Scriptum 7

ON SUMS OF SYSTEMS

J.G.van der Corput.

In this scriptum a system means always a set formed
by a finite positive number of numbers =z20. If A is
a system, then A(m) denotes the number of the pcsitive
elements <m of A. IT A4, AE""’ Ay, are systems, then
Aq + Ay + ... + A, denotes the sumset, formed by the

numbers which can be written in at least one way in
the form aq + ap + ... + ap, where a, (1=v=n)belongs
to A,. The system consisting only of the integer zero
will be dencted by 0, so that for each system A

A +0=A.

If W, Aq..., Ap are systems and if e is a positive
integer =n, then I call the sum

N (W + A, + ..o+ A, )(m),
TEv, <P <. ..<Ppsn 1 e
which consists of (g) terms, an elementary symmetric
function of A4, Ap,...;Apn.
Fdf instance

(W+A4q) (m)+(W+Ao) (m)+...+ (W:I-An) (m).

and

(W+Aq + Ap +...+ Ap) (m)

and the sum .

(WHhq + L0) (m)+ (w+A1+A3) (m)+. .. +(W+A, _q+hp) (m),



D
consisting of 4n (n-1) terms; denote elementary sym-
metric functions of A4, As,..., Bp.

& symmetric function o (m; A4q,..., A,) of Aq,..., Ay
is a function which can be written in the form

1
o (m; Ags...s BAp) = Z ﬂxck(nu By wmy, Byl
A=1

where the coefficients u, are z 0 and where
Gx(m; . U A An) denotes an arbitrary elementary
symmetric function of &4,..., Ap. For instance

M (WA ) (m) +o 0o+ e (WHAL ) (m) + pu! (U+Aq+.. . +E,) (m)

where au and ' are 20, is a symmetric function of
Aqseees Ag.

A slowly changing function is a function ¢(m),
defined for each positive m, such that for any
choice of the positive numbers m and m'

q(mfm') s ¢(m) + @(m').

The principal theorem

If nz2, if each of the systems Ajs-.., Ay contains
the number zero and if A_contains at least one po-
sitive number, then it i; possible to construct n-1
systems Bq,..n,Bn_q with the following properties:

2L, (1s»=n-1) is a subset of B, , but Bq+...+B,_q_is
a_subset of Aq+...+ A,
Each symmetric function ¢(m;Aa.i,) satisfiez for each

positive m the inequality




("3 Bys.uBhoqs0) = o mzh .. A,).

I7 kt 13 positive and if a slowly changing function

¢ (ri) satisfies for each psitive ms k the inequal-
ity

(1) Aq(m)+...+A4(m) 2@ (m)+1-n

then the inequality

(2) Bq(m)+...+ By_4(m) =2 @(m)+1-n

holds: for each po*sitive mek.

Remark. Let the slowly changing functiocon ?(m) be
monotonically nut-decreasing. If the inequalities
(1) hold for m=k and alsc for each positive number
m<k which belongs to at least one of the systems
Aqs..., Ay, then the inequalities (1) hold for each
positive m= k.

For let m' be the smallest number =k and zm,which
belongs to at least one of the systems Aq,..., An,
if such a number exists; otherwise I choose m'= k.
Inequality (1) holds with m' instead of m, s¢ that

we get
n

7 - A,(m') z ¢(m")+1-n.
P =

Since A, does not contain a number zm and <m', the
left hand side does not change its value if m' is
replaced by m. The right hand side is then replaced

by an euarl or = smaller number, since ¢@(m) is
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monotonically not-decrcasing. In this way we see
that the inequalities (1) are valid ior each pos-
itive ms k.

Let us first give some applications of this theorem.
In these applications ¢(m) denotes always a slowly
changing function and k denotes in these applications

always a positive number.

I. If both A and B contain the number zerc and if

A(m)+ B(m) 2 ¢(m)-1 (0O<m=k),
then

(4+B) (fn) z¢(m)-1 (O<m=k).

Proof. According to the principal theorem, applied
with n=2, we can construct a subsetS of A+B such
that for each positive msg k

S(m) 2z ¢(m)-1, hence (A+B)(m)=z ¢ (m)-1.

Particular cases: 1 (Theorem of Khintchine) x):

If both A and B contain the number zero and
A(m) 2z «(m-1) and B(m)z p(m-1) (O<msk),
where «+g =1, then

(A+B) (m) 2 (x+8) (m-1) (O<m=k).
That is clear, since

¢(m)= (x+g)m + 1-x-p

x) A.Ya.Khintchine, Zur additiven_ Zahlentheorie,
Matematiceski Sbornik 39, 27 - 3% (1932).



satisiies the relation

¢(m) +p(m') -¢(m +m') =1 ~x-p 20
and changes therefore slowly.

2 ( Famous theorem of Mann) *):

If both A and B contain the number zero and

A{m) + B(m)zy(m-1) (0<msk),
where y=1, then

(A+B) (m)z 7y (m-1) (O<m=k).
That is obvious, since ¢(m)= ym+1-7 changes slowly.

II. If A,(»=1,...,n) contains the number zero and if

Aq(m)+...+ Ay(m)z ¢(m) - 1 (O<m=k),
then

w

(A,!+...+ A,) (m) 2 ¢(m) -1 (O<ms=k).

Proof. The particular case n=1 is obvious and the
case n=2 has already been treated in the first applic-
ation, so that I may assume that nz3 and that the proof
has already been given for n-1 instead of n.

The principal theorem, applied with the slowly chang-
ing function ¢(m)+n-2 instead of ¢(m), gives n-1
systems Bq,..., Bn-1 such that Bq+...+ Bn_1 is a sub-
set of A1+...+ Ay and that

By(m)+...+ Bn_q(m)g ¢(m) -1 (o<ms=k).

This implies according to our induction hypothesis

x) H.B.Mann, A proof of the fundamental theorem on the
density o7 sums of sets of positive integers, .‘nnals

100 L. M3, 523 - 529 (1942).
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(Byt.. .+ Bp_q)(m)z ¢(m)-1 (O<m=k),
which yields immediately the required inequality.
Particular cases:

1. If k is a positive integer, if A, (»=1,...,n)1s.

formed by intecers 20 and contains the number zero and if

(3) Aj(m)+ Ap(m)+...+ Ap(m) 2 m-1 (m=1,2,..., k),

then each positive integer <k can be written in

the form aq+ ant...tap, where a, (1=v»=n) occurs
in A,.
Proof. Inequality (3) holds (according to the
second remark added to the principal theorem) for
each positive m s k, hence ‘

(At Ap)(m)zm-1 (O<m=k),
so that each positive integer <k belongs to

A1+. - 0+Ano
2.(Theorem of Dyson) T):

If A, (1= = n) contains the number zero and

Aq(m)+...+ Ap(m) 2 ¥ (m-1) (O<ms=k),
then

(A1+...+An)(m)g 7 (m-1) (O<rn§Ld.:

Proof. In this case we choose ¢(m)= ym+i1-7.

x) F.J Dyson, A theorem on the densities of sets
of integers, Journal of the London Math.Sociecty
20, 8 - 15 (1945).
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BL‘EE Ay (1 s ¥ = n) coentains the number zero and

A,,(m)%ochrx-g (»=1,2,...n; O<ms=k),

where « and y are 20, then

(Aq+ Aot+..o+ Ap)(m) 2 nam+ny -1(0< m 5 k)

Proof. We have for O<msk
z Z {amrrt )
A (m)é m+y-=

s=1 v=1{ ¥n )

where {u} is the smallest integer 2u. The identity
n ~ '

))

;;;%1—6}~= {nu} -1

is obvious in the 1nterva1()§1m<g,'51nce in that
case both sides are equal to zero and if u is replac-
ed by u+g, the increase of both sides is equal to 1,
so that the identity is valid for all real u. Conse-
quently

% Av(m) > {nocm+nzf} -1 2 @(m)-1,
y=21

whore @(m)= nem+ny changes slowly. This gives the
reguired inequality.

(hintchine has treated some special cases c¢f this
result.

TII. If A,(1=v=n) contains _the number zero and

Aq(m) + Ap(m) +...4 Ap(m) 2¢(m)-1 (O<m=k),
then we have for g= 1,2,...n.




(%) , - : . (A_p1+A?2+.=.+Ave?(m)z

2 (577) (p(m)-1) (0<msk)

Proof. In the special case n=1 we have g=1, the
left hand side is equal to Aq(m) and the right
hand side is equal t~ ¢(m)-1. We may therefore
assume that nz2 and that the proof has already
been given for n-1 instead of n. The principal
theorem gives n-1 systems B,,..., B,_4 such that

B4(m)+ Bo(m)+...+ By_q(m) 2 ¢(m)-1 (O<m s k)

The left hand side of (%), which is a symmetric

function of A4,..., A, remains the same or decreas-

n .
es if A, (1= v=2n-1) is replaced by B, and if B, is
replaced by 0. Consequently the left hand side of
(%) is

= = (B, +...4B, )(m) +
1 g
1 = . . = =
5'{1< '<ve n-1
2 j?__ (B, +...+ B, )
B » 1 £-1
1 =v1<uao<vﬂ_1= n—,l

According to our induction hypothesis the first
term is at most equal to(g'e)( (m )— ) and the
second term is at most equal to (O 2) (¢(m)-1),
so that the left hand side of (4) is

(G2 + G} tetm)-n= (BT (glm)-1).

13
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IV. If 23ch of the systems A, B, C and D contain the

number zero and if they satisfy the inequalities

A(m)+ B(m)z ¢(m)-1 and C(m)+ D(m)z ¢y (m)=1 (O<m=k),
where ¢ (m), y(m) and ¢(m)+ ¢(m)-1 change slowly,
then o D i o ‘

(5) (A+C)(m)+ (A+D)(m)+ (B+C)(m)+ (B+D)m 22¢(m) +
+ 2y(m)-4 (0 < m = k)

Proof. Applying the principal theorem cn the two

systems A and B we find a system E with
(6) E(m)z @(m)-1  (O<msk).
Doing the zame with C and D we obtain a system F with
(7) F(m)2y¢(m)-1  (0O<msk).

Since the left hand side of (5) is a symmetric funct-
ion of A and B, its value remains the same or decreas-
es if A is replaced by E and B is replaced by O,hence

(a+C)(m) + (A+D)(m) + (B+C)(m) + (B+D)(m) =

> (E+C)(m)+ (E+D)(m) + C(m) + D(m).

The right hand side is a symmetric function of C and
D, so that its value remains the same or decreases
if ¢ is replaced by F and D is replaced by O, hence

(2+C)(m) + (A+D)(m)+ (B+C)(m) + (B+D)(m) 2 (E+F)(m) +
+ E(m) + F(m).

From (6) and (7) it follows that

E(m) + F(m)z¢(m) + ¢(m) -2, hence

(E+F)(m)z ¢ (m) + ¢(m) -2,



Ay
which gives the rcguired fesult; ,
This result is a special case of the following
application.

V. If each of the systems Aq,..., AL, A%,..,Aé

contain the number zero and if

t
A, (m)z ¢(m)-1 and :2i A%(m);w(m)—ﬂ (O<insk),

»=1 T=1

Nk

where ¢ (m), ¢(m) and @(m)+ ¢(m)-1 change slowly,

then we have for p=1,2,...,n, for A=1,2,...,t and

for each positive msk

(8) Z (A, +ooot A, + AL 4. .+ AL )(m)z

- 1 e 1 A
1 _s_v,l<..,<ve=n

1 _S_‘C,]<...<'c‘7\§t '

v

2 (511 (R (e(m) +y(m)-2)

Proof., In the special.case n=t=1 the left hand of
(8) is equal to (A1+B1)(m) and therefore 2 ¢(m)+
+¢(2)-2, since @(m)+ ¢(m)-1 changes slowly.
Consequently we may suppose that at least one of
the numbers n and t, say n, is 22 and that the
assertion has already been proved for n-1 instead
of n.

The principal theorem gives systems Bq,..., B,
with

By(m)+...+ Bn_,](m)g(p(m)—’l (0O<msXk),

such that the left hand side of (8) remains the



same ci decreases 1if A, {(1=vsn-1) i3 replaced by
B, and B, 1s replaced by O. The left hand s1
(8) is therefore

1 t
Z (BV toeot By, + AL 4.+ AL )(m) +

(o}
(Y%}
(@
L]

2

. 1 g 1. A
1 §v1<...<ve;n—1
TET <. <= t-1

# E (B, +..0# B+ AL +.00% A H(m)
? 4 ve_q_ T4 Ty

1§v,‘<...<va_,]§n—1

1_$_’C,]<...<’C;\§- t-1

According to our induction hypothesis these two
terms ave vrespectively

(526G Com) +¢(m)-2) ana

2(59) (XD (e(m) +¢(m)-2),

so. that theilr sum 1s

n-1,,t-1y " .

:(8_1)(K_1) (¢(m)+ ¢ (m)-2).
This completes the proof.

It is clear that the results obtained in the applic-

ations III, IV and V can be generalised. For instance:

if each of the systems Byseeeshys A%,...,A', A%,...,A;

corntain tihie number zero and if
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n t
2 A (m)z(m)-1, Z_Al(m)zg(m)-1,
»=1 T=1

2%:A;(m); X(m)-1 (0 < ms k),
=1

where ¢(m), y(m), x(m), @(m)+w(m)-1sr
@(m)+x(m)-1, p(m)+x(m)-1 and ¢(m)+y(m)+x(m)-2
change slowly, then we have for

1sp=n, 1sAst and 1sus=s
and for each positive m = k that

[\ 1 _.‘_' 1 ", .. ]
Vg vy <D g & Uybee st A BB Bt Y
1§r,]< oG et
1= ¢1< - < OyES

v

(5o G (G2 (e(m)+y(m) +x(m) -2)
So we can go on.

VI. If A, (1= » =n) consists of integers =z O and

contains the number zero and if 3 = A +...+A _ does

not contain the »ositive integer k, then there

exists a positive integer m = k such that

S(k+1)-S(k+1-m) = Aq(m+1)+A2(m+1)+ﬂ..+An(m+1)+1
Proof. Suppose for a moment that for each positive
integer m = k

(9) S(1+1)=8(k+1-m) = A (m+1)+h,(mH1)+. .. +A (1) .

Let T be the system formed by the numbers t z O

and =% such that %-t does not belong to S This
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set T contains the numver zero since k does not be-
long to S The interval k+1-m = x s k contains m in-
tegers. S(k+1)-S(k+1-m) of these integers belong to
S and T(m) of these integers does not belong to S,
since the i1ntegers x = k-y belonging to the interval
in consideration and not belonging to S are charac-
terized by the fact that y is 20 and <m with the

property that k-y does not belong to S. Consequehtly
m = S(k+1)-S(k+1-m)+T(m),
hence by ()

A m+1)+uﬂ.+An(m+1)+T(m) z m,

,
valid for m = 1,2,...,n. In this way we find for
m= 23 ...,k+1

Aq(m)+A m)+...+An(m)+T(m) z m-1.

o
This inequality is obvious for m = 1 and therefore
valid fo. @ = 1,2,...,X+1 From the first special
case of application II it follows that each posi-
tive intezer < k+1, 1n particular the integer k, can
be written as a_ tagt ..+an+t, where a, belongs to A,

172

and where T beloﬁgsto T. Consequently k—t=a1+32+“ +an
would »Helong to S, contrary to the definition of T

This completes the proof

Proof of the fundamental theorem.

Let e be the smallest number such that a positive in-

teger T = n-1 exists with the c-roperty that e is an



o4
S

g¢lement of B DO THIY o conteainsg at least one
element aﬁ such that e+aﬁ does not belong to Ass
such a3 number exists since the largest element a

/]

of 1-‘\,| and any positive element a, ol An have the

property that a1+an does not nvelong to A
If fthe systems A1""’An are given, the number e

is uniquely definecd That is not necessarily the

"t
i

case with ©, but if more than one value of v enters
into consideration, we can make a choice; for in-
stance we can chooce for t the smallest possible
value

I cancel in An all elements aﬁ such that‘e+aﬁ does
not belong to A.; let Cn be the set Tormed by

the remaining elements of An I choose for C. the
system AL to whicihh the numbers e+aé are added
Finally C, = A, for 15 v = n-1, »# .

Let us show that this new set (qu ..,Cn) setisfies
the following conditions:

Ay (»=1,...,n-1) is & subset of C,, but

I N ¢ is a subset of A, + ..+An

1 n-- 1

Each symmetric function g(m;Aq,...,An) satisfies

for each positive m the inequality
(1C) 6(‘?‘"""1""5":—1) = c(m;A,},,.,AnL
If k 1s positive and (1) holds for each positive

m = k, then

(11) Cq(m)+‘..+Cﬁ(m)g<p(m)-y(m)+1—n

for each nositive @ & k.

Ve ere ready with ths gha? r30Ff L3 300N 23 Ve
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have found this result For if Cn consists only of
the numbe: zero, we heave Cn(m) = 0, so that we can
choose B, =C, (»= 1, ,n-1). If C, contains at
least one positive number we can repeat our argument
with the set (Cq,o.u,Cn) instead of (Aq, “’An)“ In
this way we construct a new set (Dq, ..,Dn) such that
the above mentioned conditions are satisfied with
D, insteacd of C, .Continuing in this manner we ob-
tain after a finite number of constructions a se:
(Eq""’En) where . consists only of the number zero;
this follows from the fact that Cn contains less ele-
ments than An’ that Dn contains less elements than
C,» and so on. Then the sets B, = E, (v=1, ..,n-1)
possess the required properties.
That A, (»= 1, ..,n-1) is a subset of C, follows
immediately from the definition of C,. Let us now
show that C1+ "’+Cn—1 is a subset of A1+ °’+An
Since C, = A, (1= = n-1, » # t) it is sufficient
+ AnJ Each
s Where c.
If - be-
, Where a

to prove that Ct + Cn is a subset of A

T
element of C_ + Cn has the form cr t ¢y
and ch oelong respectively to Ct and Cn
longs to A, we have ¢, = a_ and c, = 23,

and ay vpelong respectively to At_and An, so that

T
ce t ¢y velongs to At + An If Cr does not belong to
At’ it is one of the numbers which have been added
to A, so that it has the form e+ah, where aﬁ denotes
one of the cancelled elements of An; since . is one

of the elements of An, which have not been cancelled,
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the sum ete, = &, belongs to At, so that Co # & =
= 1 e i
= e+an+cn = a_ +ay belongs to At + An

In the proof of (10) we can suppose without loss
of generality that v(m;Aq,Ag, ..,An) is an elemen-

tary symmetric function, so that it can be written

as
g(ms;B,, ..A )= Z (WA +A_ +...+A ).
1 B e v 7 Y,
’I=v,]<v2<...<ve_n 1 2 4
Let us decompose c(m;Aq, ..,An) into three parts

o(m;A ..,An) = x(m)+p(m)+y(m); «(m) is the con-

s
tribugion of the terms which involve neither A,
nor A ; furthermore A(m) is the contribution of

the terms which involve both At and An and finally
¥y (m) is the contribution of the terms which in-
volve one and only one of the two sets At and An

If A, (1=» = n) is replaced by C,, the functions
x(m), A(m) and y(m) become o*(m), A*(m) and y*(m),
so that

31,05 -+ +5Cy) = oc(m) +7(m) + y2(m)

Since x(m) depends only on the choice of the sets
A,=C, (»#t and # n), we have x(m) = o*(m)

The function g(m) is a sum of terms of the form
(U+At+An)(m) and p*(m) is the corresponding sum

of the terms (U+Ct+Cn)(m). As we have seen above,
Ct+Cn is a subset of At+An’ so that U+C,C+Cn is a
subset of U+A _+£ , therefore p*(m)=s p(m). It is
therefore sufficient to show that jy*(m)= y (m),

for each positive m. The function y(m) can be



written as a sum of terms of the form
(V+a.)(m) + (V+An)(m)5

whereas y*(m) is the corresponding sum of the terms
(v+C.)(m) + (V+Cn)(m)

In this way we see that it 1s sufficient to prove
that

(V+C ) (m) - (V+A ) (m) = (V+A )(m) - (V+C,)(m)

Consequently .t is sufficient to show that each ele-
ment h = m of V+C,. which does not occur in V+A. has
the property that h-e is an element of V+An which
does not occur in U+Cn This number h has the form
VHC, s where v belongs to V and where c, belongs to

C, but not to A.. Consequently c, iz one of the num-
bers acded to At, so that 1is has the form e+aﬁ, where
aﬁ is one of the numoers cencelled in An’ so that ah
occurs 1in An but not in Cn The number h-e = v+C.-e =
= v+aﬁ occurs in V+An If h-e would belong to V+Cn,
it would have the form v*+cgj where v* and c; belong

respectively to V and Cn Then
= h-v* =h s m < g

Since cg is an element of An which is not cancelled in
An,
h = v*+e+c§ = v*+at would belong to V+At, which is not

e+cg is an element a, of At; consequently

the case

Finally we must show: if the set (A ...,An) satisfies

k, then the set

/"

inequal.ty (1) for each positive m
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(Cq, ..,Cn) satisfies (11) for each positive m = k
We have transformec the set (Aqy °.,An) by a cer-
tain transformation into the set (qu ..,Cn)u I
decompose this transformation into elementary
transformations zs follows. Let p be one of the
elements of An such that e+p does nct belong to
Ly Let Fn be the system An without this element,
and let Ft be the system A. to which e+p has been
added Choose F, = A, for 1= » = n-1, v # ¢ I
shall show: if the set (Aq,.
equality (1) for each positive m = k, then the

..,An) satisfies in-

set (Fq”"’Fn) satisfies for each positive m = k

the inequality
(12) Fq(m)+"..+Fn(m)gcp(m)—w(m)+1—nc

The proof of the principal theorem is established
as soon as we have obtalned this result. That is
clear if for each element fn of Fn the sum e+fn
is an element of Fty since in that case the sys-

.n) is according to its defini-

tems C, (»=1,..
tion identical with Fv* Let us therefore consider
" the case that Fn contains an element fﬁ such that
e+fh does not belong to F.. From the minimum pro-

perty of e and from the fact that A is a subset

of C, (»=1, ..,n-1) and that C, i; &z subset of
An it follows that e is the smallest number such
that a positive integer A=n-1 exists with the
pronerty thsat Fn contains at least one element fﬁ

such thet e+fﬁ coes not belong to F, We cen
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therefore transform the set (Fq,c..yFn) by an elemen-
tary transformation with the same numbers e and <
into a new set (Gq,b..,Gn) and s0 on

Continuing i1n this way we obtain after a finite num-
ber of elementary transformations the set (Cq,...,Cn),
mentioned above. Inequality (1) remains true if

(Aq, ..,An) is replaced by (Fq,o..,Fn), also if
(Aq,,.C,An) is replacec¢ by (G1"°"Gn)’ and so on,

so that the inequality holds also, if (Aq,,o.,Aﬁ)

is replaced by (Cq""’cn)" t

In this way we come to the last part of the propf,
namely: if (1) holds for each positive m = k, then
(12) holds &also for each positive m = k If kz e+p,

I may suppose that this result has already been i
proved in the case that k is replaced by e I divide
this last part into three steps '

I. If < m = e+p, then

(13) A,(m) = £,(m-p) + A,(0)+1 (»=1 ..,n-1)

Proof. From the minimum property of e it follows
that each element a,<e in A, (1= » = n-1) satis-
fies the condition that a,+p belongs to A, The
number of all elements < m-p of A, is therefore at
most equal to the number of elements =z p and <m of

A so that

)}ﬂ

IIA

‘f""y(m"p) Ay(m) - Av(p)" .

IT. If k e+p, then we have for each positive m = €

v
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Eif Ey(m) 2 ¢ (m)+1-n.

v="
Proof. We know that there exists a subset T of An
which contains the number zero and which satis-
fies for each positive m = e the inequality

_1
22i A?(m) + T(m) =z ¢ (m)+1-n;

r=1
for instance the system An itself possesses
these properties. Let T be a smallest subset of
An with these properties. It is sufiicient to
show that T does not contain a positive number,
for in that case T(m) = 0. Let us suppose for a
moment %hat T contains at least one positive
nymber, so that it is possible to transform
the set (Aq,»..,An_qu) into a set (J1’°"’Jn)
by an elementary trensformation. We have assumed
it the case k z e+p that the required proof has
Already been given with e instead of k. That
means that the inequalities (1), valid for each

nositive m = e 1mply

;%E_Jv(m)g @ (m)+1-n,

for each positive m = e.

The elementary transformation applied on the set
(Aq,...,An_q,T) has cancelled in T a certain po-
sitive element t and added to one of the sys-

(v»=1,....n-1) a number of the form

>

tems Ay
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e'+t. From the minimum droperty of e and from the
fact that T is a subset of An it follows that e = e',
so that the added element e+t is > e' 2 e. Conse-

quently
Jp(m) = A (m)

for »=1....,n-1 and for each positive m = e

In this manner we obtain

n-4

7 ay(m) + 3 (m) 2 ¢ (m)+1n

y=1
for each positive m £ e. This is impossible, since
Jn is a proper subset of a smallest system T with
this property.
End of the proof. We must show that the inequali-

=

ties (1), valid for each positive m = k imply the
k. This

assertion is clear for the positive numbers m = »,

s

inequalities (12) for each positive m

1A

since below » the sets A, and F, (1= » = n) are

"
identical. The assertion is also evident for the

numbers m > e+p, for in that case we have lost in An
one term, namely p but we have gained in A,t also one
term, namely e+p. It is therefore sufficient to con-

sider the case p < m = e+p. Then, accordinr to I

iif n-1 n-1
Aym)z 7 A (m-p) + /A (p)+n-1.
=7 =1 =1

We have

F,(n) = A,(m) (v=1, ..,n-1) and F(m) = F,(p)=A,(p),

since Fn anc ﬁn-are identical below p. Consequently
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n-14

;i; Fy(m)é ;Z% Lv(m-p) + Z%: Ay(P)+n-1o

»="1
The first term on the right hand side is accord-
ing to II (applied with m-p instead of m) at least
equal to @(m—p)+1—n and the second term is by
hypothesis z ¢(p)+1-n. Consequently
n

ZZ: F,(m) z ¢(m-p) +¢(p)+1-n z ¢(m)+1-n,

P="
since ¢(m) changes slowly.
This completes the proof of the principal theorem.

In the preceding part of this scriptum we have
restricted ourselves to numbers with weight‘1,
but we may attribute to each positive number
'm a positive wcight y(m). Let us denote by A(m,u)
the sum

A(m,u) = :2?:: Y (a+u)

O < ax<m

extended over the positive elements a < m of the
system A.

Theorem.

Let B,,...,A ,H be systems such that the number

zero belongs to each of the systems A4,u..,Aql

that £ contains at least one positive number

and that H is not empty.

Assume that Wim) is positive and monotonically

not-decreasing for positive m. Let k be positive.




Assume

Aq(m,u) - Ag(m,u) + ...+ An(m,u); ¢ (m+u) -p(u) +w(u)

for cach nos.tive m < k¥ and for each u which is equal

to an element of H augmented by differcnt elements

< k of A, here ¢(m) is supposed to be real for posi-

tive m ana

w(u)z -(n-1)¢(u).
Then the systems BA,V..qu_4, constructed in the prin-

cipal theorvem, satisfy the i1nequality

Bq(m,h) Yol + Bn_q(m,h)g ¢ (m+h) -@(h) +w(h)
for each nocitive m < k and for each element h of H.
Notic

C
is not required in this theorem and that the theorem

that the condition that ¢(m) changes slowly

does not contain a result on symmetric functions
The pvoof, which is practically the same as the end
of the nroof of the 9orincipal theorem, is also di-
vided into three parts.

I. If D < m = e+p, then we heve for each u 2 O
Ay(m,u) 2 A, (m-p,p+u) + A,(5,u) + g (u+p).
Proof . We know that each element 2,<e in A

»
(1= v = n-1) has the property that a, +p belongs

to A,. Conscquently

z y(a,+p+u) = Z ) w(a,+u) =

C=a,<mD psa, <
= AZi__ Y(a,+u) - 42___ y(a,+u),
s, & B 3,< D
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hence

¢ (u+p) + A,(m-p,p+u) = o 2 _ ¢ (a,+p+u)

s A (mu) - £ (P.u).
II. If k¥ = e+p, then we have for each positive
m s ¢ and for cach u which is equal to an ele-
ment of H augmented by different elements of An

. n-1
22; Ay(m,u) z @ (m+u) - @(u)+w(u).
-y= B .

The proof is the same as in the principél theo-
rem.
III. End of the proof. It is sufficient to show

o}

(1%) ;z% F,(m,u) 2 ¢(m+u) - ¢(u)+w(u)

for each positive u = k and for each u which 1is
equal to an element of H augmented by different
elements of Fn: Then u and also u+p i1s equal to
an clement of H augmented by different elements
of An, so that

(15) i 8 tn,u)E pluta) = @lu)sutu)
y=

and

3

(16) ;2: Ly(m,utp) 2 @(m+utp) - @(u+p)+w(u+p).



It is clear that (14) follows from (15) for each
positive m = D, since below » the systems A, and F,
(» = 1,...,n) are identical. That is also the case
for the numbers m > e+p, for then we loose in
An(m,u) one term, namely y(p+u) and we gain in
A(m,u) the term y(e+p+u) z ¢(»+u). It is there-
fore sufficient to consider the case D < m = e+D

=

We find by means of I

n- n-1
Ay(m,u) =z 7 A,(m-p,p+u) +
¥=1 y=1
+ Av(D,u) + (n-1) w(o+u)
»=1 2

and we have

F,(m,u) 2 2,(m,u) (1 =» s n-1)

and

Y

F (m,u) 2 F_(p,u) = £ (p,u),

since Fn and An are ildentical below ». Consequently

(17) i F))(m:u)é HZ_II Av(m—p,p#u_) +
v =1 v=1
n
W ZZ; Ay(psu) + (n-1) ¢ (p+u).
y=

The first term on the right hand side is according
to (16) (epplred with m-p instead of m) at least
equal to

@(m+u) -@(p+u)+w(p+u) 2 @(m+u)—@(pfu)+(n—1)y(p+u),
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Combining this result with (17) and (15) we {ind
Q
;Z% F, (m,u) 2 ¢ (m+u)-e(u)+w(u).
This establishes the proof.
In order to find a suitable application I deduce
the following lemma.

Lemma. Let k be an integer =z 2; suppose

(18) w(m) > 0; @7(m+1) 2 y(m)y(m+2) and x(m) = O

for each positive integer m. If the systems

Aq,nu.,An consisting of integers =0 satisfy for

m=2,3,...,% the inequality

(19) Z k])(a,])-l- 2 gP(a2)+,,.+ 2 gy(an);
O<aq<m O<32<m O0<

=1
2 hZ_q x(h) ¢ (h),

then we have for the same values of m and each

=

integer u =z O

(20) z \p(a +u) +. . Z LP(an+u) >

O<a m O<a <m
1< n

m-1

2 hZ x(h) @(h+u).

] — T
Proof. Put tq = 1. Let t2 < t3 < hee < t& be the

integers > 1 andé < m belonging to at lecast one of

o oaxratomas B i g = =14
the swstems Aqs °.JAn Choose taM m Inequdllty
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- L)(

5 FS.
253 e +1
instead of m gives the e following inequalities

(19), avrplied successively with t

t5-1 ——
Ay plt,)z hé x(h) ¢(n);
t4-1
Aoty + A, p(ty)z h; X(h)yp(h);
t =4

A1qz(t1)+=..+-A€V(ta) z i X (h)y(h);

here A, denotes the number of systems Aq""’An con-

taining ©,, so that the left hand side of (20) is

equal to
1l = x1¢(t1+u) + Azw(t2+u) + ..+ AEW(tE+u)‘

In order to obtain for this sum an appropriate lower
bound, I multiply the sides of the e inequalities
respectively by

w(t1+u) W(tg+u) n w(te_1+u) w(te+u) .W(t&+u)

] 6 B 620 T €S B € B 6

All these factors are 20 since it follows from (18)

that
ple+1) @ E+2) > 0.
$(t w{t+1

Adding wc find



w(t1+u)
°q7('i—5— K(h) y(h) + .

(tp +) ?1
ceo W - xﬂh)ny(h)

In the first sum we have according to (18)

(t,+u)
k—ym—ﬂ:—q—;— ¢(n)z ¢ (htu),

in the second sum

w(t +u)
W‘-)—W(h)- y (h+u),

and so on, so that

t -1 t 1
1z :%i: X(h) ¢(h+u) + ... + :%i: X(h) ¢ (h+u) =
h=t . h=t
1 4
M-
= 7 K(h) L})(h'ﬂl),
since t1 =1 and ’cajr.,1 = m. This e¢stablishes the
proof.

This lemma enables us to deduce the following theo-
rem.

Theorem.
Suppose that A, (» = 1,...,n) is formed by inte-

gers =0 and contains the integer zero. Assume
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for each pogitive integer m ’

(21) y(m+1)z ¢ (m) > 0; qg(m+1); g (m) ¢ (m+2);
A(m)z X (m+1) 2 0

Let k denote an integer =z2. If

(22) 0] Z« mq}(a,‘)+O<Z< m\y(az)h . L+OZ< qu(an);

1 2 <~“n

E
_.s

x(h) y(h) (m = 2,3,...,k),

oy
II

then the sumsystem S = A1 + iae F An satisfies the

inequalities

(23) <Z<m«;»(_s:)> jx(hwh) (m=1,2,...,k)
and even foir each integer u z 0

(24) O(Z((ﬂty(s+u)> z x(h)g(h+u) (m = 1,2, ..,k).

The proof runs as follows. According to the lemma we
have for cach integer u = O

q)(a,]+u) + ae z up(an+u) =

O<a, < m
1 O<an<m

m--

. X(h) g(h+u) 2 z X (h+u) LIJ(h‘Hl),

1=

since X(h)z X (h+u) by (21) This inequality is ob-
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vious for m = 1, because then the right hand side

is equal to zero. In this way we find

25 a,tu)+. ..+ a_+u) z
( ) O;;:i;lnty( 1 O;Z§:;n1w( n

1 n

zo(m+u) - @(u),
where
m-1

p(m) = 7 %x(h) g(h).

We apply this result for each element u of the
Bystenm Hn formed by the integers u.= u2+...+un,

where u, (2 = » = n) is the sum of different ele-

Y
ments of A,; therefore H, = 0. Inequality (23) 1is
obvious for n = 1, so that I may assume that

n z 2, that An contains at least one positive
element and that the required property has al-
ready been proved for n-1 instead of n. Ac-
cording to the last theorem (applied with H =

= H _, and with w(u) = 0) the systems

B

.,B constructed in the principal theo-

/]:'- n_/]?
rem, setisfy for each element u of A1+°°'+An—1
and for m = 1,2, ...,k the inequality
:E Y(btu)+.. .+ z; (b, ,+u) =
O<o,]<m L 0< l,1_,]<mkp B

2 ¢(m+u) - @(u).
According to our induction hypothesis the sum-

system T = B1+"‘+Bn-1 satisfies therefore the



inequelity

2 w(t)z @(m) - ¢(0) = @(m) =
O<t<m h=

m-—

' x(h) ¢(h).

Since T 1s a subset of S = A1+,..+An, this 1last
system satisfies certalnly the required inequality
(23).

The preceding lemma, applied with n = 1 and with

S instead of Aq
This completes the proof.

gives immediately formula (24)





