;);fm(n_m)._ 7 3
Eo=7. g | I
in ordex w“'to pProve that these latter coordinates
satisfy the conditions 1-3-we introduce non super-
numerary coordinates in the Xm(n ) of all gm 5
not having a direction in common with the coordinate-

gn_.m of the (afflne) coorélnates gm"L? ce e, ?
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in &,, . For all these £,,’s = 7-" "7 4 o and

E5 ;€ can be usced as coordinates in cvery one
of them. If this has been donc the contravariant
connecting guantity '

- < % B ' .
3.4 B/:? = %g’ﬁ s /2T,
- satisfies the equations
9¢5) '/“3/3 == 65;3 sy Xy fB=Tye-e 3772
] ZBg S | _
and _t}.'le ﬂ 3}‘3:?;“‘."3772 ; g“—-’: m'f‘?‘j"'}n ari?
the non supernumerary - coordinates. looked for.

The g%n_being spanned by the »z contravariant - .
£ S . :
vcetors 3}. st "y Bmwe have

S—

0.6)  miAR. gtml x p
P 772 a7

and oonsequentlyh

B ¥ Z"‘?"“/g“?cgf’g?‘f”-m ) |
9‘7) Bfa = Wﬂ;?-«m - ;_» '}”3:?5"'-*:777— s
| - | g:?'?’Z'f‘?'ﬁ-«.ﬁn
and
| [
9.8) TR Xerg o - X o) 8;?’, .. gﬁs]p’“'-m
7 Xe



agﬁﬁwgﬁoqnzeven permatation

Gf 7-5"."3??2..5.

by means of which all componcnts of 2 %:---%Xp not
occuring in (9.7) can be expresscd in those occur-

ing in (9.7). To this end (9.7) has to be substi-
tuted into (9.8). Thenall ecquations whose left hand
sidcs contain a component occuring in (9.7) are iden-
tically satisiicd and the other (ﬂ)._wz(n__m),,y cqua-
“tiond form a gystem minimal ruguLar in all its null
points because every onc contzins = variable not
cccuring in the other equations. The system obtained
in this way is e&ulvalunt TO

9-9) W'[K?“*Kmvlz‘?-*,,ln Lo

and repraescnts an Xm(n_m)ﬂ in theX@i) of all

v Ko fmygith v T - P"% 0. That implics that (9.9)
is either regular or scmiregular., In order to prove
that (9.9) is regular in all its null points it has
to be proved that the rank of (Qfg),ls<%w)nﬁnﬁpn@L7
in all null points. Among the equations (9.9) the
following cegquations occur:




vl TR 8% X

‘zrﬁ"”mvg’/??g3“'&m o
9.10)
P T 2, T8 By X - X
‘Z}.-[ L}\ ?_'/ .2*; ??;,772_ T~FRAT ?:?ZEQ
For . <TZ,

ﬁﬁ--«mvgzjgz” S 7

=0 for 7.7 2 772

The flrst Sct of theso equations is idcntically
satlsfled I

7--- ‘é,-fg’: 2.7 R T T T AR S8 S SR )

(7e+7) 1 = SO Zhea ria = O

L ]

The sccond set contains just-(ﬁgﬁv(;zg) cquations
and each of tham.ccntains just onc of the. compo--

€. €, & . X, . .
77737 Fﬂ;not oceuring in onc of -the

nents U
others and ne Comﬁonhntg with more than two in-
dices ? . Accordlngly the differentials of

the left hand sides of the equations of this set
are linearly independent. The third sct contains

just (‘?Z;m) (mma) ecuations and cach of them
contains just onc of the oomponcﬁts-‘Zf%%%m‘?"“a{m
not occuring in onc of the ofthers and no compo-
néﬁts'with.msre than three indices % .. Hence the
differentials of the left hand sides of the equa-
tions of the second and third sef a:ﬁflin@arly
indevendent. Procecding in this way we gc¢t. at
last (:z)_. me (-2 ) .7 -equations with lcft hand
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sides whoge diffcerentials are linearly indepcendent.
That implies that the rank of the system (9.9) is
(:;)_ m(n-m) .7  and that consequcntly (9.9)
is regular of dimension i (72-72) + 7 in all its
null points. The condition o 7- "7 x 0 drops out
because (9.9) ig invariant for all affine transfor-
mgtions of coordinates.

If now the 2 %7-""%7t are locked upon as
supernumcrary coordinatcs in the A, (r-m) of all
ccf’m’S through the origin and the Bf as ordinary

coordinates in the same X-m_(n_m) , (9.7), (9.9)
play the role of (9.22), (9.2b), further 72z (7-»7)
the role of 2 and (::;) the role of n+€,+-8, , From
(9.7) we seec that the first condition is satisfied
for 2+’ "™y 0. (9.9) being regular of dimension
m(rn-m)+7 in all its null points, thce second con-
dition is satisfied with €, =7 . The third condition
is satisfied with 7»nn+ ¢, = (g) ~7 because,' the right
hand sides of (9,7) not containing any componcnEs
with morc than onc index ¥ , their differcntials
have to be indepcndent of the differentials of the
left hand sides of (9.10). |
Not only the ¢ 7" -%p but also the B.;A:7,--,m
are supernumerary coordinates of the same X,pe_ 7))
with £,=2%; £€,= 0 and the samec holds for the

7. components of 772 arbitrary vecbors ‘zfﬁ vor e U
0,

A,
spanning the &, with £,:=0 ;gzsz The condition
v "% 0 drops out here. '

Here is still another cxample. Be a normal

A
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system of f{mfs in A,, given by the eguations
<2
c\r(g) ""'G ; Of'::'\-.\“"}m

with Af'garamgters C? and functions gﬁgganalytic
1ﬂ_326?f) " chosen ih such a way that there arc
Justfn.?ﬂ; functionally indevncndent oncs among
them, IFf the X, is reduccd with respeet to this
n&rmal syétem, an Xg_»7 &riscs and in this
X}ggﬂi the ©% arc sup&rnﬁm¢rary;coordinatea
with E;:N_'?a.rm; £, 20 . lnr fhc: same X?z...m
the ¥ can be uscd as supérnumerary coordinates
with €,=0 €5 = 772.

g 10, Invariance of rcgularity

S * S 1 M_H.__.nh.-._.ﬁ__’_m—

1
if suﬂurnumbrary'3001d1nateq arc introduced )Q

i, matll =P

WVe will prove thce theorem

Theorcm XI1
A system of A/ equations

e S e e By

10, 1) ?C’z’(fk)xﬁ y = ANyt s W

with functions F Tanzlytic in tho null nq_mj gk

s e . M il TR e R S i i {3
be given.,
By meang of the eguations

A Teig JA Y Forr et e gy skt ek e cm Sl At S S TR

1)} BP.P. Ch. II § 9.
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g (elc(/,)zcz) g E’K(.?Z? s Q= 372"“537‘“52 3

5,_0 €,20 3 £,4€,2 73

1042 .
) 1?(72#:1) O ,w’@(;za) ', y 2= AL 53N

satisfying the conditions of § 9 a2 system of
Supernumerary coordinatcs :2‘2 is intrbduced Then the
system (10.1) is regular of dimension m in f if
amd gmlLf The sgstem

, ck | L
D) G X T ) =0 ;s air ity ves
10*3) . T GC.:-—"\J}-‘*,':,NB
o) '-Vﬁ(?za):é | Mg = AN e s W
is regular of dimension m+ €&, , in ZC’“ and this is

the case if and only if the eguations (10, 3a) consti-

VT P i BT L L St = - e S o P I Y. X I S Bl ity gl A T A e, e | T, 4, b TP, T Sl WY T e AT it B b el

te by themselves a system regular of _dimensioll m+&+&,

in 7« .

o

Proof. First we prove the second part of +the
theargm,,Be (10.3) regular of dimension -7« £,. in
ZZQ ,‘ According to our conditions (10 3b) is regular
of dimension z+€, in 72‘* “Hence, by interchanging
the incices ¢ it can always be arranged that the

cquations .

1014—) ';V-{e(?ga):t@ ;'fgr::'\:*"g%% 352.373"'372-1“2?""52
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form an equivalent subsysten of :{10.3b), ‘minimal
regular in 73 . (10,3) being regular in 93“ from
(10.3a) = subsystem can be chosen constltutlng
together with (10.4) an equivalent subsystem of
(10.3), minimal rcgular 1nf? . "By interchanging .
the indices e 1t ean alW&VS be arrangcd that this
~subsystem of (10.3a) is’

o P ,
10.5) g (72‘2):{? D L = A 4 - -.i.ﬁm-m 5JC1='?,*.-'-;'?'2.+E;%§_3

Every subsystem of a minimal regular system being
minimal regul*r, the system (10.5) is minimal re—
gular 1n-7 . (10, 4jiand (10.5) being together
Lqulvalunt to (10.3), they arce also equivalent to
the combination of (10.3b) and (10.5). Hence, if
the remaining cquations of (10.3a) are

10; 6) ?m@q):g 5 C)Z#: AL VR N -I..)\L‘_\\ ;ar 7.5";5}2-'7‘"2;1"‘&2

from the first basis theorcm it follows that there
has to exist in 32.’(?“') a relation of the form

o e ¥ &z‘;x)--a;m ARAIE
10;7) g - O{G't. g "‘L/B '51” 5 ot = oo fw\.z—'-rﬁ, ces RN G
2= Nyt ey A

Now, according to theorem VI, 7z »&, of
the1?Q'can be solved from (9.2) azg functions of
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the £ and the remaining 7
the :mdlces . it can be arranged that in some

R
10. 8) 7Z 52%9?% 72) :_'---;72«-:‘*;67‘ 5 6’:?2.1"5,7*??*;*372.;‘6,?"53

« . Hence by interchanging

If (?D 8) is substituted into (10.7) we get equations
of the form

10.9) FE)-a e 79T €Y

s Ay e avumney O m ue A Lo ey N\ ) @ = IAE AT, R EE,
and if 13:1 'these?'-ec’maltions the f“ are replaced by
e (7% we gut cquations of the form (10.7) with

vanlshlng /34;‘2 . Hence the system (10.3a) contains

an cqulvalunt subg'ystom minimal regular of dlmensn_on

M€, E, in "?'Zq, viz, (10.5), and this imvolies
&

that (10.3a) is mlnlmal regular of dimensiow

mv‘&m‘ég in 72 - | | '
,Conversk,l:;r? supvose that (10.3%w, be regular of

diméﬁﬁion‘m?ﬁ £, + 52 1in 73 TrZua by in rchanging

the indices @ it can E‘Lli«!“:zy'ﬁ pe arrangc: that

SR EYTH SEE N i }EL) minimal

(10,5) is an eguivalcocnt su®
The svstem

reogular @f dimension 77 ~&,+£, 1N 72
(10 3) is then equ’ valent Lo its f—“»"}_,zbs*i

ing of :(10.4) and {10.5), bo*h systems “eing m’ .ir_L

regular in ?Z . 30 we have only to show that  ac
£

whole _ﬂygtcm (10.4,5) is minimal rc,fmﬂ a. in » <,

Feir-tconsist-

Loy
& .

o RN

C il
.
ar v

t ¢



that its rank in 72 18 -mer€, . This rank can

neot be > - m+g, because the total :mz_mber Of egua~
tions is #n-722+rg£, . 1f the rank were < 7z- L AF Ep

in ?Z“ there had to exist a relation of the form
&

. C’I’-‘- ie,r &I:)\ﬁ « » 5%““.(-\_‘ p
10.10) ‘7"0;'@6*; "'/6-«@' g w =0 3 = A e o)
-6‘..‘:*. ?5 * ;‘72,7“5?7"52

with coefficients of which neitner all &°8 nor
all A’s could vanish simultaneously. From (10.10)
it would follow in 7 <

O

C“"C"zr;‘.* A | * ,‘gf C}z&“*?"'hm*m;
10 11) {g(a&-i?‘ )az_‘;@ 7‘/3{,{618‘6?&/ :Qs'"{e,:ﬂ}'”b%ﬂg
: G =7, yrEFE,

but a relation of this form can not exist because
the differentials g” and e:?f;y‘{gf aré linearly
independent in ZZ& . Hence (10.4,5) is minimal
regular in 72 and this implies that (10.3) is
regular of dimension MAE, 1N 72

To prove the first oart of thie theorem we
suppose first that (10.1) be regular of dimension
772 1n § . Then by interchanging the indices oz
it can alwavs be arranged that

10.12 ‘gfc’ffgx):o s T T
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is an eguivalent subsyst:z:u of (10.1) minimal regular
of dimension »z in g . From (10.3a) we consider the
equations corresoondlng ts (10 12)

10.13) 9“(-’22Q)::£? 2 A N T -

Now we hsve

10.14) 2, 0= (B F“ )3, % 5 cermnyeensmonn s

‘6 -_ ?3"“3'72,'}"&?7"5# -

Begides 9 g?{mf have the rank =n-72 in all points
of an ??f@;?"‘”) and o@ @~ has the ;rank 72 in all
points of an QZK)ZQ) Hence ngm must have the
rank. 7 -7 in all points of an EZ/QZ ®) . That
“implies that (10.13) is minimal regular 1ﬁ-?f . The

remalnlng equatlens of (10.1)

10.15)  FE) c0 e e

are dependent on (10.12). Therefore, if the £”" in
(10.15) are replaced by @""(’? ®) the resulting equa-
tions

or Ct; ci;?:"-:- AR T N ‘&
10.16) 77 = O > 7
9 (5) o f:z-_-;rv,'-~:,'?2.+£7752
depend on (10.13). Hence (10.3a) is regalar of di-—

mension e+ £,+ €, in 73 “and this implies, 28 We
have proved already, that (10.3) is regular of di-
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mension #x» £, in 7 <.
Pinally let Us assume again that (10.3) be
regular of dlmensa.on TRAE , 1D ;‘Z“. We have
nroved already ‘that the indices ez can be inter-

changed in such a way that

}@.17) gm?{"za):a 3 szfi:&,"*sﬁm-m :

Q= Fs v 37.:2?“5‘:;"?62

is an equivalent subsystea of (10.3a), minimal
regular in 725‘". Now we cons:}_der the equatlons "

10. 18) EHE Do ;s o

Rt

’\-\"" -;,"‘(‘u““{“{\.p

corresponding to (10.17). Then (1C.14) holds and
we know now that E)é g “  has the rank 72 -772 1N

all points of an 2757 %) and g ¢* the rank

o

7z 1in all points of an ?Z(%Ci) . Hence 3 G
“has the rank m-7»2 in all 201n1:3 of an ?ZKE"")

and consequently (10.18) is minimal regular 1n@f
Now we have only to »rove that (10.18) is eqalm
valent to (10.1). If this were not true there
would exist at least one point of é?aﬁff)

where the number of linearly inde§endght aifferent-
ials among the AT would be > 7i-72 . Conse-—

¥ has the rank == in all

quently, since dg=
points of Eaﬁzf) tlere had to exist at least

one point of éﬁﬂ??{) where the rank of i



. or | ULz Aar~-= 5\3\ p

10. 1 D,C %=, 8 T)o, 0" : 5
9) 69 (&- ) gce ’ 4 = ?’5'*’-:}'?27"521‘52
would be > -7 . But this is impossible because
(10.3a) is regular of dimension =2+ £&,» £, in ;ZQ‘.
Hence (10.18) is equivalent to (10.1) and this im~-
plies that (10.1) is regular of dimension =z in g*.
<

§ 11. Applications I. Integration of Goursat

ey, ok ik o rrw il I 7 e W

systems ‘.

In this and the next section it will be shown
that the theory of regular systems and of super-
numerary coordinates plays an important role in the
theory of integration of systems of partial diffe~
rential eguations.

A Goursat system is an arbitrary system of

scalars, covariant vectors, bivectors,..., 7.7 -vec-

tors:
. {a
Z'(' A :{:o - 7& 3 A/ﬂ
14
11.1) (2%} s X, =75 s A
{?Z-?
u“l;"*’lmf ;.{?’t-?: 7575 Moy

1) Cf. Ké&hler 1934.1; P.P. Ch. VIIT.
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We supposerfhaf‘the system of equations
11."2) -'Z“C‘-"-'Q 3 4 = 75 Ve I

o e L

e regular of dimension %, in the null point £ .
G

Goursat's problem consists of the determination

of all Xm $ 1n an 326_5"") iying in the sz re-—
presented by (11 2) and whose sections with the

quantities ZdA 5ttty 'e,;.»l:’i-("1r S ll vanish.
Such an X;zls called an 1ntegra1 Xy, ~ Of the

Goursat system. If 722z has a given value all
guantities (11 1) with a valence.>zn. drop out
automatically because in an X,,no g -vectors with
&g > 7. exist,

The natural derivative (or gradient) of a

scalar A 18 tThe covariant vector

11.3) 9y p

o .

and the natural derivative (or rotation) of a co-—

AR = Y T

ig the covariant

variant g —vector wy ... ;,
(g+7) -vector .
11.4) Q7)) YW, gy

The natural éérivativé of a natural derivative
vanishes identicélly?}{‘ S '

“"“ ”““ el g— g gy W AP il e gy

1) CL, Scheu'ten 1949. 1 C‘hﬂ IV § 3.
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H“It-ishéasily proved that tie sect
derivatives of the quantities (11
tegral - X VB,IllSh., Therefore it

take thase*natural derlvatlves to
the system, If thzs has been done
tem is said to be clssed A chrs

— ror T

ing snly of Scalars, vectors and
tionsg of these vecters ar all of
Cartan sxsteu. It beoomes cls ed
of the scalars and the rgtatlons
‘added, In the- fcllqw1ﬂﬂ We always
Goursat or Cartan éystam 18 close

Every tangent Eﬁm of an 1nte
(supernumeraryicooralna%es g’
the equatlonﬁ

Lo

11.5)

in g%
.Eﬁﬁegﬁ§lfé§ﬂz
X is an integral- &,

gral- &,
X

]

v Koo

g -

Every &,, satisfying(11.5) is called an
. Hence every tangent &,, of an integrj
. But conversely an inte-
need nat. be tangen‘t-gm of some integra

ion of all natural
1) with every in-
is convenient to
the quantltles of
the Goarsat SyS—
at Syatem.con81stmé
some @f the rota-—
them.ls called a
if the"gradlents

'of the vectors are

sunoose that a
d.,

ﬁral X' with the

f@m. gsatisgfies

A L
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Fl St all 1ntegra¢u g}ﬁ’s have to be deter—
mined. An integral- &, or 1nte§r@l point is a point
of thﬁ-gx (11.2). If an integral- £, is glven,
the 1ntegral S? S tﬂrcugh this &, flll a flat space
in the local &, denoted ‘oy FH(E,) - If "c.ﬂe i
‘mension of ;‘f’(g) is 7+7%,, there exist just co®
'1ntegral é? ’s throuﬁh.é; .In the saie way the
1ntegral :?qup.s throuWQ & glven-g' fill a Tlat
_space é%?%’) . If the diwension of éfﬁé&) is
' 67L7ff’zs%j, ' taere ex1ist Just oo CE*T integrals~
93;;’ s through &g . ' |

It may occur "b‘lat Tor all integral- 8 °s in

the 1’161 hbour;’fwou of STeiftic srlven *&.  the number
Topy " has the szie value. In that case This.

given E)S 1is gaid to be regular A chaln of in-

o Y Tl i i

tegral elements
11.6) EcP c& ¢c....c &. )
® o 7 2 ) 222 |

a - | ) . . \:} _?‘f ; :
is called a regular chain -if £, 3&? 't &gy, ATE

all regular. Tﬂe lgst ele.inu ef tlt chain is 101'

— TR Y] u-:,.tﬁn.-.-u - W i g il ol i L g, el g e R = m m

neces sam_l;g re &Egmz_ An integral- X,;, having at
least one tanm‘eat E that is last element of a.
regular chain is called a reﬁ_ﬁﬂ ar integral - X, .

2) |

By means of Lae theorem”

1) ¢ wmeans: is contained in.
2) P.P. Ch. VIII p.358.
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Theorem XIII (theorem of integrability of
Cartan — K&hler) ,
If &,, is last element of a regular chain there

wEcameir o L Tee T P TR PR PR T O e iy e Yol
q

exlists always at least one regular integral- X, tan-
gent t0 é‘m_ : |

the construction of all regular integral-JX,, °s
18 "brough“‘s back to the construction of all regular

chains of m+7 elements and certain integration
processes. - - |

If regular chains exist with a last element gg
but not with a last element E:?,,,, s, ¢ is called
the genus of the Goursat system. Hence a Goursat
system with genus ¢ possesses always regular in-
tegral- X‘:? ’s but ne regular integral manifolds
with a dimension >g . | |

The theorem of integrability of Goursat systems
1s proved by means of some auxiliary theorems. First
we need the thearemﬂ.:

Theorem XIV (first theorem of uniqueness)

If in X, be given an ih‘begral‘—)(m of the Gour-
sat system (11.5), a tangent Epm With the c@é;d;lnatei

5"““ K- - Ko and an X, - » satisfying
' ' ~ T »7

3

o
the following conditions:
1. the integral-£&,, is regular,
2. the system

1) P.P. Ch., VIII p. 359.




'2(.::0 | | ; _‘,{a: ;r’ . b%
?—Z: | ‘1;'*-3-”2"- .
I A;W 8 {?::7’3 -J/V'?
:
11@7) 'YWZ-
U > A Am
A?'-*Amv- 3 %m&“?, "3#‘3’2

Uler K p Xy

K

| ‘ e B
1S reggilar 11 f s U A5 gy
1 4 O .
3. the X, _ ~contains X,, and its tangent-

gn- Comarr . -'-LL;-I}- §K Esw——&-umﬁt one g??z"‘é |
in cormmon wilth &”(gm) g

there exists one and only one integral-X, .. .

containing X,, and being contained in X, ,_ .

The tangent- E’mﬂ in §"" of this X,,,, coin-— .
O

Fnnpiliin s

cides with the section of E’n Z and &ﬁ(gm)
N ol 2

The proof of this theorem is i‘ia'.l_thér long and
needs introduction of a suitable coordinate sys~—

Ttem and application of the existence theorem of
Cauchy-Kowalewsky.

y means of algebraic operations it is al-
ways possible to determine a regular chain

ga; g; 5 %y g} . Then by means of repeated appli-
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cation of the theorem XIV it is possible to con-
struct a regular integral-X,,-X,, - ., 'TX'}

eacn tangent to an element of the chain and in
this way a proof of the theorem X111l could be con-
structed. But here a difficul’g arises because at
every step it has to be proved first that the
system (11.7) is regular. For that vroof we need
the theorem

Theorem XV

M. St M, <o

Every elenent gp g' v ""“‘fpp of a ’i*eg:glar
chain sa:tlsfles ~the condltlon ‘ma.b the gstem

g il e o,

11&8). | . | ‘XS:::?’:-
,U—[K;"-kp 2/_}.3].-.--).;*3::'0 |

is regular of dimengien-
11.9) Mpvtf = _E«f‘zdm’/zp(p_.f) 77
* =0

in ES ke . L
ﬁIngthe' proof of this theorem the theory of super-

. nmumerary coordinates is used, The §’K,,"2)“‘:f””“:ﬁ are .

. sugernumera'ry coordinates with E,..,»p) Plr-p)-7y E,= 7

in the X?z+p(n_p) of all EP $ 1n the local spaces

of ‘X - in m(g*) . Instead of themn the non-supernu-
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mexrary coordinates §“, Bj s = Tydeag 0 3 = prdyr 2
¢an be introduced. Then from the thedtem XII i%
follows that we have to prove that thé sysiem

I"lww) zﬁ:,.-_gs B --O 3 0Ty qs

L 'f“""/gs-*fs _/C’.?‘*
: , o € ‘-{ “;{’““ s Mg
in the variables g s By With BF=8y ;a,m=7"p

is regular of dimension. Mp in é? Bg . 1T now
the restriction B;-—é\ﬁ 1is droaaed the g B‘t
are supernumerary coordinates with E.?..,a 62..0
in the same Xﬂ_,&p(n R and from-theorem XII: it
follews that we have to prove that the syptem
- (13.10) without. this restriction is regular of
dimnension /Wp ~£° in £" s 8/; « Finally instead
of the /73 the L7 eompoanents of £ arbitrary
,f_.,- By in the &, may be introduced.
With the £ ”chese form & system of supernumerary
eoordinates with £,=0 ; £,=p2 and consequently

we have to prove that the systenm

vectors

4y 2F | A ;A
1@&1'3) ZCA,__'A"S‘ 2%1_"*8?”,*3 S:O.&?;'“'ﬁp'

is regular of dimension Mp ?‘p‘z in gk, 53;,;
BNy L N

The Bk can be chosen in such a way that Tor
every Value of § +the vectors -73,\ . * 4 B"f s;pan
the 8’ of the chaln,w Then a proof by 1néuct10n
ean be constructed. o '
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§ 12, Appli'cations I, Solution of a general sys-

L. Al A e n . n il Y,y b2l Spen.

tem of partial differential eguations by

determining the integral manifolds of a

Cartan s; s_j:_ezz:gq_ ) . |

i, | yirrnminl

It is well-known that every system of »artial
differential equa-bvi@ns can be brought back to a sys-—
tem of the first order. A system of the first order .
can be written in the form

| oyl 4 Iy e | :
12.1) & é’? s 0 & ):.-.-..CJ 50L=ANy o)W\ y Bz Ty, 72
, ‘g=m+75*‘*573
o
with the 772 independent variables §“; o= 7, 772 and
SR © .
the 72.772 unknowns £ °; € =m»7,-:-,72 . Now we consi~
der the eqguations |

- L R & : N :
'12,2) o (? 3/0/; =0 5 =05 "N 5 BTy ,72 5
. & = ATy 572

fa

and look upon the ,oﬁg as the non-supernumerary coor-
dinates of an gm. in the local gﬁ_ of £~ . Thenfthe|
| f&:a ‘; are non-—supermumerary coordinates in the

). G 7 (7~ ) of all gm s in the local g?z ’g
of Xn for which =7 -2 0 .~

In this X?z-;-m-(n,_m; we consider the n_»e so=
called Pfaffians | -

.f
E

ﬂr“"ﬂ-““ww“ g S ki Sty S sl sy N

»

1) Cf. Cartan 1601.1; 1904.1; 1945.1; Goursat 1922,1
P.P. Ch. X, _ .



S oS s
3) AET-PIAET  Batymr ygemary ey

the ';'ﬁ%m(ﬁ#m) variables § P,e N The |
netions ‘"‘”%ﬁgrb/qgl)and'n.ﬁu; covarfant vectors
)(-75+'??2('?z »22.) belenﬂlrw %Q 'the ’Pfafflans |

2.3} and having tae CQPH}QI}@H"GE
lﬂﬁgiﬂg tothecoardingteaf "'- : f
;5) ?ﬂ 3 5?7 5 ,D/f gﬁ:f,w*;,m5-%{72_-_-7:?;?';,..1':5#

nstitute a Cartan systern and thls system becoumes

osed if we add the gradients of the &  and
e rotations of the vectors (12.4). R

L._I

Lach Pfaffian represents an gn*m(mm)” in

ch local _gnfm(ﬂ_m) and consequently
.6) LE ‘g__p;cfg’a.-e.-a S B= 7,2 s G s ??z-a#?}?",?fa

oresents an gn%(m_,,)ﬁ? m)—f“ie'fd in J"i‘;}"ié. ,
wrafempy Besides in the Xpumy(re.) * there
ists a normal system of oo™ Xﬂ,;. ??2.(?2 7. ?) S
th the equations
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According to our definition in § 11 an inte-
gral-X,, ef the Cartan system is ’an-‘-_)(m l;jr‘ing in
the null manifold of (12.2) whose sections with
all the covariant vectors and bivectors of ‘tﬂe Car—
tan syshkem vanish, in other words, -1t is tangént
to all &, mn p(n.m) 8 of the field (12.6). If
such .an Xm has nowhere a direction in common
with an Xn-f-m(‘ﬂ..vpzwf) of the normal system
(12.7), the g“"‘ can be used as coordinates in the

)(m and the Xm can be represented by a parametric
form | L

a) g‘t;‘i’(g“) L Xy BTy R G

b) ,5/3 jj{?a)

But according to (12.2) and (12. 6) these equations
represent a solution of (12.1). Conversely every
solution of (12.1) corresponrnds to an 1ntegral /V
of the Cartan system having nowhere a direction in
common with an X 72+ 972 (P2 =P~ 7 ) - of the normal
system (12.7). Hence the solution of the systéem of
vartial differential equations (12.1) is brought
back to the determination of the most general Iinte-
gral- Xm of a Cartan system in 72+ 7r(72-72) variable _’

12.7)
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, In order +to construct the most general inte-.
gral-X,, of the Cartan system in an ﬁz(ag‘i,o/o;)
we have first to consider +the equations (12.2).
1f this system is regular or semiregular in 2‘?&5

/f,f 1t can be replaced by an equivalent sgsﬂ |
tgm minimal regu.lafin fk"g ﬁff . 1f the system
18 irregular, by using gheorgm X, the null nani-
fold can be decomposed into;a finite number of
As’s 3 8=0,7, -, membr-22)-7. For every
)t’s a system of eguations can be fomid, mini-—
mal regular in e‘?ks /O/'f , Or in some other point
in ?Z/ngbf?)a #OC{}nsequently the Cartan
system 18 decomposed into a finite number of
Cartan systems each having a svstem of scalar
equations minimal regular . in a point of
:m}ipﬁ@ . If from these scalar egugtions the
ma;imgm number of variables fﬂpj;is golved and
if these solutions are substituted into the equa-
tions (12.3) we get a -scalar-free Cartan system.
This latter reduction may be useful sometimes
but in many cases it is more profitable to keep -
the scalar equations.,

.. We now proceed wlth one of the Cartan SyS-—
tems with a minimal regular system. of scalar
equations. Ifg*is the g’énus of the syétem and -
if m=z¢ , regular integral- ijs always exist
(ef. § 11) and these Xmss can be determined by

nethods develgped by Cazj'tan”. But if m>g there

.

1) Cartan 1901.1: 1904.1.
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exist no regular integral- X, ’s and we don't yet

know 1if there are 1ntegral-kf s at all. |
In order to decide whether there exist for a

given Cartan system integral- X, s withpwzké; .

Cartan's method of nrolongation has to be used.
We cunsider a closed Cartan system

o X T |
(g) s W= TodbTan--472

A . ' I

uy B R TR, o ¥

12.8)

€

Wy

T QS
satisfying the conditions that the system &F =0

is minimal reﬁular in § , that '*the o F denend
linearly on the *?:u;} and that the wﬂ are linear—
1y indevendent. Then if- /3.6 $ B=7,---.72 is the con-
travariant connecting quantity of an dintegral- X,

whose tangent g in every poznl, of an E?’Z’é. )
satisfies the inequality 2 7" 7% o the n.a. S, CON~—

ditions for an Xm' being integral-X,, are
hw/gk) ¢ .3 W=To#T7y: a7

12.9) 78 ’?U“A =4 ;3/;::.‘5;: ;;@:‘ﬁ;;ﬁa.-x‘)...?%

B /,3 e U ﬁaj _ N N B
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Nowﬁwe consider the X.?z_,._m(,n ) of" the ff 8
Zg and the system of Pfaffian equations

12.10) dgy_."@‘:cfgﬁ = L B Tl B mPIBAT, - P

in this manifold. Then the egquations (12.9, 10)
constitute a Cartan sys%em in this X, + 772 (72~ 7T
with the scalar egquations (12.9). This Cartan

system is called-the first (total) orolongation

of the a:given Cartan svstem. If an integral- X,,
of the vrolongation is given, having nowhere a
direction in commen with an Xn*m(n,:m @ of
the normal system

12.11) E = constart ; X= 7, W

from the <22+ (-72-7) equations of this‘)ﬁﬂ

- the fg - 7’3;', can be solved as functiens of the
E fq and this solution represents an integral- X,
of the given Cartan system. Conversely from the
parametric form (12.7a) of an integral-~ X, . of
the given system, by differentiation, we get
equations of the form (12.7b) and these equations
together‘with,(12,7a) represent an iﬁtegralﬁghmf
of the prolongation . Hence there exists a one-—
to-one correspondence between the integral- X,, s
of a Cartan system and those integral-X,,'sof the
prolcngatlen having nowhere a dlrectlon in common
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with an )’(nim(ﬂ*m_‘,} of the normal system
(12.11).

This way of prolongation iw not the only one.
In many cases it is more profitable’ to form a part-
ial prolongation by using not all equations (12.10)
but only a number < 22_2e of linear combinations
of themnm.

Now the principle of the method of prolonga-—
tion can be described as follows. If the genus of
the nrolongation 18 Z 72 the integral - X,,’s of
the prolongation can .be formed and by them the
integral - ,Xgafscf the original asystem are deter-—
mined. If the genmis of the nrolongation is <77z this

system has to be orolongated once more, etc. Cartan
has proved in 19041) that if at efch step the pro-
longation 18 »nerformed in a suitable way and if

the manner of nrolongation is always chosen most
practically, the process gives after a finite num-
ber of steps either the integral- X;ﬂfﬂfi160k6dmf0?‘
or the certainty that no 1ntegral Xop 8 eylst2)

ikl semer RN ahallh ot TR sminliti sty vl PR “““ﬂ__

1) Cf. 1904.1; 1945.1.

2) There only remains one dlffleulty,,ﬁurlng the
- process of prolongation extra ordinary points
may arise. There may exist integral-X.,.’s con-
taining only extra ordinary points. This is
not so bad because the extra ordinary points
may be treated in the same way by prolongation
and this does not disturb the finiteness of the
whole procegs. But during this proecess new ex—-
tra ordinary points may arise and they have to .
be treated in the sane way, etc. Though it is
highly probable that the whole process will re-
main finite, the oroof is not yet given.
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-y

But this is only the principle of the method.
oxr the performence of the prolongations and the
rhoice of the manner of prolongation rather compli-
:ated calculations are necessary and there arise.
" lot of difficulties all overcome by Cartan in a
“ery ingeniéus way. But the study of these invesg—
dgatlons of Cartan is Wvery dffficult1).

Here we are interested 1in tne following diffi-
ulty. After some prolongation 1t may occur that
he scalar equations of thelnew system.ne'longér‘
orit & minimal regular system. Then according to.
heorem X the null manifold consists of a finite
amber of Xc'sand to each Xs there belongs a

ystem of equations wminimal regular in soune point
f a neighbourhcod of the point considered. The
artan system considered splite up into a finite
amber of Cartan systems. l1I any one of these
ystens has a genus 2 272 this systen immediately
arnishes a contribution to the integral-Xg, s
coked for; If the genus is <»z it has to be
rolongated. At last we find that the integral-X,.s
agired are all the integral- Xm_ 8 of a finite

mber of Cartan systems each of which has a genus
7T .

. . i gl Sl Ena i WhEEE sl gpively S AN RS S

) In P.P. Ch. ¥ an elaborate treatment of Cartan's
beautiful methods is given, which is intended
to be more intelligible,
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