ON SUMS OF SYSTEMS
 J.G.van der Corput.

In this scriptum a system means always a set formed by a finite positive number of numbers $\geqq 0$. If A is a system, then $A(m)$ denotes the number of the positive elements <m of A. If $A_{1}, A_{2}, \ldots, A_{n}$ are systems, then $A_{1}+A_{2}+\ldots+A_{n}$ denotes the sumset, formed by the numbers which can be written in at least one way in the form $a_{1}+a_{2}+\ldots+a_{n}$, where $a_{\nu}(1 \leqq \nu \leqq n)$ belongs to A_{ν}. The system consisting only of the integer zero will be denoted by 0 , so that for each system A

$$
A+0=A .
$$

If W, A_{1}, \ldots, A_{n} are systems and if e is a positive integer $\leqq n$, then I call the sum
$1 \leqq \nu_{1}<\nu_{2}<\ldots<\nu_{e} \leqq n\left(W+A_{\nu_{1}}+\cdots+A_{\nu_{e}}\right)(m)$,
which consists of $\binom{\mathrm{n}}{\mathrm{E}}$ terms, an elementary symmetric function of $A_{1}, A_{2}, \ldots, A_{n}$.
For instance
$\left(W+A_{1}\right)(m)+\left(W+A_{2}\right)(m)+\ldots+\left(W+A_{n}\right)(m)$.
and
$\left(W+A_{1}+A_{2}+\ldots+A_{n}\right)(m)$
and the sum
$\left(W+A_{1}+A_{2}\right)(m)+\left(W+A_{1}+A_{3}\right)(m)+\ldots+\left(W+A_{n-1}+A_{n}\right)(m)$,
-2-
consisting of $\frac{1}{2} n(n-1)$ terms; denote elementary symmetric functions of $A_{1}, A_{2}, \ldots, A_{n}$.
A symmetric function $\sigma\left(m ; A_{1}, \ldots, A_{n}\right)$ or A_{1}, \ldots, A_{n} is a function which can be written in the form

$$
\sigma\left(m ; A_{1}, \ldots, A_{n}\right)=\sum_{\lambda=1}^{1} \quad \mu_{\lambda} \sigma_{\lambda}\left(m ; A_{1}, \ldots, A_{n}\right),
$$

where the coefficients μ_{λ} are $\geqq 0$ and where $\sigma_{\lambda}\left(m ; A_{1}, \ldots, A_{n}\right)$ denotes an arbitrary elementary symmetric function of A_{1}, \ldots, A_{n}. For instance $\mu\left(W+A_{1}\right)(m)+\ldots+\mu\left(W+A_{n}\right)(m)+\mu^{\prime}\left(U+A_{1}+\ldots+A_{n}\right)(m)$ where μ and μ^{\prime} are $\geqq 0$, is a symmetric function of A_{1}, \ldots, A_{n}.
A slowly changing function is a function $\varphi(m)$, defined for each positive m, such that for any choice of the positive numbers m and $m '$

$$
\varphi\left(m+m^{\prime}\right) \leqq \varphi(m)+\varphi\left(m^{\prime}\right)
$$

The principal theorem
If $n \geqq 2$, if each of the systems A_{1}, \ldots, A_{n} contains the number zero and if A contains at least one positive number, then it is possible to construct $n-1$ systems B_{1}, \ldots, B_{n-1} with the following properties:
$\lambda_{\nu}(1 \leqq \nu \leqq n-1)$ is a subset of B_{ν}, but $B_{1}+\ldots+B_{n-1}$ is a subset of $A_{1}+\ldots+A_{n}$.
Each symmetric function $\sigma\left(m ; A_{n} n\right)$ satisfies for each positive m the inequality
$\left.\sigma\left(m ; B_{1}, \ldots, B_{n-1} ; 0\right) \leqq \sigma m ; A_{1}, \ldots, A_{n}\right)$.

If k is positive and if a slowly changing function $\varphi(m)$ satisfies for each positive $m \leqq k$ the inequality
(1) $\quad A_{1}(m)+\ldots+A_{n}(m) \geqq \varphi(m)+1-n$
then the inequality
(2) $B_{1}(m)+\ldots+B_{n-1}(m) \geqq \varphi(m)+1-n$
hold for each positive $m \leqq k$.
Remark. Let the slowly changing function $\varphi(m)$ be monotonically not-decreasing. If the inequalities (1) hold for $m=k$ and also for each positive number m<k which belongs to at least one of the systems A_{1}, \ldots, A_{n}, then the inequalities (1) hold for each positive $\mathrm{m} \leq \mathrm{k}$.
For let m^{\prime} be the smallest number $\leqq k$ and $\geqq m$, which belongs to at least one of the systerns A_{1}, \ldots, in, if such a number exists; otherwise I choose $\mathrm{m}^{\prime}=k$. Inequality (1) holds with m^{\prime} instead of m , so that we get

$$
\sum_{\nu=1}^{n} \mathbb{A}_{\nu}\left(m^{i}\right) \geqq \varphi\left(m^{\prime}\right)+1-n .
$$

Since A_{ν} does not contain a number $\cong m$ and $<m^{\prime}$, the left hand side does not change its value if m' is replaced by m. The right hand side is then replaced by an cull on smaller number, since $\varphi(m)$ is
monotonically not-decreasing. In this way we see that the inequalities (1) are valid for each positive $\mathrm{m} \leqq \mathrm{k}$.
Let us first give some applications of this theorem: In these applications $\varphi(m)$ denotes always a slowly changing function and k denotes in these applications always a positive number.
I. If both A and B contain the number zero and if

$$
A(m)+B(m) \geqq \varphi(m)-1 \quad(0<m \leqq k),
$$

then

$$
(A+B) \quad(m) \geqq \varphi(m)-1 \quad(0<m \leqq k)
$$

Proof. According to the principal theorem, applied with $n=2$, we can construct a subset S of $A+B$ such that for each positive $m \leqq k$

$$
S(m) \geqq \varphi(m)-1 \text {, hence }(A+B)(m) \geqq \varphi(m)-1
$$

Particular cases: 1 (Theorem of Khintchine) ${ }^{\mathrm{x}}$): If both A and B contain the number zero and $A(m) \geqq \alpha(m-1)$ and $B(m) \geqq \beta(m-1) \quad(0<m \leqq k)$, where $\alpha+\beta \leqq 1$, then

$$
(A+B) \quad(m) \geqq(\alpha+\beta) \quad(m-1) \quad(0<m \leqq k)
$$

That is clear, since

$$
\varphi(m)=(\alpha+\beta) m+1-\alpha-\beta
$$

x) A.Ya.Khintchine, Zur additiven Zahlentheorie, Matematiceski Sbornik 39, 27 - 34 (1932).
satisfies the relation

$$
\varphi(m)+\varphi\left(m^{\prime}\right)-\varphi\left(m+m^{\prime}\right)=1-\alpha-\beta \geqq 0
$$

and changes therefore slowly.
2 (Famous theorem of Mann) ${ }^{\mathrm{x}}$):
If both A and B contain the number zero and

$$
A(m)+B(m) \geqq \gamma(m-1) \quad(0<m \leqq k),
$$

where $\gamma \leqq 1$, then
$(A+B) \quad(m) \geqq \gamma(m-1) \quad(0<m \leqq k)$.
That is obvious, since $\varphi(m)=\gamma \mathrm{m}+1-\gamma$ changes slowly.
II. If $A_{\nu}(\nu=1, \ldots, n)$ contains the number zero and if

$$
A_{1}(m)+\ldots+A_{n}(m) \geqq \varphi(m)-1 \quad(0<m \leqq k),
$$

then

$$
\left(A_{1}+\ldots+A_{n}\right)(m) \geqq \varphi(m)-1 \quad(0<m \leqq k) .
$$

Proof. The particular case $n=1$ is obvious and the case $n=2$ has already been treated in the first application, so that I may assume that $n \geqq 3$ and that the proof has already been given for $n-1$ instead of n.
The principal theorem, applied with the slowly changing function $\varphi(m)+n-2$ instead of $\varphi(m)$, gives $n-1$ systems B_{1}, \ldots, B_{n-1} such that $B_{1}+\ldots+B_{n-1}$ is a subset of $A_{1}+\ldots+A_{n}$ and that

$$
B_{1}(m)+\ldots+B_{n-1}(m) \geqq \varphi(m)-1 \quad(0<m \leqq k) .
$$

This implies according to our induction hypothesis
x) H.B.Mann, A proof of the fundamental theorem on the density of sums of sets of positive integers, annals 느․ 523-529 (1942).

$$
\left(B_{1}+\ldots+B_{n-1}\right)(m) \geqq \varphi(m)-1 \quad(0<m \leqq k),
$$

which yields immediately the required inequality. Particular cases:

1. If k is a positive integer, if $A_{\nu}(\nu=1, \ldots, n)$ is. formed by integers $\geqq 0$ and contains the number zero and if
(3) $A_{1}(m)+A_{2}(m)+\ldots+A_{n}(m) \geqq m-1 \quad(m=1,2, \ldots s k)$,
then each positive integer $<k$ can be written in the form $a_{1}+a_{2}+\ldots+a_{n}$, where $a_{\nu}(1 \leqq \nu \leqq n)$ occurs in A_{ν}.
Proof. Inequality (3) holds (according to the second remark added to the principal theorem) for each positive $m \leqq k$, hence

$$
\left(A_{1}+\ldots+A_{n}\right)(m) \geqq m-1 \quad(0<m \leqq k),
$$

so that each positive integer <k belongs to $A_{1}+\ldots+A_{n}$.
2. (Theorem of Dyson) ${ }^{\mathrm{x}}$):

If $A_{\nu}(1 \leqq \nu \leqq n)$ contains the number zero and

$$
A_{1}(m)+\ldots+A_{n}(m) \geqq \gamma(m-1) \quad(0<m \leqq k),
$$

then

$$
\left(A_{1}+\ldots+A_{n}\right)(m) \geqq \gamma(m-1) \quad(0<m \leqq k)
$$

Proof. In this case we choose $\varphi(\mathrm{m})=\gamma \mathrm{m}+1-\gamma$.
x) F.J Dyson, A theorem on the densities of sets of integers, Journal of the London Math. Society 20, 8-15 (1945).
3. If $A_{\nu}(1 \leqq \nu \leqq n)$ contains the member zero and
$A_{\nu}(m) \geqq \alpha m+\gamma-\frac{\nu}{n} \quad(\nu=1,2, \ldots n ; 0<m \leqq k)$,
where α and γ are $\geqq 0$, then
$\left(A_{1}+A_{2}+\ldots+A_{n}\right)(m) \geqq n \propto m+n \gamma-1(0<m \leqq k)$
Proof. We have for $0<m \leqq k$
$\sum_{\nu=1}^{n} A_{\nu}(m) \geqq \sum_{\nu=1}^{n}\left\{\alpha m+\gamma-\frac{\nu}{n}\right\}$,
where $\{u\}$ is the smallest integer $\geqq u$. The identity

$$
\sum_{\nu=1}^{n}\left\{u-\frac{\nu}{n}\right\}=\{n u\}-1
$$

is obvious in the interval $0 \leqq u<\frac{1}{n}$, since in that case both sides are equal to zero and if u is replaceed by $u+\frac{1}{n}$, the increase of both sides is equal to 1 , so that the identity is valid for all real. u. Consequently

$$
\sum_{\nu==1}^{n} A_{\nu}(m) \geqq\{n \alpha m+n \gamma\} \quad-1 \geqq \varphi(m)-1,
$$

Where $\varphi(m)=$ nom $\quad(n \gamma$ changes slowly. This gives the required inequality.
Khintchine has treated some special cases of this result.

TII. If $A_{\gamma}(1 \leqq \nu \leqq n)$ contains the number zero and $A_{1}(m)+A_{2}(m)+\ldots+A_{n}(m) \geqq \varphi(m)-1 \quad(0<m \leqq k)$,
then we have for $h=1,2, \ldots n$.
-8-
(4) $\sum_{1 \leqq \nu_{1}} \sum_{\nu_{2}<\ldots<\nu_{e} \leqq n}\left(A_{\nu_{1}}+A_{\nu_{2}}+\ldots+A_{\nu_{e}}\right)(m) \geqq$
$\geqq\binom{ n-1}{\mathrm{~g}-1}(\varphi(m)-1) \quad(0<m \leqq k)$
Proof. In the special case $n=1$ we have $\varrho=1$, the left hand side is equal to $A_{1}(m)$ and the right hand side is equal to $\varphi(m)-1$. We may therefore assume that $\mathrm{n} \geqq 2$ and that the proof has already been given for $n-1$ instead of n. The principal theorem gives $n-1$ systems B_{1}, \ldots, B_{n-1} such that $B_{1}(m)+B_{2}(m)+\ldots+B_{n-1}(m) \geqq \varphi(m)-1 \quad(0<m \leqq k)$ The left hand side of (4), which is a symmetric function of A_{1}, \ldots, A_{n} remains the same or decreases if $A_{\nu}(1 \leqq \nu \leqq n-1)$ is replaced by B_{ν} and if B_{n} is replaced by 0 . Consequently the left hand side of (4) is

$$
\begin{aligned}
& \geqq \sum_{1 \leqq \nu_{1}<\ldots<\nu_{e} \leqq n-1}\left(B_{\nu_{1}}+\ldots+B_{\nu_{e}}\right)(m)+ \\
& +\sum_{1 \leqq \nu_{1}<\ldots<\nu_{e-1} \leqq n-1}\left(B_{\nu_{1}}+\ldots+B_{\nu_{e-1}}\right) .
\end{aligned}
$$

According to our induction hypothesis the first term is at most equal to $\binom{n-2}{p-1}(\varphi(m)-1)$ and the second term is at most equal to $\binom{n-2}{\mathrm{p}-2}(\varphi(m)-1)$, so that the left hand side of (4) is

$$
\geqq\left\{\binom{n-2}{p-1}+\binom{n-2}{e,-2}\right\}(\varphi(m)-1)=\binom{n-1}{e,-1}(\varphi(i n)-1) .
$$

IV. If each of the systems A, B, C and D contain the number zero and if they satisfy the inequalities
$A(m)+B(m) \geqq \varphi(m)-1$ and $C(m)+D(m) \geqq \psi(m)-1 \quad(0<m \leqq k)$, where $\varphi(\mathrm{m}), \psi(\mathrm{m})$ and $\varphi(\mathrm{m})+\psi(\mathrm{m})-1$ change slowly, then
(5) $(A+C)(m)+(A+D)(m)+(B+C)(m)+(B+D) m \geqq 2 \varphi(m)+$ $+2 \psi(m)-4 \quad(0<m \leqslant k)$

Proof. Applying the principal theorem on the two systems A and B we find a system E with
(6)
$\mathrm{E}(\mathrm{m}) \geqq \varphi(\mathrm{m})-1$
($0<m \leq k$).

Doing the same with C and D we obtain a system F with
$F(\mathrm{~m}) \geqq \psi(\mathrm{m})-1$
($0<m \leqq k$) .
Since the left hand side of (5) is a symmetric function of A and B, its value remains the same or decreases if A is replaced by E and B is replaced by O, hence
$(A+C)(n)+(A+D)(m)+(B+C)(m)+(B+D)(m) \geqq$
$\geqq(E+C)(m)+(E+D)(m)+C(m)+D(m)$.
The right hand side is a symmetric function of C and D, so that its value remains the same or decreases if C is replaced by F and D is replaced by O, hence $(A+C)(m)+(A+D)(m)+(B+C)(m)+(B+D)(m) \geqq(E+F)(m)+$ $+E(m)+F(m)$.

From (6) and (7) it follows that
$E(m)+F(m) \geqq \varphi(m)+\psi(m)-2$, hence
$(E+F)(m) \geqq \varphi(n)+\psi(m)-2$,
which gives the required result.
This result is a special case of the following application.
V. If each of the systems $A_{1}, \ldots, A_{n}, A_{1}^{1}, \ldots, A_{t}^{\prime}$ contain the number zero and if
$\sum_{\nu=1}^{n} A_{\nu}(m) \geqq \varphi(m)-1$ and $\sum_{\tau=1}^{t} A_{\tau}^{\prime}(m) \geqq \psi(m)-1 \quad(0<n \leq k)$,
where $\varphi(\mathrm{m}), \psi(\mathrm{m})$ and $\varphi(\mathrm{m})+\psi(\mathrm{m})-1$ change slow ty, then we have for $e=1,2, \ldots, n$, for $\lambda=1,2, \ldots, t$ and for each positive $m \leqq k$
(8)

$$
\left.\left.\begin{array}{l}
\text { (8) } \sum_{\substack{1 \leqq \nu_{1}<\ldots<\nu_{e} \leqq n}}\left(A_{\nu_{1}}+\ldots+A_{\nu_{e}}+A_{\tau_{1}}^{\prime}+\ldots+A_{\tau_{\lambda}}^{\prime}\right)(m) \geqq \\
1 \leqq \tau_{1}<\ldots<\tau_{\lambda} \leqq t
\end{array}\right] \begin{array}{l}
n-1 \\
e-1
\end{array}\right)\binom{t-1}{\lambda-1}(\varphi(m)+\psi(m)-2) \quad l
$$

Proof. In the special. case $n=t=1$ the left hand of (8) is equal to $\left(A_{1}+B_{1}\right)(m)$ and therefore $\geqq \varphi(m)+$ $+\psi(2)-2$, since $\varphi(m)+\psi(m)-1$ changes slowly. Consequently we may suppose that at least one of the numbers n and t, say n, is $\geqq 2$ and that the assertion has already been proved for $n-1$ instead of n.
The principal theorem gives systems $\mathrm{B}_{1}, \ldots, \mathrm{~B}_{\mathrm{n}}$ with

$$
B_{1}(m)+\ldots+B_{n-1}(m) \geqq \varphi(m)-1 \quad(0<m \leqq k),
$$

such that the left hand side of (8) remains the
same αi decreases if $A_{\nu}(1 \leqq \nu \leqq n-1)$ is replaced by B_{ν} and B_{n} is replaced by 0 . The left hand side of (8) is therefore

$$
\begin{aligned}
& \geqq \sum_{1 \leqq \nu_{1}<\ldots<\nu_{Q} \leqq n-1}\left(B_{\nu_{1}}+\ldots+B_{\nu_{\rho}}+A_{\tau_{1}}^{\prime}+\ldots+A_{\tau_{\lambda}}^{\prime}\right)(m)+ \\
& 1 \leqq \tau_{1}<\ldots<\tau_{\lambda} \leqq t-1
\end{aligned}
$$

$$
\begin{aligned}
& +\sum_{1 \leqq \nu_{1}<\ldots<\nu_{\rho_{-1}} \leqq n-1}\left(B_{\nu}+\ldots+B_{\nu, 1}+A_{\tau_{1}}^{1}+\ldots+A_{\tau_{\lambda}}^{1}\right)(m) \\
& 1 \leqq \tau_{1}<\ldots<\tau_{\lambda} \leqq t-1
\end{aligned}
$$

According to our induction hypothesis these two terms are respectively

$$
\begin{aligned}
& \geqq\binom{ n-2}{p-1}\binom{t-1}{\lambda-1}(\varphi(m)+\psi(m)-2) \text { and } \\
& \geqq\binom{ n-2}{n-2}\binom{t-1}{\lambda-1}(\varphi(m)+\psi(m)-2),
\end{aligned}
$$

so that their sum is

$$
\geqq\binom{ n-1}{\sum-1}\binom{t-1}{\lambda-1}(\varphi(m)+\psi(m)-2) .
$$

This completes the proof.
It is clear that the results obtained in the applications III, IV and V can be generalised. For instance: if each of the systems $A_{1}, \ldots ., A_{n}, A_{1}^{\prime}, \ldots, A_{t}^{\prime}, A_{1}^{\prime \prime}, \ldots, A_{S}^{\prime \prime}$ cortain the number zero and if
$\sum_{\nu=1}^{n} A_{\nu}(m) \geqq \varphi(m)-1, \sum_{\tau=1}^{t} A_{\tau}^{\prime}(m) \geqq \psi(m)-1$,
$\sum_{\sigma=1}^{S} A_{\sigma}^{\prime \prime}(m) \geqq \chi(m)-1 \quad(0<m \leqq k)$, where $\varphi(m), \psi(m), \chi(m), \varphi(m)+\psi(m)-1$, $\varphi(m)+\chi(m)-1, \psi(m)+\chi(m)-1$ and $\varphi(m)+\psi(m)+\chi(m)-2$
change slowly, then we have for
$1 \leqq \rho \leqq n, 1 \leqq \lambda \leqq t$ and $1 \leqq \mu \leqq s$
and for each positive $m \leqq k$ that
$1 \leqq \nu_{1}<\sum_{\ldots}<\nu_{\varrho} \leqq n\left(A_{\nu_{1}}+\ldots+A_{\nu_{\rho}}+B_{\tau_{1}}^{\prime}+\ldots+B_{\tau_{\lambda}}^{\prime}+A_{\sigma_{1}^{\prime \prime}}^{\prime}+\ldots+A_{\sigma_{\mu}}^{\prime \prime}\right)(m)$ $1 \leqq \tau_{1}<\ldots<\tau_{\lambda} \leqq \tau$
$1 \leqq \sigma_{1}<\ldots<\sigma_{\mu} \leqq s$

$$
\geqq\binom{ n-1}{\rho-1}\binom{t-1}{\lambda-1}\binom{s-1}{\mu-1} \quad(\varphi(m)+\psi(m)+\chi(m)--2)
$$

So we can go on.
VI. If $A \nu(1 \leqq \nu \leqq n)$ consists of integers $\geqq 0$ and contains the number zero and if $S=A_{1}+\ldots+A_{n}$ does not contain the positive integer k, then there exists a positive integer $m \leqq k$ such that
$S(k+1)-S(k+1-m) \geqq A_{1}(m+1)+A_{2}(m+1)+\ldots+A_{n}(m+1)+1$
Proof. Suppose for a moment that for each positive integer $m \leqq k$
(9) $S(k+1)-S(k+1-m) \leqq A_{1}(m+1)+A_{2}(m+1)+\ldots+A_{n}(m+1)$.

Let T be the system formed by the numbers $t \geqq 0$ and $\leqq k$ such that $k-t$ does not belong to S This
set T contains the number zero since k does not belong to S. The interval $k+1-\pi \leqq x \leqq k$ contains m integers. $S(k+1)-S(k+1-m)$ of these integers belong to S and $T(m)$ of these integers does not belong to S, since the integers $x=k-y$ belonging to the interval in consideracion and not belonging to S are characterized by the fact that y is $\geqq 0$ and <mwith the property that $k-y$ does not belong to S. Consequently

$$
m=S(k+1)-S(k+1-m)+T(m),
$$

hence by (

$$
A_{1}(m+1)+\ldots+A_{n}(m+1)+T(m) \geqq m,
$$

valid for $m=1,2, \ldots, n$. In this way we find for $m=2,3, \ldots, k+1$

$$
A_{1}(m)+A_{2}(m)+\ldots+A_{n}(m)+T(m) \geqq m-1 .
$$

This inequality is obvious for $m=1$ and therefore valid for $m=1,2, \ldots, k+1$. From the first special case of application II it follows that each positive integer $<k+1$, in particular the integer k, c an be written as $a_{1}+a_{2}+\ldots+a_{n}+t$, where a_{ν} belongs to A_{ν} and where t belongs to T. Consequently $k-t=a_{1}+a_{2}+. .+a_{n}$ would belong to S, contrary to the definition of T This completes the proof

Proof of the fundamental theorem.

Let e be the smallest number such that a positive integer $\tau \leqq n-1$ exists with the poperty that e is an
element of i_{0} one then t_{n} contans at least one element a_{n}^{\prime} such that $e+a_{n}^{i}$ does not belong to A_{τ}; such a number exists since the largest element a_{1} of A_{1} and any positive element a_{n} of A_{n} have the property that $a_{1}{ }^{i-a_{n}}$ does not belong to A_{1}.
If the systems A_{1}, \ldots, f_{n} are given, the number e is uniquely definec. That is not necessarily the case with τ, but if more than one value of τ enters into consideration, we can make a choice; for instance we can choose for τ the smallest possible value

I cancel in A_{n} all elements a_{n}^{\prime} such that $e+a_{n}^{\prime}$ does not belong to A_{τ}; let C_{n} be the set Pormed by the remaining elements of f_{n} I choose for C_{τ} the system A_{τ} to which the numbers $e+a_{n}^{1}$ are added Finally $C_{\nu}=A_{\nu}$ for $1 \leqq \nu \leqq n-1, \nu \neq \tau$.
Let us show that this new set $\left(C_{1}, \ldots, C_{n}\right)$ satisfies the following conditions:
$A_{\nu}(\nu=1, \ldots, n-1)$ is a subset of C_{ν} but $C_{1}+\ldots+C_{n-1}$ is a subset of $A_{1}+\ldots+A_{n}$.
Each symmetric function $\sigma\left(m ; A_{1}, \ldots, A_{n}\right)$ satisfies for each positive in the inequality (10) $\sigma\left(m, \tilde{C}_{1}, \ldots, C_{n}\right) \leqq \sigma\left(m, A_{1}, \ldots, A_{n}\right)$.

If k is positive and (1) holds for each positive $m \leqq k$, then
(11) $C_{1}(m)+\ldots+C_{n}(m) \geqq \varphi(m)-\psi(m)+1-n$
for each positive $\leqq k$.
We are ready dit: he wole woof as soon as we
have found this result for if C_{n} consists only of the number zero, we have $C_{n}(m)=0$, so that we can choose $B_{\nu}=C_{\nu}(\nu=1, \quad n-1)$. If C_{n} contains at least one positive number we can repeat our argument with the set $\left(C_{1}, \ldots, C_{n}\right)$ instead of $\left(A_{1}, \ldots, A_{n}\right)$. In this way we construct a new set (D_{1}, \ldots, D_{n}) such that the above mentioned conditions are satisfied with D_{ν} instead of C_{ν}. Continuing in this manner we obtain after a finite number of constructions a set $\left(E_{1}, \ldots, E_{n}\right)$ where E_{n} consists only of the number zero; this follows from the fact that C_{n} contains less alements than A_{n}, that D_{n} contains less elements than C_{n}, and so on. Then the sets $B_{\nu}=E_{\nu}(\nu=1, \ldots, n-1)$ possess the required properties.
That $A_{\nu}(\nu=1, \ldots, n-1)$ is a subset of C_{ν} follows immediately from the definition of C_{ν}. Let us now show that $C_{1}+\ldots+C_{n-1}$ is a subset of $A_{1}+\ldots+A_{n}$ Since $C_{\nu}=A_{\nu}(1 \leqq \nu \leqq n-1, \nu \neq \tau)$ it is sufficient to prove that $C_{\tau}+C_{n}$ is a subset of $A_{\tau}+A_{n}$ Each element of $C_{\tau}+C_{n}$ has the form $c_{\tau}+c_{n}$, where c_{τ} and c_{n} belong respectively to C_{τ} and C_{n}. If c_{τ} belongs to A_{τ} we have $c_{\tau}=a_{\tau}$ and $c_{n}=a_{n}$, where a_{τ} and a_{n} belong respectively to A_{τ} and A_{n}, so that $c_{\tau}+c_{n}$ belongs to $A_{\tau}+A_{n}$ If c_{τ} does not belong to A_{τ}, it is one of the numbers which have been added to A_{τ}, so that it has the form $e+a_{n}^{\prime}$, where a_{n}^{\prime} denotes one of the cancelled elements of A_{n}; since c_{n} is one of the elements of A_{n}, which have not been cancelled,
the sum $e+c_{n}=a_{\tau}$ belongs to A_{τ}, so that $c_{\tau}+c_{n}=$ $=e+a_{n}^{\prime}+c_{n}=a_{\tau}+a_{n}^{\prime}$ belongs to $A_{\tau}+A_{n}$
In the proof of (10) we can suppose without loss of generality that $\sigma\left(m ; A_{1}, A_{2}, \ldots, A_{n}\right)$ is an elementary symmetric function, so that it can be written as

$$
\sigma\left(m ; A_{1}, \ldots, A_{n}\right)=\sum_{1 \leqq \nu_{1}<\nu_{2}<\ldots<\nu_{l} \leqq n}\left(W+A_{\nu_{1}}+A_{\nu_{2}}+\ldots+A_{\nu_{l}}\right)(m) .
$$

Let us decompose $\sigma\left(m ; A_{1}, \ldots, A_{n}\right)$ into three parts $\sigma\left(m ; A_{1}, \ldots, A_{n}\right)=\alpha(m)+\beta(m)+\gamma(m) ; \alpha(m)$ is the contribution of the terms which involve neither A_{τ} nor A_{n}; furthermore $\beta(m)$ is the contribution of the terms which involve both A_{τ} and A_{n} and finally $\gamma(\mathrm{m})$ is the contribution of the terms which involve one and only one of the two sets A_{τ} and A_{n} If $A_{\nu}(1 \leqq \nu \leqq n)$ is replaced by C_{ν}, the functions $\alpha(m), \beta(m)$ and $\gamma(m)$ become $\alpha^{*}(m), \beta^{*}(m)$ and $\gamma^{*}(m)$, so that
$\sigma\left(m, C_{1}, \ldots, C_{n}\right)=\alpha^{*}(m)+\beta^{*}(m)+\gamma^{*}(m)$
Since $\alpha(m)$ depends only on the choice of the sets $A_{\nu}=C_{\nu}(\nu \neq \tau$ and $\neq n)$, we have $\alpha(m)=\alpha^{*}(m)$ The function $\beta(m)$ is a sum of terms of the form $\left(U+A_{\tau}+A_{n}\right)(m)$ and $\beta^{*}(m)$ is the corresponding sum of the terms $\left(U+C_{\tau}+C_{n}\right)(m)$. As we have seen above, $C_{\tau}+C_{n}$ is a subset of $A_{\tau}+A_{n}$, so that $U+C_{\tau}+C_{n}$ is a subset of $U+A_{\tau}{ }^{+A} n^{\prime}$, therefore $\beta^{*}(m) \leqq \beta(m)$. It is therefore sufficjent to show that $\gamma^{*}(m) \leqq \gamma(m)$, for each positive m. The function $\gamma(m)$ can be
written as a sum of terms of the form

$$
\left(V+A_{\tau}\right)(m)+\left(V+A_{n}\right)(m),
$$

whereas $\gamma^{*}(\mathrm{~m})$ is the corresponding sum of the terms

$$
\left(V+C_{\tau}\right)(m)+\left(V+C_{n}\right)(m)
$$

In this way we see that it is sufficient to prove that

$$
\left(V+C_{\tau}\right)(m)-\left(V+A_{\tau}\right)(m) \leqq\left(V+A_{n}\right)(m)-\left(V+C_{n}\right)(m)
$$

Consequently it is sufficient to show that each elfwent $\mathrm{h} \leqq \mathrm{m}$ of $\mathrm{V}+\mathrm{C}_{\tau}$ which does not occur in $\mathrm{V}+\mathrm{A}_{\tau}$ has the property that $h-e$ is an element of $V+A_{n}$ which does not occur in $U+C_{n}$. This number h has the form $\mathrm{v}+\mathrm{c}_{\tau}$, where v belongs to V and where c_{τ} belongs to C_{τ} but not to A_{τ}, Consequently c_{τ} is one of the numbbers added to A_{τ}, so that is has the form $e+a_{n}$, where a_{n}^{\prime} is one of the numbers cancelled in A_{n}, so that a_{n}^{\prime} occurs in A_{n} but not in C_{n} The number $h-e=v+c_{\tau}-e=$ $=v+a_{n}^{\prime}$ occurs in $V+A_{n}$. If h-e would belong to $V+C_{n}$, it would have the form $\mathrm{v}^{*}+\mathrm{c}_{\mathrm{n}}{ }^{*}$, where v^{*} and $\mathrm{c}_{\mathrm{n}}^{*}$ belong respectively to V and C_{n}. Then

$$
\epsilon+c_{n}^{*}=h \cdots v^{*} \leqq h \leqq m<g .
$$

Since c_{n}^{*} is an element of A_{n} which is not cancelled in $A_{n}, ~ e+c_{n}^{*}$ is an element a_{τ} of ${ }_{\tau}$; consequently $h=v^{*}+e+c_{n}^{*}=v^{*}+a_{\tau}$ would belong to $V+A_{\tau}$, which is not the case.
Finally we must show: if the set (A_{1}, \ldots, A_{n}) satisfies inequality (1) for each positive $m \leqq k$, then the set
($C_{1}, \ldots C_{n}$) satisfies (11) for each positive $m \leqq k$ We have transformed the set $\left(A_{1}, \ldots A_{n}\right)$ by a centain transformation into the set (C_{1}, \ldots, C_{n}). I decompose this transformation into elementary transformations as follows Let p be one of the elements of A_{n} such that $e+p$ does not belong to A^{\prime}. Let F_{n} be the system A_{n} without this element, and let F_{τ} be the system A_{τ} to which $e+p$ has been added Choose $\mathrm{F}_{\nu}=A_{\nu}$ for $1 \leqq \nu \leqq n-1, \nu \neq \tau$. I shall show: if the set (A_{1}, \ldots, A_{n}) satisfies inequality (1) for each positive $m \leqq k$, then the set (F_{1}, \ldots, F_{n}) satisfies for each positive $m \leqq k$ the inequality
(12) $F_{1}(m)+\ldots+F_{n}(m) \geqq \varphi(m)-\psi(m)+1-n$.

The proof of the principal theorem is established as soon as we have obtained this result. That is clear if for each element f_{n} of F_{n} the sum $e+f_{n}$ is an element of F_{τ}, since in that case the systems $C_{\nu}(\nu=1, \ldots, n)$ is according to its derinitin identical with F_{ν}. Let us therefore consider the case that F_{n} contains an element f_{n} such that $\mathrm{e}+\mathrm{f}_{\mathrm{n}}^{\prime}$ does not belong to F_{τ}. From the minimum propercy of e and from the fact that A_{ν} is a subset of $C_{\nu}(\nu=1, \ldots, n-1)$ and that C_{n} is a subset of A_{n} it follows that e is the smallest number such that a positive integer $\lambda \leqq n-1$ exists with the property that F_{n} contains at least one element $\mathrm{f}_{\mathrm{n}}^{\prime}$ such that eth does not belong to F_{λ}. We can
therefore transform the set ($\mathrm{F}_{1}, \ldots, \mathrm{~F}_{\mathrm{n}}$) by an elementare transformation with the same numbers e and τ into a new $\operatorname{set}\left(G_{1}, \ldots, G_{n}\right)$ and so on
Continuing in this way we obtain after a finite nomber of elementary transformations the set $\left(C_{1}, \ldots, C_{n}\right)$, mentioned above. Inequality (1) remains true if $\left(A_{1}, \ldots, A_{n}\right)$ is replaced by $\left(F_{1}, \ldots, F_{n}\right)$, also if $\left(A_{1}, \ldots, A_{n}\right)$ is replace \bar{c} by $\left(G_{1}, \ldots, G_{n}\right)$, and so on, so that the inequality holds also, if (A_{1}, \ldots, A_{n}) is replace a by ($\mathrm{C}_{1}, \ldots, \mathrm{C}_{\mathrm{n}}$).
In this way we come to the last part of the prof, namely: if (1) holds for each positive $m \leqq k$, then (12) holds also for each positive $m \leqq k$. If $k \geqq e+p$, I may suppose that this result has already been proved in the case that k is replaced by e I divide this last part into three steps
I. If $p<m \leqq e+p$, then
(13) $A_{\nu}(m) \geqq A_{\nu}(m-p)+A_{\nu}(p)+1 \quad(\nu=1, \ldots n-1)$

Proof. From the minimum property of e it follows that each element $a_{\nu}<e$ in $A_{\nu}(1 \leqq \nu \leqq n-1)$ satisfies the condition that $a_{\nu}+p$ belongs to A_{ν}. The number of all elements $<m-p$ of A_{ν} is therefore at most equal to the number of elements $\geqq p$ and $<m$ of A_{ν}, so that

$$
A_{\nu}(m-p) \leqq A_{\nu}(m)-A_{\nu}(p)
$$

II. If $k \geqq e+p$, then we have for each positive $m \leqq e$

$$
\sum_{\nu=1}^{n-1} A_{\nu}(m) \geqq \varphi(m)+1-n
$$

Proof. We know that there exists a subset T of A_{n} which contains the number zero and which satisfies for each positive $m \leqq e$ the inequality

$$
\sum_{\gamma=1}^{n-1} A_{\gamma}(m)+T(m) \geqq \varphi(m)+1-n
$$

for instance the system A_{n} itself possesses these properties. Let T be a smallest subset of A_{n} with these properties. It is sufficient to show that T does not contain a positive number, for in that case $T(m)=0$. Let us suppose for a moment that T contains at least one positive number, so that it is possible to transform the $\operatorname{set}\left(A_{1}, \ldots, A_{n-1}, T\right)$ into $\operatorname{set}\left(J_{1}, \ldots, J_{n}\right)$ by an elementary transformation. We have assumed In the case $k \geqq e+p$ that the required proof has already been given with e instead of k. That means that the inequalities (1), valid for each positive $m \leqq e i m p l y$

$$
\sum_{\nu=1}^{m} J_{\nu}(m) \geqq \varphi(m)+1-n
$$

for each positive $m \leqq e$.
The elementary transformation applied on the set $\left(A_{1}, \ldots, A_{n-1}, T\right)$ has cancelled in T a certain positive element t and added to one of the systtums $A_{\nu}(\nu=1, \ldots, n-1)$ a number of the form
$e^{\prime}+t$. From the minimum property of ϵ and from the fact that T is a suoset of A_{n} it follows that $e \leqq e^{\prime}$, so that the added element $e^{\prime}+t$ is $>e^{\prime} \geqq e$. Consequently

$$
J_{\nu}(m)=A_{\nu}(m)
$$

for $\nu=1, \ldots, n-1$ and for each positive $m \leqq e$ In this manner we obtain

$$
\sum_{\nu=1}^{n-1} A_{\nu}(m)+J_{n}(m) \geqq \varphi(m)+1-n
$$

for each positive $m \leqq e$. This is impossible, since J_{n} is a proper subset of a smallest system T with this property.
End of the proof. We must show that the inequalities (1), valid for each positive $m \leqq k$ imply the inequalities (12) for each positive $m \leqq k$. This assertion is clear for the positive numbers $m \leqq p$, since below p the sets A_{ν} and $F_{\nu}(1 \leqq \nu \leqq n)$ are identical. The assertion is also evident for the numbers $m>e+p$, for in that case we have lost in A_{n} one term, namely p but we have gained in A_{τ} also one term, namely e+p. It is therefore sufficient to consider the case $p<m \leqq e+p$. Then, accordinr to I
$\sum_{\nu=1}^{n-1} A_{\nu}(m) \geqq \sum_{\nu=1}^{n-1} A_{\nu}(m-p)+\sum_{\nu=1}^{n-1} A_{\nu}(p)+n-1$.
We have
$F_{\nu}(m) \geqq A_{\nu}(m)(\nu=1, \ldots, n-1)$ and $F_{n}(m) \geqq F_{n}(p)=A_{n}(p)$,
since F_{n} and A_{n} are identical below p. Consequently
$\sum_{\nu=1}^{n} F_{\nu}(m) \geqq \sum_{\nu=1}^{n-1} A_{\nu}(m-p)+\sum_{\nu=1}^{n} A_{\nu}(p)+n-1$.
The first term on the right hand side is according to II (applied with $m-p$ instead of m) at least equal to $\varphi(m-p)+1-n$ and the second term is by hypothesis $\geqq \varphi(p)+1-n$. Consequently
$\sum_{\nu=1}^{n} F_{\nu}(m) \geqq \varphi(m-p)+\varphi(p)+1-n \geqq \varphi(m)+1-n$,
since $\varphi(m)$ changes slowly.
This completes the proof of the principal theorem.
In the preceding part of this scriptum we have restricted ourselves to numbers with weight 1 , but we may attribute to each positive number m a positive weight $\psi(m)$. Let us denote by $A(m, u)$ the sum

$$
A(m, u)=\sum_{0<a<m} \psi(a+u)
$$

extended over the positive elements $a<m$ of the system A.

Theorem.

Let $A_{1} \ldots, A_{n}, H$ be systems such that the number zero belongs to each of the systems $A_{1} \ldots \ldots A_{n}$, that A_{n} contains at least one positive number and that H is not empty.
Assume that $\psi(\mathrm{m})$ is positive and monotonically not-decreasing for positive m. Let k be positive.
$A_{1}(m, u)+A_{2}(m, u)+\ldots+A_{n}(m, u) \geqq \varphi(m+u)-\varphi(u)+\omega(u)$
for each positive $m<k$ and for each u which is equal to an element of H augmented by different elements $\leq k$ of A_{n}, here $\varphi(m)$ is supposed to be real for posifive m and

$$
\omega(u) \geqq-(n-1) \psi(u)
$$

Then the systems $B 1, \ldots, B_{n}-1$ constructed in the proncopal theorem, satisfy the inequality
$B_{1}(m, h)+\ldots+B_{n-1}(m, h) \geqq \varphi(m+h)-\varphi(h)+\omega(h)$
for each positive $m<k$ and for each element h of H.
Notice that the condition that $\varphi(m)$ changes slowly is not required in this theorem and that the theorem does not contain a result on symmetric functions The poof: which is practically the same as the end of the proof of the principal theorem, is also diviced into three parts.
I. If $\rho<\mathrm{m} \leqq e+p$, then we have for each $u \geqq 0$
$A_{\nu}(m, u) \geqq A_{\nu}(m-p, p+u)+A_{\nu}(p, u)+\psi(u+p)$.
Proof. We mow that each element $a_{\nu}<e$ in A_{ν}
$(1 \leqq \nu \leqq n-1)$ has the property that $a_{\nu}+p$ belongs to Ap Consequently

$$
\begin{aligned}
& 0 \leqq \sum_{a_{\nu}<m-p} \psi\left(a_{\nu}+p+u\right) \leqq \sum_{\nu \leqq a_{\nu}<m} \psi\left(a_{\nu}+u\right)= \\
& =\sum_{a_{\nu}<m}^{7} \psi\left(a_{\nu}+u\right)-\sum_{a_{j} \ll} \psi\left(a_{\nu}+u\right),
\end{aligned}
$$

hence

$$
\begin{aligned}
& \psi(u+p)+A_{\nu}(m-p ; p+u)=\sum_{0 \leqq a_{\nu}<m-p} \psi\left(a_{\nu}+p+u\right) \\
& \leqq A_{\nu}(m, u)-A_{\nu}(p, u) .
\end{aligned}
$$

II. If $k \geqq e+p$, then we have for each positive $m \leqq e$ and for each u which is equal to an delement of H augmented by different elements of A_{n}

$$
\sum_{\nu=1}^{n-1} A_{\nu}(m, u) \geqq \varphi(\dot{m}+u)-\varphi(u)+\omega(u)
$$

The proof is the same as in the principal theorem.
III. End of the proof. It is sufficient to show (14) $\sum_{\nu=1}^{n} F_{\nu}(m, u) \geqq \varphi(m+u)-\varphi(u)+w(u)$
for each positive $u \leqq k$ and for each u which is equal to an element of H augmented by different elements of F_{n}. Then u and also $u+p$ is equal to an element of H augmented by different elements of A_{n}, so that
(15) $\sum_{\nu=1}^{n} A_{\nu}(m, u) \geqq \varphi(m+u)-\varphi(u)+\omega(u)$
and
(16) $\sum_{\nu=1}^{n} i_{\nu}(m, u+p) \geqq \varphi(m+u+p)-\varphi(u+p)+\omega(u+p)$.

It is clear that (14) follows from (15) for each positive m m, since below p the systems A_{ν} and F_{ν} $(\nu=1, \ldots, n)$ are identical. That is also the case for the numbers $m>e+p$, for then we loose in $A_{n}(m, u)$ one term, namely $\psi(p+u)$ and we gain in $A_{\tau}(m, u)$ the term $\psi(e+p+u) \geqq \psi(p+u)$. It is therefore sufficient to consider the case $p<m \leqq e+p$ We find $0 y$ means of I

$$
\begin{aligned}
& \sum_{\nu=1}^{n-1} A_{\nu}(m, u) \geqq \sum_{\nu=1}^{n-1} A_{\nu}(m-p, p+u)+ \\
+ & \sum_{\nu=1}^{n-1} A_{\nu}(p, u)+(n-1) \Psi(p+u)
\end{aligned}
$$

and we have

$$
F_{\nu}(m, u) \geqq A_{\nu}(m, u) \quad(1 \leqq \nu \leqq n-1)
$$

and

$$
F_{n}(m, u) \geqq F_{n}(p, u)=A_{n}(p, u),
$$

since F_{n} and A_{n} are identical below p. Consequently
(17) $\sum_{\nu=1}^{n} F_{\nu}(m, u) \geqq \sum_{\nu=1}^{n-1} f_{\nu}(m-p, p+u)+$

$$
+\sum_{\nu=1}^{n} A_{\nu}(p, u)+(n-1) \psi(p+u)
$$

The first term on the right hand side is according to (16) (apprised with mop instead of m) at least equal to
$\varphi(m+u)-\varphi(p+u)+\omega(p+u) \geqq \varphi(m+u)-\varphi(p+u)+(n-1) \varphi(p+u)$.

Combining this result with (17) and (15) we fond
$\sum_{\gamma=1}^{n} F_{\nu}(m, u) \geqq \varphi(m+u)-\varphi(u)+\omega(u)$.
This establishes the proof.
In order to find a suitable application I deduce the following lemma.

Lemma. Let k be an integer $\geqq 2$; suppose
(18) $\psi(m)>0 ; \quad \psi^{2}(m+1) \geqq \psi(m) \psi(m+2)$ and $\chi(m) \geqq 0$ for each positive integer m. If the systems
$A_{1} \ldots A_{n}$ consisting of integers $\geqq 0$ satisfy for $m=2,3, \ldots, k$ the inequality
(19) $\sum_{0<a_{1}<m} \psi\left(a_{1}\right)+\sum_{0<a_{2}<m} \psi\left(a_{2}\right)+\ldots+\sum_{0<a_{n}<m} \psi\left(a_{n}\right) \geqq$

$$
\geqq \sum_{h=1}^{m-1} x(h) \psi(h)
$$

then we have for the same values of m and each integer u $\geqq 0$
(20)

$$
\begin{aligned}
& \sum_{0<a_{1}<} \psi\left(a_{1}+u\right)+\ldots+\sum_{0<a_{n}<m} \psi\left(a_{n}+u\right) \geqq \\
& \geqq \sum_{h=1}^{m-1} x(n) \psi(h+u) .
\end{aligned}
$$

Proof. Put $t_{1}=1$. Let $t_{2}<t_{3}<\ldots<t_{e}$ be the integers > 1 and < m belonging to at least one of the systems A_{1}, \ldots, A_{n} Choose $t_{E_{1}+1}=m$ Inequality
(19), applied successively with $t_{2}, t_{3}, \ldots, t_{e+1}$ instead of m gives the ρ following inequalities

$$
\begin{aligned}
& \lambda_{1} \psi\left(t_{1}\right) \geqq \sum_{h=1}^{t_{2}^{-1}} x(h) \psi(h) ; \\
& \lambda_{1} \psi\left(t_{1}\right)+\lambda_{2} \psi\left(t_{2}\right) \geqq \sum_{h=1}^{t_{3}^{-1}} x(h) \psi(h) ; \\
& \cdots \cdots \cdot \cdots \\
& \lambda_{1} \psi\left(t_{1}\right)+\ldots+\lambda_{e} \psi\left(t_{l}\right) \geqq \sum_{h=1}^{t} x(h) \psi(h) ;
\end{aligned}
$$

here λ_{ν} denotes the number of systems A_{1}, \ldots, A_{n} contraining t_{ν}, so that the left hand side of (20) is equal to

$$
I=\lambda_{1} \psi\left(t_{1}+u\right)+\lambda_{2} \psi\left(t_{2}+u\right)+\ldots+\lambda_{g} \psi\left(t_{\underline{Q}}+u\right) .
$$

In order to obtain for this sum an appropriate lower bound, I multiply the sides of the g inequalities respectively by
$\frac{\psi\left(t_{1}+u\right)}{\psi\left(t_{1}\right)}-\frac{\psi\left(t_{2}+u\right)}{\psi\left(t_{2}\right)} ; \ldots ; \frac{\psi\left(t_{e-1}+u\right)}{\psi\left(t_{e-1}\right)}-\frac{\psi\left(t_{e}+u\right)}{\psi\left(t_{e}\right)} ; \frac{\psi\left(t_{e}+u\right)}{\psi\left(t_{e}\right)}$
All these factors are $\geqq 0$ since it follows from (18) that

$$
\frac{\psi(t+1)}{\psi(t)}-\frac{\psi(t+2)}{\psi(t+1)} \geqq 0
$$

Adding we rind
.. 28 -

$$
\begin{aligned}
& 1 \geqq \frac{\psi\left(t_{1}+u\right)}{\psi\left(t_{1}\right)} \sum_{h=t_{1}}^{\hbar_{2}^{-1}} x(h) \psi(h)+\ldots \\
& \ldots+\frac{\psi\left(t_{e}+u\right)}{\psi\left(t_{l}\right)} \sum_{h=t_{l}}^{t_{e+1}} x(h) \psi(h)
\end{aligned}
$$

In the first sum we have according to (18)

$$
\frac{\psi\left(t_{1}+u\right)}{\psi\left(t_{1}\right)} \psi(h) \geqq \psi(n+u)
$$

in the second sum

$$
\frac{\psi\left(t_{2}+u\right)}{\psi\left(t_{2}\right)} \psi(h) \geqq \psi(h+u)
$$

and so on, so that

$$
\begin{gathered}
1 \geqq \sum_{h=t_{1}}^{t_{2}^{-1}} x(h) \psi(h+u)+\ldots+\sum_{h=t_{\rho}}^{t} x(h) \psi(h+u)= \\
=\sum_{h=1}^{m-1} x(h) \psi(h+u),
\end{gathered}
$$

since $t_{1}=1$ and $t_{\ell+1}=m$. This establishes the proof.
This lemma enables us to deduce the following theorem.

Theorem.
Suppose that $A \gamma \quad(\nu=1, \ldots, n)$ is formed by integers $\geqq 0$ and contains the integer zero. Assume
for each positive integer m
(21) $\quad \psi(m+1) \geqq \psi(m)>0 ; \psi^{2}(m+1) \geqq \psi(m) \psi(m+2)$;

$$
x(m) \geqq \quad x(m+1) \geqq 0 .
$$

Let k denote an integer $\geqq 2$. If
(22) $\sum_{0<a_{1}<m} \psi\left(a_{1}\right)+\sum_{0<a_{2}<m} \psi\left(a_{2}\right)+\ldots+\sum_{0<a_{n}<m} \psi\left(a_{n}\right) \geqq$

$$
\geqq \sum_{h=1}^{m-1} x(h) \psi(h) \quad(m=2,3, \ldots, k),
$$

then the sumsystem $S=A_{1}+\ldots+A_{n}$ satisfies the inequalities
(23) $\sum_{0<s<m} \psi(s) \geqq \sum_{h=1}^{m-1} x(h) \psi(h) \quad(m=1,2, \ldots, k)$
and even for each integer $u \geqq 0$
(24) $\sum_{0<s<m} \psi(s+u) \geqq \sum_{h=1}^{m-1} x(h) \psi(h+u) \quad(m=1,2, \ldots, k)$.

The proof runs as follows. According to the lemma we have for each integer $u \geqq 0$

$$
\begin{aligned}
& 0 \sum_{<a_{1}<} \psi\left(a_{1}+u\right)+\ldots+\sum_{0<a_{n}<m} \psi\left(a_{n}+u\right) \geqq \\
& \geqq \sum_{h=1}^{m-1} x(h) \psi(h+u) \geqq \sum_{h=1}^{m-1} x(h+u) \psi(h+u),
\end{aligned}
$$

since $x(h) \geqq \chi(h+u)$ by (21) This inequality is ob-

- 30 -
vious for $m=1$, because then the right hand side is equal to zero. In this way we find
(25) $\sum_{0<a_{1}<m} \psi\left(a_{1}+u\right)+\ldots+\sum_{0<a_{n}<n} \psi\left(a_{n}+u\right) \geqq$

$$
\geqq \varphi(m+u)-\varphi(u),
$$

where

$$
\varphi(m)=\sum_{h=1}^{m-1} x(h) \psi(h)
$$

We apply this result for each element u of the system H_{n} formed by the integers $u .=u_{2}+\ldots+u_{n}$, where $u_{\nu}(2 \leqq \nu \leqq n)$ is the sum of different lements of $A_{\nu} ;$ therefore $H_{1}=0$. Inequality (23) is obvious for $n=1$, so that I may assume that $n \geqq 2$, that A_{n} contains at least one positive element and that the required property has already been proved for $n-1$ instead of n. According to the last theorem (applied with $H=$ $=H_{n-1}$ and with $\omega(u)=0$) the systems B_{1}, \ldots, B_{n-1}, constructed in the principal therem, satisfy for each element u of $A_{1}+\ldots+A_{n-1}$ and for $m=1,2, \ldots, k$ the inequality
$\sum_{0<D_{1}<m} \psi\left(b_{1}+u\right)+\ldots+\sum_{0<b_{n-1}<m} \psi\left(b_{n \ldots 1}+u\right) \geqq$

$$
\geqq \varphi(m+u) \quad . \quad \varphi(u) .
$$

According to our induction hypothesis the sumsystem $T=B_{1}+\ldots+B_{n-1}$ satisfies therefore the
inequality
$\sum_{0<t<m} \psi(t) \geqq \varphi(m)-\varphi(0)=\varphi(m)=\sum_{h=1}^{m-1} x(h) \psi(h)$. Since T is a subset of $S=A_{1}+\ldots+A_{n}$, this last system satısfies certainly the required inequality (23).

The preceding lemma, applied with $\mathrm{n}=1$ and with S instead of A_{1} gives immediately formula (24)
This completes the proof.

