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• 

By means of generalized generating functions functionals 

and generalized matrices, in a space of 

measurable functions on a given set E containing e.g. all 

bounded ones is introduced)depending on the subset A where 

absorption takes place. An interpretation~previously given,of 

the auxiliary variables and functions as probabilities, e.g. of 
• 

the non ,occtr'r,an~e of some ''catastrophe'', appears to be useful for 

this type of problems also. It is proved that C(A) is a pro

jection-operator and that for 

table and that their product equals C(A,_) • This identity contains 

as a special case an identity recently obtained in an Am.sterda,m 

~h.D.••thesis by J .H.B.Kemperrnan. Moreover A.Wald's fundamental 

identity is generalized and it is shown that the characteristic 

nction of a distribution can be considered as a special case of 

an eigenvalue in a generalized sense, where the eigenfunction in 

the special case an exponential function needs only -.Q pr1 0-

pertional te its transfo-ffc'1 by the linear operator outside the 
• 

absorbing set A • Finally some theorems on lo~ps in the path ef 

a war1deri 
' 

point and some 
• 

sj.milar results are obtained by deri-

vation of the generating funct1pnal with regard to the f1~lt1ctio•n 
• 

~n which it depends. • 

. -· " • • - ~·· 

• 

' 
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The purely mathernatical theory of gener··alized matrix-multi

plication is developed in the Appendix. In particular, sufficient 

conditions for the associativity are given, in cases also where 

the matrices are not bounded. Moreover the Appendix contains a 

generalization of a process by ''independent increases'', for tl1e 

case of a set on which under some conditions a trans~tive group 

operates. I owe several remarks which improved the text to 

Mr J.J.de IonghJ who assisted me in drawing up the final version 

of this paper. 

1. The Method of Collective Marks. 

According to A.Kolmogoroff a probability field is defined 

as a set on which a countably [1] additive set function defi-
, 

ned> > o and i 1 for all subsets A of .17 belonging to a 6 -field 

, which contains and each of its elements is given. De-

noting the set function by P the -value it takes on a set A by 

instead of .PA , we have 

1.1 

1.2 
1 

In many problems of probability theory we have to do with 

several countably additive set functions, all defined on a single 
• 

set , i.e., may vary over another set , usua. lly called 
- - - - --- ..... ...... .... - II - ,_ .... ... .IS 

These countably additive set functions, defined by the con
dition 1. 2 are also sometimes referred to as totally addi ti"'~"e 

absolutely additive, completely additive or 6 -additive set 

functions. 
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spacet'. Then for 

any e en we have a ;j denoted by 
B 

P taking on A the value 
e 

&· 

If is a countable i.e. finite or denumerable set 3 we have 

nG - D0 
'A= ---- , ~ J and if both and _,, 

;\.eA "-

mined by the ordinary rectangular 

AE 

matrix of the numbers 

is deter
cJ 

with e t:.fl. :> 

respect to a generalized matrix. Some of the fundamental pro----~-
perties of these matrices will be considered under somewhat more 

• 

general conditions in an Appendix to this paper § § 7 and 8 • 
' 

2 

Generalizing an idea of Laplace> according to which a system 
• 

of probabilities Pn n= 0.1;)2, -- -

rating function'' 

is represented by its '' gene -

• 

n 
- Pr1 z ., 
0 

1.3) 

z being an auxiliary variable> it was found to be useful 

Cf. D.van Dantzig 1940, to represent a probability field 

by the corresponding functional of an auxiliary function , 

defined on . Assuming this function to be 6 71 -measurable 

and the integral 1.4 

takes in a point A E j by 

the corresponding f.unctional may be written as 

/ dA 

... _. .... -- .................. - _..., ....., ~- ..... - ~ . - - ... 

1.4 

-r,X • 
The notation used in the Appendix 'X is 2 
slightly different from the notation in this paragraph, but 

conforms to the use in 2. 
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• If is """own for a sufficiently large class of functions U , 

when it is known. for all 

-measurable 
• 

1.5 

where ~ / =iota denotes the characteristic function of the set 
• 

, defined by 
• 

• 

1 if A eA 

. ... 
1.6 

o if not . 
• 

er. D.van Dantzig, 1935. In the more general case, when P va-

ries over a set 

bly additive set 

, we can also introduce an auxiliary counta-

, 

for any fixed A to be 6.n. -measurable, and define 

the corresponding functional 

1.7 

These functionals were introduced in my Amsterdam lectures in 

1947 a.11d in a lecture given at Lyon in 1948 published 1949 ; 

and some applications of the method were given there. The auxili

ary functions were called ''marks 11
, their functional the ''collec

tive mark". It will be found useful to use a notation and termi-
~ 

nQlegy, introduced on another occasion 1935, viz. to call point 

nctians and c~untably additive set-functions subject to cer

tain hardly restrictive conditions specified in the Appendix, 

functions of the fi~st and the second kind respectively, and to 
' 

denote systematically the arg11ments points of the foI'rr1er ones 
• 
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. 

by 1ower case letters written as upper suffixes., and those sets 

that in the case where an integration is perfo~ned the limits of 

the s 

ting the corresponding variable point, preceded bythe letter d, 
" 

instead of a capital letter. 

Previous applications showed that the application of the 

method was often ccnsiderably facilitated, if the auxiliary and 

collective variables, functions and functionals were interpreted 

aa probabilities, whilst restricting their range temporarily to 
er a : a , : 

the real interval 0~ 1 • So in 1.7 we might restrict Fe 

as the probability that, by 

means of some random mechanism a 0c 8 were chosen. Also, ass11m-

ing , we might consider an auxiliary event which 

has nothing te do with the probability problem under consideration 

and assume that whenever the latter results in a A e: , a ran-

dom mechanism, , determines with a probability 

f U ,l 
against 

depending on A 

1 / A. 
u , whether or not happens • Then 

• 

is the tctal pr~bability that does not happen. It is essen-

tial, that the random mechanisms remain at least partly inde-
• 

termined, so as to guarantee variability of F and U over suffi 

ciently large sets of functions. Roughly speaking, the wider the 

class of functions over which F and U may vary, the larger the 

class of problems for which their introduction is useful. The 

inte~pretation of an auxiliary as a probability distribution 

is due to J .von Ne1~Jm.ann 1928 and was extensively used in his 

and in A.Wald's Statistical Decision Functions, 1950 • Functions 
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of the first kind, however, whenever they occur in these places, 

are usually given an economic interpretation as ''gains'' or 

''losses 11
• This, doubtless, has the advantage that they may vary 

over all real n1mbers, not requiring restriction to the interval 

(0,1 , but the disadvantage, that products and powers of gains 

or losses have no obvious interpretation., whereas products of 

probabilities may readily be interpreted as probabilities. 

For the same 
X 

reason C and U have been interpreted as 

the. total and conditional probabilities that an event does 

not instead of does occur. We shall call this event 

strophe'·'. The terminological advantage of taking occurtcnces of 

non instead of c lies in the fact that a conjunction ef se-

veral non•••OccuI1ences of e can be described as a total non-· 

cccu~nce of' , whereas a conjunction of several occurrences 

of C cann:Jt be described so simply as an occurrence. Anyhow, the 

"~~■-~e,~P-~.~,tati,on of the auxiliary quantities is pot of primary im

portance, and moreover, nothing prevents us, so far as no conver

gence di~riculties occur, to apply the probabilistic terminology 

to negative or complex quantities also, in the sa.rr1e way as it is 

done with the geometric te~ninology. Cf. Bartlett, 1944 • 
• 

It is the purpose of the present paper to derive some re-

sults concerning stochastic processes by means of this method • 

• 

2. Stochastic Processes • 

We consider random variables, i~e. functions on , the 

set£. 

Random variables or random events will be de11oted by· ·d · p:1 ng 
• 
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· the arg1.1111ent A e and underlini the functions bol, e.g. x~ 

f.f·, xn,etc. 3 • Again we assume that on the set £ and on its 

direct product sets -fields or subsets 

<5£, 6E2 , GEl,--. are given more general conditions are con-

sidered in the appendix 7 • 4 • 

We shall define a ~,t,o~.h.a~t~.c,, pr,.o.~~s~ discrete in time as 

a sequence of randoi·•t variables ~ 0 > ~, ? ~ 2 ~- .... in £ , such 
• 

that the conditional probability distribution of each of them, 

the preceding ones being given, exists: 

<nJ X . - 2.1 
I 

where x 0 , .... , xn_ 1 are arbitrary elements of £ and _. is an 
• • 

element of: o e • These probability distributions will be assumed 

to be 6En -measurable in x 0 ,. • .• ,xn_, · and countably additive in 

X and to satisfy the relations 

1 = <n} E · 2.2 

• 

The common proba.bili ty distribution of x 1 'I ••• , Xn is given by 

3 

4 

X X - P ~A E: X0 ,. .... , Xn E o,·· ·, n " 2.3 

• 

----·------
Random variables often are denoted by capital letters. This 

rarely is done consistently, capitals being used for other 

purposes 

others 
capital 

also, and some random variables being denoted by 

.. bols. Our system of notation saves a whole alphabet 
. 

letters for other purposes. 

In order to obtain a definition of the probability distri

bution on£ we have to restrict the random variables ta 

those functions on which are GE -... rs 17 .. measurable, i.e. 

for which the originals of ~E -sets are always ~II -sets • 
• 
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• 

We restrict ourselves to the case, where it is countably 

additive, not only in each k separately, but also in the 

together, hence on • Assuming moreover that the multiple 
• 

integral equals the result of successive integrations, it is 

then related to 2 .1 by the recurrent relation for n > 1 • 

..... 
- " - :; d.Xo , · • • , dx.n-t <n) Xn · 2.4 

Xo Xn .. 1 

Descriptively we shall refer to the sequence of random 

variables as to a 1'random walk'' in £ , or a point, ''wandering '1 

or ''jumping'' through or over £ , to the elements x € £ as to 

the ''states'' or ''places'' 
• 

.Xo , · • • , J<. n , 
as 

•• 
to the ,,tra.nsi tion proba.bili ty from a point having ''passed through'' 

Xo , • • ~ ~ xn ... , successively to any state in X • The sequence of 

states .x0 ')x 1 ~··· through which the wandering point passes will be 

called its path, the sequence path-segment, the 

or jtJn1p • transition from x,1_ 1 the 

A stC;chastic pr"cess is a simple M,ar~.off
11

, E.~o~es,~., if the 

transition-probabilities for n~1 qepend on the last state 

only, through which the wandering point has passed: 

(n > 1) 2.5 

(n) is called the transition-matrix of the 

is the probability that the wandering point, if x is 
• 

1 ts n , .. t i • e • X n-1 = X will jurr1p into an element of 

• The probability, under condition ~n- 7 = x , 

that xn+1 e X is 

the matrix notation discussed in greater detail in the Appendix 

definition 8,37, 
X Generally we have for n > 1 
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J?n) . . .. P,,,_, +Ir) 
X 2.6 

the matrix-multiplication being associative. Cf. Appendix§ 8, 

lenima 5 • 

The Markoff process is stationary, if all transition-matrices 

are equal to one and the same matrix P : 

p X 
;ef' ln)X (n ~ 1) 

The matrix defined by 2.6 then simply is the th I<. power 

2.7 

- k o:f 

, independent of n . The asymptotic properties cf general 

stationary Markoff processes have been studied in an excellent 

paper by W.Doblin 1940. 

An important special case is the one in which £ is the set 

of' all real numbers, and in which the Markoff pro6ess is invariant 

under translation, i.e. 

for all real numbers 

X 

P. x.+ -v- -
<n) X.,. v- -

we have then 

I 
:X.+ V 

X . 

• 

Such a. process ia sometimes called a ''process by independent in 

creases'' i.i.-process, as the coordinate of the n+ "f 
st state 

is the sum of n+1 independent stochastic variables: 

• 

2.10 
• 

Vk we might prefer the 

term ''invariant process''. 



10 -
• 

• 

More generally we may consider the case, where £ is an r -di-
• 

mensional Euclidean space. Then~ defining an invariant process by 
• 

2.8 3 where now ;r. and tr are vectors in r dimensions> 2.9 remains 

valid. The same is true in the still more general case, where t3" 

is an arbitrary Abelian group~ additively written, x and v now 

being group-elements. 

The case where E is a non-abelian group can be considered as 

a specialization of the still more general case, where a group of 

transformations of£ into itself exists, which is transitive over 

E 3 an.d under which P is invariant Cf. Appendix, § 9 • 
• • 
• 

' 

• 

3. The Collective Matrix of a Markoff Process in an 

• 

Abs rbin- Medium. 

We consider a stationary Markoff process in a set£, deter-

mined by the 

point starts from a 

state 

continued 

, there is 
• 

_e;i v,en. s ta. te x , 
I 

a probability AY 

y , in whi¢h case there is a 

strophe w11·1 occur; and 

occur. 

Instead of the 
• 

We assume that the wandering 

that whenever it is in a 

that the proce3s will not be 

the cata

it will be 

will 

• 

not happen we 

. X 
introduce the co~ditional probability C that the wandering point, 

if starting at 

• , 

• • • 
• 

' 

• 
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It is easy to compute C :x. • The point being in x , it is 

either absorbed at once probability Ax. , in which case non- c 

or not, in which case the 

probability of non- 0 

is to some point 

containing y ;) namely a set on .which the variation of the inte

grand is small !} and then the probabili t.y of -e-vent-i1a,l abso!\pt.ion 

without~ is _Yo Hence 

--
X 

+ • 3.1 

In order to obtain an expression for the solution of this 

equa ~ion we introduce the '' col lee ti ve matrix'' 
X 

the probability that a pointi starting in x , will eventually 

be absorbed somewhere in 7 without a catastrophe having happen-

ed. The equation corresponding to 3ol is now 

x __ Ax""' 
.X 

If we make the assumption that a catastrophe can only happen 

with p1.,obabili ty 1- T x in a state where the point is not ab

sorbed; we have to substitute U x_ 1 

is specialized to 

The total for 

specialized 

X. 

ay 
!:I 

X 

..x 

• 

can now be expressed in this 

• 
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We consider in particular the case where the local absorption-

probabilities . If then A is the 

set of all .x with Ax= t , B its complement .1 we have 

.x. X 

A -
X 

B .. 3.4 

Substitution of 3o4 into 3.3 gives in accordance with the 

definitions of the diagonal matrices 

~ di X 

A X Ar,X 

,, 

-l3,-, X -

X di 

and of matrix multiplication 

z dt 
X 

X 

• 

X 

X 

.x 

X 

8.7 

8.8 

8.37 

considered in greater detail in the Appendix§ 8, the equation 

--x .x. 
A X + X 

or in matrix notation 

A + 13 • 3-5 

Multiplying both members of 3.5 from the left by A 

we obtain the important and 

often used identities 

\ 
• 

• 
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• 

, 3.6 

From 3o5 we obtain by induction 

C-
0 3.7 

No~, assuming first 

Appendix 

Tx < 1 , then by 8.42 of the 

N 
3.8 

• 

as IB - 1 unless B= o; which trivial case we exclude , //?II~ 1 

and 

cond term in the right member of 3o7 tends to zero, and 

4 I IL 

0 

n/ 
A ., 3-9 

where the series converges if T <1. We know:, however 3 only that 

T < 1 • If we replace TX in 3o9 bye TX , 9 being a real 

number, the series in the right member is convergent for o~ e < 1 j 

hence an analytic function of 0 • As all its terms 3-re ?.: o and 

its value, being a probability; remains ~1 , hence bounded for 

o s 8 < 1 :; the series remains convergent for e = 1 also, and its 

value remains < 1 • Hence 3.9 holds not only for /IT//< 1 !} but 

also for//Tj= 1. We may then drop if necessary the interpre

tation of the Tx as probabilities, and replace them by arbitrary 

complex values. Then C becomes a complex analytic functional 

of , defined at least for T < 1 . 

For < 1 we can write because of 8.50 

, 

• 
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Multiplying both members of 3.9 from 

the identity 

3.10 

obtain 

3.11 

which expresses the fact that absorption occurs in A only, i.e. 

that 

-.x 
-x-

3.12 

For Tx= 1 i.e. if no catastrophe occurs at all 3.9 implies 

the total probability of a point, starting at x , being absorbed 

eventually somewhere in X . For the special case where E is the 

X yEX y 
,. where 

p .1-f Y= X+-1 
3.13 

'::I -
t_p ii ';f=X-1 

1 

and: o in all other cases, and where = :xEE / O<X<a+h 

and Y= x+-6 solves the classical problem of 
• 

• 

the Ruin of the Gamblers. In fact, 3.9 is essentially equivalent 

with Abraham de Moivre' s classical solution. For Tx.= T • constant 

we obtain the generating function belonging to the problem of 

ration of Play. The generalization which was used in Wald's and 

Barnard's original theory of Sequential Analysis 1s obtained if in 

3.13 the conditions are replaced by ~ - x+;s and ~ = X-

respectively., 0<. and JS T. 

In particular the generating function used by Barnard corresponds 

to th-e case oc. = 1 , /3 > 1 • More general cases were studied by 
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D.Blackwell and M.A.GirshickJ G.Blom, M.A.Girshick and J.H.B.Kem

perman. The latter considered the general i.1. stochastic process 

in a Euclidean n-dimensional space~ and studied in greater detail 

the case where E is the set of all integers and 
...,.... .x. 

y -P':i-x arbi tra-

ry but, of course, -~ o 1 . Also the case that a wan-

dering point will come somewhere in a setA 1 without having been 

in a set 2 before, is contained in our general formula, by tak-

• Some applications of the use of non-constant 

X ~ 1 6 wil be given in section . 

• 

We shall now establish a relation between the collective ma-
• 

trix belonging to an absorbing region 1 , with the one belonging 

to a second absorbing region 2 , contained in 1 • We rnay think 

of two kinds of wandering particles, those of the first kind being 
• 

those of the second kind in 

denote these two collective matrices by~() A, 
• 

ly, and we shall prove: 

Theorem 1. If then 
• 

• 
(A,) 

We remark that the theorem applies if A,_A 2 :1 

2 only. We shall 

4.1 

and then states 

that C is idempotent a ''projection-opera tor 11 
• The eql>.a tion 

and spectral 

operators. These matrices however are not additive in the sets 

Proof: The second equality in 4.1 is trivial. It makes use of the 
n • 1 Z<UIIV: 

fact only.that by 3.11 

• 

• 
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...... 4.2 

and that by 3.5 and 3.6 

• 

4.3 

Now the definition of matrix multiplication 8.37 implies for 

the diagonal and 

X y XnY 
4-. 4 

• 

and_therefore . 1 c • 1 

A,u 2 •·+ -_; 1 /'J 

• -· - 4.5 

4.6 

0 
4.7 

4.8 

From 4.2, 4.3, 4.5, 4.7 we obtain at once 

(A,)= 

• 1111 , 

• 
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For the first part of the equation 4.1 we shall give two 

p~oofs. The second proof, which is purely algebraic like the pre

vious one, will be given later and in a slightly generalized form 

so that it yields simultaneously another result. 

The first proof is based on the probabilistic interpretation 

is the probability of the following event : a 

point, starting in x , arrives without a 

catastrophe having happened and is absorbed there. Now consider the 
d+ 

happens, then the wandering point may either have or have not pass-

ed through a point of . The two cases being exclusive and ex

sum of the corresponding probabilities. hausting, 
X 

In the first case the probability is the same as if the larger 

region 1 had been the absorbing one 3 and it being required that 

the point be absorbed, not only in . Hence its 

C X 
X. 

X • In the second case there 

is a point~€ D ;J where the wandering point comes for the sfirst 

time in . The probability that it will arrive in any 11 small 

set 1' d.'I is the probability of being absorbed there had 

been the . This must be multiplied 

with the probability that the point goes from~ to a point in 

' 

strophe 6 

i • e • .:. !J and integrated over y . Toge:bher we obtain 

x_ x - .x .,... Y 
·(A,)X- (A,)Aa"X + (A,)d:; (A.2)X , 

4.9 
.D 
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or in matrix-notation 

4.10 

hence 

""(A,) -(A.2) by the identity analogous with 

4.~. Hence the theorem has been proved. 

Before giving the second proof we consider a very special 

case. Let E be the set of all integers. The integrations can 

then and generally ifE is countable be replaced by summations 

and we know the matrices and functions of the second kind if we 

know their values for the one element sets only. Let 

the interval - a: < x < I:, :; and B, the interval - d < x < 6 :1 

are positive inte5ers • Further 
a • • -, I • a ,, ; I IP r where _ a <-d. < o·< b 

we take x= o and the set with the one element - , ·with 

~ _a. integer. Let further the process be invariant,so 

that for all . Then 4.9 be-

• 
comes with '-/::.:·-<I : 

0 a_ 1 
-. 0 4.11 

where • 

With a different notation and Tx_ constant this relation was 

By 

matrix (A,) is 

can be found for all x 

completely 

iteration like in section 3 3 however; we can express 

• 

p • 71 G 

and if the 

only. By 



• 
• • 

19 - • 

• 

As 

by 3.6~ 4.10 1s equivalent with 
• 

By means of the same iteration process as used before3 this 

yields 

0 

or, by 8.50 if 1/Tli< 1 : 

For the special case A,:.:.·£ 

leads back to 3.10. 

-1 

• 

4.12 

4.13 

4.14 

this 

The solution 4.14 is particularly simple ifD consi3ts of 

one point d only. Denoting the middle factor in the last member 
• 

of 4.14 by/-,.. , we have thus 

= I 4.15 

' or 

) 4.16 

showing that vanishes unless x = d j in which case 
« ex <X ..--. cl. 

.. i.e. 
- (A1) ol.. X ~ 

• 
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• 

-1 
• 

• :1: 1_ • 4.17 
• 

• 
' The solution 4.14 then becomes 

• 

' • 

.X. X 

--(,41) A2- ~ X + ....... (A,) ol. 
4.18 

fA:i) X 

If is countable~ 4.17 and 4al8 give a recursive method 

for computing successively the ._,(An) if we take 

, and add successively one element each time to 

We assume, for simplification of the notation, that the ele

ments x,y, %, • . .. of £ a1'le the integers 1 1 1,3, ... themselves., in the 

order in which they are taken into B 

An!... n+1,n+2, .. .,. • and abbreviate 

that for ~5n 

1 

by 

, z 

SO that ~ Bn a 1 , • . • ) n 
' 

. Moreover we remark 

n z 
n..-1 ~ + 

as 

becomes 

= o if x >n unless . The recursive relation then 
• 

n y --

if y~ n~,, 

.x: 
~+ 

--

X 

nite number of independent variables 

fixes are not exponents~ 

-~ 
z 

z Tn 
n_1 n 

4 .19 

X 

the super-



• - 21 -
• 

• 

• 

• 5. Second Proof and Wald's Fundamental Identity . 

The second proof of the first equation of 4.1 can be given in 

several ways, and consists just in verifying 4.1~ 4.10 or 4.12 by 

means of 3.5, 3~9 or 3.10, applied choose the 

rollowing form. For 3. 5 we can write /_ C =- /8 _ fs TPC or 

5.1 

or if /IT//< 1 J 

5.2 

Hencej if we multiply both members from the right with any 

bounded matrix ZJ , we find that 
·-

if satisfies the identity 

/8 / .. TP __ 

Now taking like 

w. 0 • 

5.3 

5.4 

a at is. f· 1 e d . 

if •oth members are multiplied from 

, 4.6 proves 5~4. Hence 5.3, i.e. the first 

part of 4.1 is true . 
• 

The identities 5Gl~ 5.2 lead to other interesting results~ 

As the set - on which_ .. as long as 

enters into the equations as a last right hand factor only, we 
~~ 

can just as well replace it by a function of the first kind. 

Then formally our previous result 5.3, 5.4 becomes: 

fies the equation 

X 
.. 

satis-

5.5 
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• 

is an eigenfunction of C belonging to the eigenvalue 1 

if I x .:c / x T x 
.1J ::: E 

i. e" if • • 

On the other hand~ if 5o5 is satisfied, 5~2 shows that also 

5.6 holds. Th~ result that 

is bounded, and the series 

5o5 is implied by 5.6 is valid if 
~ 

occuri'ing implicitly in C and in the 

right hand 

sufficient 

member of 5.2 are uniformly convergentc For this it is 
X -1 

< 1 

:[or some 

every x 

n. 

In the most important application, howevers is not bounded . .;; 
. u,,, ... 

and then associativity has to be ascertained in another way, say 

by the conditions of Lemma 4 Appendix 8 ~ We have then: 

Theorem 2. If a .... _ . . . .. ' -. , .. ~- ··~.,,.... ,,'l ............ I 

.. .x: 
>Q 

0 
and_a 
..... ,.. P"'"'•-

> -

-..-x 
.~o exist such that 

0 ..... ,,.,• ,--· .··.------ 0 

13 
<oo, 

5.7 

.... > .,.. - • , ..... 

0 0 
if X E B ' 

and that 
• • .IWIV.._. - 'l" ....... ~-

then for all 

allxc:B with o-< e < 1 

Proof: We have bv 
J 

~ 1+ 
Q 

x with 
X 

- -..-l'' W ?-• SI 

< C • • .. 

o B 

0 

.8 < 1 , 5.8 

and with 
.... , ··--

c bein- a constant~ the e-uations 5.5 and 
...... -· ... .,._ ,. ~------•'""-"fl',~•...-·~ __ ...,._ w.•·tlllf·· • • •·.., '11!'"'-.._,. .,_ ·• -- - • 

• 

tor· n ~ 1 :. 

< 
I ._ 

0 

5 Cf. J.H.B.Kemperman, theorem 1 and 2 pq 13, 14 for the case~ 

where£ is the real axis, the process invariant but not neces

sarilJ.r s ... ca tionary and A a half---line .. 
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• 

en+, I 7:. Pl 
B a .B ~ 1 + 0(t_ 

• 
so that C and the right member of 5.2 exist absolutely, and are~ 

moreover, bounded. 

> o :J and 
(:,,:> 

T/? 
n < n la 

0 

< X 
C 0 e co -,.. 1 . - 0 

In the same way R 7: ~ 
• 

X 

for all x as it is 
X 

c,;, 
.x. 

+ce en < C 
0 0 

-1,1/1 7:.P X 
• 1, B a 0 

X " t exis s., hence also R /_ TP 

is bounded and 

X 

0 

X 

..c:: 
-= 

, and., 

similarly C 

with·E-E' 9 

. Hence the conditions of Lemma 4 Appendix 

for any fixed·x in-

stead of P, are satisfied and we have 

= Rlzs /_ TP_ ___ R ~ /_ TP :0 

if 5.6 holds. The transition from 5.5 to 5.6 1s similar and even 

simpler . 

. We now shall apply this result to the case of an i.i. process. 

vle take to be of the form 

x_ ef:x. 

and Tx = T = constant 

· and ;'"'being real or complex numbers. 

The.n with cf 2.8 

px. - /X.+V-
x - Pd.v 'x 

we have 

X7'-tr - f (x+v-) 
% Pc:tv e = ~ f 

where 

• 

5.10 

• 5.11 

5.12 
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• 
I 
' 

is the characteristic function of the distribution function . 
• 

The interchange of the integrations is certainly allowed if the 

integrals in 5.11 converge absolutely, i.e. if 5.12 converges 

absolutely., i.e., if re Re~ exists~ Hence we have proved 

Theorem 3~ For each 
-•' ii, pi lr ■ ili4& I. _.,. ...., ,. ....... __..., --••• )11/'••i.llJ 

x=e~x is an -

e~g_enfunction of the i o i. matrix P , 
J $

1 
l~.'lj,., •-----------• -•••'""lT 

5.10, belon ing 
' ' 

to the ei~envalue ----· -· ....... __, .. _.. ------

Substitution of 5.9, 5.11 into 5.6 shows that the latter 

equation is satisfied if and only if 

as soon as B is not empty s and then holds for all :x E £ not 

only EB • 

In order to apply theorem 2 we choose 

real and such !) hence 
0 

existsj 

being 

const .. , 

satisfied if Y;, :5 1 • Condition 5 a 7 with equality sign is sa tis- -

:fied if 

' 

Further we take a T and 

such that 
0 

-Re X :! --

C 

C for all x 

0 

.. 
in 

3 and 

. Then., writing 

5.15 

is the probability of absorption in foJlowing the 

n -th step 3 we have 

• 

and we find that 5~13 entails, 

5.16 being equal to f : 

:for -~ x c: o 
' ,.., 

""I •• --~,.. 

• 

5.16 

, the left member of 
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, 

• 

5.17 
1 

• 

The identity 5.17 is known as Wald's Fundamental Identity. 

We have seen that it is a special case of the identity C _ , 

which holds for all 

tions of theorem 2. 

:; satisfying on under the condi-

A partial generalization for arbitrary stochastic processes 
• 

is considered in the Appendix § 10 . 

6. The Problem !',f.,, .Ji.<?.,C?P.~. 

We consider a stationary process without absorption~ As, 

however~ we want to consider properties of initial segments of given 

length n of the path, we have to admit discontinuation of the pro-

• cess at any moment. We start therefore with the expression 3.1 and 

substitute 

Bx_ B = const - 6.1 

where B is 

fixed initial point x • 4 a . We obtain 

...... TP nT a 6.2 

so that not Ca. but ca. /_B is the genera ting function with as 
• 

variable. 
• 

For some applications of the theory of Markoff and other sto-
• 

chastic _processes~ eeg. in the chemical statistics of longchain 

molecules cf.e.g. G.King 1948, 1949j EaW.Montroll, 1950, Ch.M.Tchen~ 
• 

1951, J.J.Hermans 3 M.S.Klamkin and RoUllmanJ 1952 and. the litera

ture quoted there ,it may be of some use to have methods by which 
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• 

the occu e of 11 loops'' in the pa th, i O e C of returns of the wan-

dering point to a state where it has been beforeJ can be studied. 

Without going into these applications and without prejudging its 

workability or its ability to yield non-trivial results in 

practically important cases> we shall outline sich a method here., 

which in any case might give a line of attack of this and similar 

problems, and is apt to be generalized for adaptation to other 

problems I> 

Evidently 

have continuous distributions. 

In order to avoid irrelevant complications we shall assume, that 

these distributions are purely.discontinuous, i.e. E is an 

enumerable set. In some of the applications mentioned£ is such 
• 

a set3 namely a point-lattice e.g. a tetrahedral lattice in 

space. According to Appendix 8.1 the transition-matrix 
X . 

then X 

is completely determined by the ordinary infinite matrix 

the integrals in general 

infinite X 
0 

ca now is an analytic function of an enumerable infinity of 

variables Tx s i.e. of a vector in a infinitely dimensional space. 

The partial derivatives of a .function of the Tx with respect to 

these variables can be considered as the components of another 

vector, the gradient. We shall denote the differentiation-operator 

by 17 with 

6.3 

The suffix is written as a lower one because ~ in vector-analysis 

the derivatives with respect to a contravariant vector form a co, . 
• 
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• 

variant vector:) .2° the generalization of 6. 3 to non-enurnerable £ 

will be found to lead to functions of the second kind. 

If 
~ 

c= PnTn 
0 6.4 

is an ordinary generating function_, Tn being here the n -th power 

of T of the probabilities Pn=Pa=n of the values taken by a ran

dom variable .0 , the successi. ve deri va ti ves of C with respect to 

T give for T-:::. 1 the successive factorial moments: 

7 
-'..I ··- 1 T::: 1 . 6.5 

aC 
6.6 

6.7 

where c is the expectation-symbol~ whereas 

1k d'f 
:X:. • . ,. X ( X - 1 . . . X - k + 1 

• 

denotes the k -th '' factorial power'' of x s 

By writing out the implicit matrix-summations in 6.2 we 
• 

get an infinite sequence of terms 3 each of which is the probability 

of a definite pa th of length n :J multiplied by Tx 0 • •• Tx.n Bn /_B • 

If the path passes times through the state x ~ application of 

v'.r and subsequent substitution of T= 1 gives k. times the probabi

lity of the pa th. Hence.1 iI' o .x denotes the number of times a pa th 

passes through x ., we have • 

6.9 

In the same way we find 
• 



etc. 

It follows that 

; t7~ Vx Ca. 
x.E.E 

double point of the path~ 

T=1 

- 28 ~-

- 1 
2 

• 

• • 

I n .2 
.. .. X 

then 1 n ·12 = 1 ,2 - X 

• 

6.10 

if !f # X 

.. 6.11 

, i.e. if x is a 

o Hence 6.11 gives the 

expectation of the number of double-points in.a path 3 a vriple-, 

quadruple-, k--uple point being counted, as usual in algebraic 

geometry, as 3,, 

Theorem 6: If 

double-points. Hence, we have proved 

........... -· --- _, "°0 'IC)[$ d 

~ q u~.! .~ .... II~ he-· -~~mb ~ r Of M .?_?~b ~ e :P.O J-?.~,s .. ? r . 19 2.9- :3 .9 .9 ... <?~n t~_g in __ the_ --.. ~.r ?.E.e~ -

said manner we have 
---.'i?M• ·4 , ♦,,,.-.., •------•/,'" & ,4° -•--- C Id _,. 

where o 
• • • 77;:;-,_ 

denotesthe generalized La~lacian operator 
.... ._ .. -------------- A .. ..,, - --·II('\. t,t a 

□ cl.I 
XEE 

6.12 

6.13 

Similar relations j of course J hold for the number of triple-

points, etc. 

In the derivation of 6.12 we used .. ~the fact only that Ca.is a 

power series in the T x , but not its special form 6. 2. Hence the 
... ·•11,g 

result holds fbr arbitrary non-stationary and also non-Markovian pro-

cesses also. In the special case 6.2 the left members of 6.9 3 6.10 

and 6.11 are easily computed. In fact, we have 
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• 

6.14 

• 

6 .. 15 

Hence we obtain 

6.16 

C',r? 

for all x • Hence 

;:; B( /_B)-f and 6 .12, 6 .16 rnay also be writ ten as 

a. p>=_, 
X. X 

6.17 

where 
' 

6.18 

In the special case, where the stationary Markorf process 

is an invariant oneJ 6.17 simplifies still further. For in that 
X 

case 1s independent of x > so that the summation is extended 

over only and gives 
Ol -1 

E -=- /_B · . Hence for an invariant process 

6.17 becomes 

D:::BI_B-' 0 

0 - 1 . 6.19 
• 

Expressed in the conditional expectations cm>D for given n ~ the 

left member of 6.19 is 1J so that 6.19 shows tha·t 

i h Of B n -tn B /_B -2 ~ o st e coefficient ~ 0 -1 , hence 

0 
.. 6.20 

• 
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• 

closed, i.e. that its first and its last 
th 

(m+1 state coincide 

whether it contains double points or not. Like so many simple 

specializations of general theorems, however, this result is tri

vial: in a pa th of length n a loop can have any length ,e , 1~ t~n:, 

the 

cases have equal probabi•-

and, if so, it can begin at the 1 st, •. , 

case of an invariant process these n_/ 
,, ( 0 

lities which are equal to P 
O 

, i.e. the value of the -:fold 

convolute of p.,_,. cf. 2.8 for the value V=O • 

The method scetched here can be generalized for arbitrary 
OOJL - ■ llidS I 11 

stochastic processes and applied to other problems than the ex

pectation of the meen number of loops. 

For an arbitrary functional of a function rx we define 

er. Hadamard 1910, Frechet 1912, 1914, Van Dantzig 1935 

6.21 

if this limit exists. Under certain regularity conditions,which are 

e.g. satisfied in the case of an analytic 

a countably additive function of the set 

3 this quantity is 

. The dual definition 

f'or a functional of a of the second kind would be 
• • 

V == tim :!' V+2 /~)-i'i V) 
6.22 E~O 

yielding .for su.fficiently regular 

For a matrix P we can define 

= li.m 
f\i 0 

c 
...... .,., --

• 

a function of the first kind. 

6.23 
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where I 1«x_ 1 x 1 a 
A X A X is to be distinguished from ;a. ;A ·-

. In this paper we shall have to do with 6 .21 onJ..y. 

Applying the operator~~ to the general stochastic process 

••• 
() 

' 

from which the special case 6 .2 is reobtained by the specialization 

2. 5 with a .P<nJ - P -independent of n we obtain: 

V. C 
X T=:1 

tn 
w••· X , 6.25 

where the random variable n x f'or any given X is the number o.f 

times that the process passes through a state in . For 

n :n ..... E -- is the number o:f steps made until the process is stopped Cl 

In the same way we find 3 as a generalization of 6.10 

/ 

T::::: 1 
= -. --e nx .Dy - n X n y 

In the case of continuous distributions of the jumps, the problem 

of loops becomes trivial: their prob.ability then is zero. We can 

however consi(1er related pro ms, e.go the question, how often a 

path returns into states within a given distance from one of its 

previous states 2 without any pretention that this can be used for 

the solution of the generalized problem of loops ''almost loops 11 
; 

which to give a precise ~orm seems itself a rather hard problem. 

We shall suppose here that £ is a Euclidean space, or:; more 
• 

generally, a metrical space~ where any two states x and have a 

distance, denoted by ~ x~ . More generally we may take any two-state 

function apart from conditions of integrability , and form 

the opera tor 

6.27 
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• 

which passes for the case of a finite set£ into the generalized 

Laplacian 

• 

. . I-' ij c) () 
I, J ··- -·-. 

-- ~ T' a TJ 
, 6.28 

• • 

where the f '-.1 are constants 
• MIi E..S;:t I ,.......,,,._ __ ___ 

• 
independent of the T~ 

• 

. Under suffi-
' 

cient regularity conditions the order of the derivations may be 
' 

interchanged, so that 6.27 then vanishes identically for an anti-· 

symmetrical f f'X!:/ - - r yx. . We shall therefore restrict our-
' 

selves to symmetrical • 

Provided the interchange of integrations is allowed, 6.26 

gives: 

, 
2 6.29 

Here the integrals after the second and the· first expectation··· 

sign respectively become for a path of length 0 .. 1 , passing, 

n1 • .... , n?. times respectively 3 through r different points x,, .... , .xr ) 

I Xl n. 
1 ~~' X 

r 
• 

.._...' n. 
1 - ' 

r r 
Xll • . IX. X .. n dx !J rll./ ~ - (. '.I n . n . - ' --., 

~ - , 1 .... ' -1 . 

6.30 

6.31 

Hence the righthand member or 6.29 is the expectation of 

al 1 
2 

• • 

x . ..x. 
• 6.32 

This quantity is the sum of the X•X· -,-:t , ,j ... t., 2 :> ••• , n over all 

, together with the sum of the 
Y. X . 

JC',c - (,, ove~ all multiple 
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point_s; counted as multiple double points like before . 
• 

The second term vanishes identically 
• 

.., 0 
J if fxx - o for all x ~ e.g. if .,exy is the distance ~xs,1 of x 

takes the values o and 1 only except for 

a probability o • 

In the latter case, which occurs always, if the transition 
• 

probabilitiea have continuous distributions~ we can omit the x, 

wi-th n. . a 
-( 

X·X· _, -"j 6.33 

where the x, are the n(~r different points through which the 

path passes. Hence in this case the operator 6.29 gives the expec

tation of the sum of the values oft for all pairs of different 

points of the path. 

If in particular rxy is the distance -zX!f of X and y 

is j !J !l _ 1_ times the mean distance taken over the path of 

any two states through which the wandering point passes. 

If, instead of rxy=~~Y, we take for·t the characteristic 

function of any relation between two states e.g. 

' 

2 where a is a non-negative number , i.e. 

-••• 

1 if R(x,'/) holds 

o if not.?i 

then 6a33 becomes half the number of ordered pairs of different 

states in a path for which holds 3 e.g. which have a 

this 

distance~ a . In the case of a symmetrical relation this is the 

number of unordered pairs. 
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In the stationary Markovian case we again can easily compute 

the left member of 6. 29 o Like before we obtain for a symmetri.cal f'xy 

:! 
.2 

• 

• 

For rx:s;!> 1 this becomes., as PT Y then also equals 1 

1 
2 

f XII . 

, 

6. 35 

For the case of an invariant process, given by 2.8, this simplifies 

st i 11 further., if ,8 X;!f = I'" .x -Y = .ff;{- :x:. • 

We have then 

th 
, as and dz. 1 . 

Hence the coefficient of J_B En , becomes~ as t must be > 1 , 

n 

"~.I 1 

(() 
Pav • 6. 36 

Like before 3 this relation can easily be proved in an elementary 

way. 

If v has the Fourrier transform (t) ! 

V 
• 6 .37 

6.36 becomesbecause of <e(t) , where 

Pav- • 



• 

• 
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= 

6.38 
-- {n- 1)- n <t(f) + e_e(-t) n 

,_ <e(t) 2 

(f!(t) :x._(t) ci:t . 

• 

For a given p and , hence ce and X , 6. 38 gives the requ:i,ed 

expectation in the form of one integral . 

• 

• 

• 

• 

• 
• 

' • 

• 
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APPENDIX 

§ 7. Functions of the First and the Second Kind 
-.io~, .. ,.. • • ., • 

14 '" . ~ a• ,a,'"'------ , •• • 

According to Kolmogoroff a probability field on a set£ is 

given by a countably additive set function on E , defined and 

non-negative for all sets belonging to a o --field 6E of subsets of 

E , and taking the value 1 on E • 

More generally we shall,. instead of a <5 

-field according to the terminology used in Hahn-Rosenthal, 

1. e. a system cf'E of sub-sets of £ which has the following pro

perties: 

1. J£ is a field i.e. contains with any two sets X and Y 

their union 11 join'' X UY, their difference s which we 

denote by X --Y and Y--X respectively:, hence also their 

intersection 1imeet'1 Xt7Y; 
• 

c,o 

ii. contains the intersection 17 Xn of any sequence 
r 

· of sets Xn contained in it; 

iii. £ is the union of a sequence 

,.., 

of sets belonging to 

It follows by replacing En , that we can assume without 
• 

restriction that 

7.1 

whereas i and ii imply that the union X_ 
.. . 

sequence 
• 

of sets belonging to cf• belongs to 4 if and only if all XI) 

ar~e contained in some Y £ d'e .. For in that case and 
Cr,) 

X = y __ i} 
1 

y __ Xn 
• 



• 
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The use o~ a~ ---field instead of a 6 -field has the advantage 

that f'unction-''valuee ''.too cf. e.g. Hahn-Rosenthal; Halmos_., etc 

may be avoided. 

Generalizing a terminology introduced on a-previous occasion 

D.van Dantzig2 1935 we define a function of the second kind as 
• _,..,,.,,... . ... ....,..,'It.~- --· iT • ,,.,.-":-'9-~,... ,.+·" • 

a real function \ve 

denote the value which F takes on a set X a se-• 

quence of setE e dE which are mutually exclusive and which 

have Xe J£ as union a dissection of X , and denoting this by 
. -·--·- ... ·------

s hence 

n ., ana Xm n n :0 ii m ,t, n 7.2 

0 being the vacuous set~ we then have 

n E ·- > - - 7 .3 

The absolute-value function of F which itself is a function 

of the second kind.9 is denoted by F :; and defined by 

• 7.4 

On the other hand we define a function of the first kind as a , . ~ I: • •" a L ~- r & ,-t 

real function .f: 3 defined for all x e £ J and bounded and d -rneasu-
. ,,,,, .. ..... . .... ' ... ,.,. 

rable on each ·-· .... -
customary f (x) 

instead of the · 

the value which /1 takes in x , and by Kns xEE Ii (x) 
• 

the set of all x.E£ for which the statement A(x) holds, we have le o 

7-5 

where 

7.6 

. \" ' --
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and 2e. 

for all real c and Xe d'E • • 

The set functions ff x are in general not countably additive, 

hence not functions of the second kind. 

We remark that .f /J x are finite 

considered as ''norms'' of F and .f on X if X is fixed. In part1-

and 
.E 

are finite:; they have the ordinary proper--

ties of norms of F and I' on E . In the latter case we shall sotne,. 

times omit the suffixes£. 

More generally we may admit the values of F and~ to be com

plex numbers> and in some cases even to be taken from arbitrary 

dual Banach spaces. --·-· .... _ 

The integral of with respect to F exists on each subset 

e °t: and will be denoted by 

X 
F l'x . dx 

• 

It iss according to well-known theorems, a 

.function of the second kind, satisfying the inequ.ali ty 

• 
• 

for any Also according to known theorems we 

' 

an 

the variation of -F on , i.e., 

.fx , 
xeX .xeX 

and for any dissection Xn of • • 

ve: 

7.8 

7.10 
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• 

7.11 

we have j if' Xn for all n : 
• 

F._ fXn 
n Xn • 7.12 

This follows from 7.9 with ....., = F and gx= 

~ 8. Ma trices 
.. N; 

Let E and E' be two arbitrary sets, on each of which a 

-field ~ and 

tions of § 7. 

~' of subsets is given, 
> 

satisfying the condi-

We consider a function P to be called a -::.- generalized 
• 

11 ma trix 11
, or more explicitly an E,£' -matrix, determining a 

real occasionally a complex function of la. an 

element ye£' and 2° .. a subset e OE , subject to the conditions: 

1(). 

of the first kind on£'; 

pk determines a function 
X 

of the second kind on £ . 

If in particular£ is countably finite, or enumerably 

and if JE contains every set consisting of one element3 we have 

and if E' 

p!i= - pY 
X .xeX ~ 

also is enumerablej 

rectan 
'--' 

lar finite or infinite matrix 

The norm for fixed y is given by 

8.1 

pv 
x• 

·-



• 
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• 

Pfl 
X 
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8.2 

I.t is itself a matrix. ·rts norm for fixed X is given by 

X yeY X 
8.3 

an element 

in 

if 

rnatrix is bo-q.nded, i.e. 

8.4 

1 s not defined for X - £ . In that case we 

take the equality 8.4 as a definition or· E' 
p E • 

Instead of the symbol E' 
also use the symbol PJ. 

In particular the sets £ and £' may coincide. In that case 
• 

we shall suppose that the fields JE and JE, also coincide. A 

special case here is the ''unit-matrix'', denoted by / iota , and 

defined by_ 

1 ilxeX 

o ,I not 
8.5 

For fixed X .:-A 

for fixed a ;a might be called the 1
' characteristic function of the 

second kind of the point a '1
; it takes the value 1 on each set 

containing a and o on each other one. Evidently/ is bounded with 

ii I~ t , and 

8.6 

. 

More generally with every subset A E de corresponds a rrt.a. trix, 

also denoted by ~ , and defined by 
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• • 

8.7 

In th_e case. of finite E::: £' it corresponds according to 8 .1 

with a matrix having 1 in all elements of the main diagonal, the 

suffixes of which belong to A, and o in all other places. Evi-

dently /A also is bounded and I~ l:::.1 unless A is empty. 

With every function I of the first kind corresponds a matrix., 

to be denoted by /!/ , and defined by 

• 

Ix ;f .x:eX, 
0 11 no)~ . 

• 

8.8 

In the case of an enumerable E -£J the matrix which corresponds 

to II according to 8.1 is a diagonal matrix, having the value 

which corresponds with~ . 

Evidently fl is bounded if and only if .f is, 

We now return to the general case, where£ and£' may differ. 

Then let P be a matrix like before, and f a function of the first 

kind on£. Then for any writing ?/'/ 

forP'./'/ , 
, 

• Pf I ~ = . ? !I IX 
X X dx 

8.9 
• 

exists and is countably additive in measurable and 

bounded in on each 

8.10 

so that ?II is a matrix. In particular , if it 

exists for all 

is bounded if P and are. 
, 

On the other hand, let F be a function of the second kind 
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• • 
• 

on£'. Then 

Lemma 1. 
• 

_ ....... . ff IQ 

• 

8 .11 . 

• 

exists and -
Proof: The countable additivity with res.pect to Y on t!E' for 

constant X follows from that for 

is trivally additive in X . For the countable additivity on ~ 

it is therefore sufficient to prove that ltm 
n »CO 

is a decreasing sequence of sets XnE JE with 

We choose an e > o and define 

rP --·· o Y,X,, 

empty intersection. 

• 

Then, as pr is countably additive and >o :for each ye£', and as 
C9 

n+-1 C n, we have also Bn+1 C n • Moreover I? 
1 

c.o 

existed an , then for this 
n 

C4 

contradicting the countable additivity of P~ as 17 , 1 

In the same way for all~ sufficiently large n , 

if C,., · 1s the complement Y--Bn of Bn with respect to 

But 

with C _. ·-n Bn 
1 - r X n 

' 

< F 
13,, 

. And 

with as Cn c Y ., and 

:s t,C1 

n y~t.'11 n 

for if there 

for all n J 

Now, 

of Bn and en • Hence C, + C2 e for all sufficiently large 
J/1 
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n, E>O being given 3 i.e. 

ED. 

It follows easily that for all X ~ Y 

• 

• 8.12 

If, in particular, F and P are bounded, then also F? is. 
' 

By means of the inequalities 8.10 and 8.12 we have 

Lemma 2. A bounded matrix P transforms the bounded functions 
C ,j lllt 1·•· ■ CZ?i • er a p I Cl 

of the first kind on £ into such ones on £' and the bounded 
• 

functions of the second kind on£' into such ones on£ with 
' 

< -- 8.14 

where the suffixes E and £' have been omitted . 

Lemrna 3. If I and F are functions of the first and second kind 
.,.w_ 

X 
-- 8.15 

X 

F, di r: 
V YnY 8.16 

then F' , P' and t ~ are bounded and 8 .15 is equivalent with _ .. ___ _ 

,x . F' 
:::: E; d_r 

• 8.17 

Hence it is suf ficie.nt 3 to prove the theorem for boun_ded 

functions and matrices with the integrations extended over the 

• 
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whole sets and£' ·which we shall then omit. We omit the primes 

and we may write 8.17 in the abbreviated form 

8.18 

We put then 

• ,. ~ .. 8.19 

FP d.l 
• 

• , ,. e. • 

' EI 
• 

8.20 

and we have to prove 
• ,. e . 8.21 

. £ 

Let e >O be given. As .f is bounded, we can find a finite dissec-

with n:sN 

Divide e.g. the finite interval 

subintervals , and take 

the Xn E": Xn arbitrarily, by 7 .12 
\ 
• 
' , 

. .r.x 
ci.x. r -

As each of the N functions 

• 

E 
into N exclusive 

. Hence choosing 

• 

8.22 
• 

we can find a finite 

dissection of£' obtained e.g. by intersecting the N dissections 

belonging to the 
n 

for all n :s N . Hence, choosing 

by 7.12: 

• 

and with 8.22 and 

• 

p X 
~ .,. - _n _m F. p !Im f Xn 

Ym Xn 

with ., ~ F 

On the other hand 

• 

• 

arbitrarily, again 

' • 
I 
• 

• • 
• . ' . 

8.23 
• 

• ,. 
t '.• . , 

,. 

8.24 

• 
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• 

' 

p~ P.X.. _n "'D~ Xn 
dx .,.. .. rXn 

F,J t, r___ -n 
~ ~ ' 

,_, 11 
X -n 

m f: p Ym 
- Ym Xn 

x,, < 
ad I ; 

) - If 

• 

• 

as v-~,· 
Ym . Hence, as n ~ N 8 . 25 - 8. 27 give : 

m Xn 

From 8.24 and 8.28 we obtain 

I x 
4 -

8.25 

8.26 

8.27 

8.28 

8.29 

Hence, as this holds for every l>o , 8.21,whence 8.17 and 8.15i 

·ED. 

We need a sufficient condition for 8.15 to hold over the 

whole sets E and £' where F, P and f may be unbounded and prove 

therefore along well-known lines: 

Lemma 4. If 
' 

f-1 -
X 'E' 

p!i 
X 

h~-
8.31 

• 

exist for all 
!L ■ & 1 711 I l ■SF Jt IIIF t 

either 
G ; bl J SC 11 l 2 1■ t J a a• 

• 8.32 

or 
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• 

• 
• 

• 

• 

• 
• 

8.33 
• 

then the other one of these t~o .. ~.r:i,~51~,a.~i.t~,e~, I?-9~.q.~ 
' • , . I • 

also, and 
I ll re FF I I T 7 8 S d I • 

Pro•f: It is sufficient to prove the t~eorem for non-negative F, 
• 

P and .f , in which case /-/ and h:::g . According to lemma 3., 8.15 
• 

holds forX=E1c, Y=£/ with arbitrary k and t 

8.32 is satisfiedj the left member of 8.34 is 

Ii., 
{ 

cf. 7.1 . Now, if 

• 

As the latter expression is non-decreasing if k ➔ oo , {_ ... e;,;, , 

and bounded~ it has a limit~ which is the second member or 8.34, 

so that its existence has been proved,1.e. 8.32 

In the same way it is proved that 11 > dx. I.)(. , whence 

8.34. Analogously in the second case,i,e. if 8_.33 is assumed. 

Lemma 5. ... --'"Iii ill I 11 

Cf. R.G.Coo}{e 1950 page 29 . If,E1, E~-• l:3 ,_E~ ~!:.~. 

a a , 1r EJ , t.,t .... " .... 

t: , x , y j z _and T ~ x 9 Y , z denote arb,'f-,~.r:-.~r:l. elemen~s and subsets 

~ , oE , ~ , d'e res ectivel and if M , 
1 ~ 3 ~ 

• 

• 

P and Q are 
' . £ 2 ,£ 3 -, .~!l9. £~,~ -!I;l_~~Ft9~~.,.~ess,P~.g.~.~vely, 

. ' 

• 

then 
I IS 5J 17 J .,. 

8.35 

are bounded or if 
# w D )4 ii &_ 4 :□ 7 a~ t1 t 7 7 • It 3 L I 1 ill ; P 

' 

• 8.36 
L.x M.x · <OQ or. 

«Jt. T . .J:' 

• 
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• 

is associative: 
' lip4t I 

i.e. 
"'"'··. 

• 
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· Q :z pY 
E ~ X 

3 

-7' - E 
3 

' 

8.37 

8.38 

8.39 

· 8.40 

Proof: Follows immediately t'rom lemmas 3 and 4 with, for con-

From this lemma 5 it follows that the ordinary matrix-cal-

• 

• 

culus, with Lebesgue-Stieltjes-Radon integration instead of sum-

mation can be applied as soon as all matrices and functions of 

either kind concerned are bounded, or, more generally, if they 
••n . I .:c-.··•i:.•e ~i'•FI I bt: 

• 

For simplicity we shall further omit unless special notice 

is given the first case, ioe. restrict ourselves to bounded matri-
• 

ces and function of either kind, unless the contrary is stated 
.. 

explicitly., and assume moreover that the sets E , £' j £, , E 2 :; 

etc. all coincide. In this case the increasing sequences Ek also 

can be omitted, as we may take £k. ... £ for all k • 

If P .i hence, is a 11 square 11 bounded matrix, i.e.£_£' 

and 
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{Xn}E D(E) n 

• 

' 8.41 
• 

then powers of P and polynomials in P can be formed, and as long 

as the coefficients are constants ''scalars'' these are commutable. 

From 8.13J 8.14, 8.37) 8.41 follows easily that 

/PQ (I;; /JPJ /QI) . 

• 

We note for later use the following identities: 

• 
' i 

Fl::: F , i.e. 

1-1::: I , .,·. e. 

♦ ,. e .. 

p .x • 
= .,.. , 

8.42 
• 

8.43 

8.44 

8.45 

Further we remark that any two diagonal matrices are cornrnutable: 

We can, however, not replace the symbol II far the diagonal 

matrix 
• 

kind 8 .44. If Fl is followed by another factor matrix or 

function of the first kind we may omit the/, e.g. 

1/?=IP with and also 

The integrals over subsets ot' £ can be expressed by means of the 

partial unit matrices ~ cf. 8.7 : 

8.47 
' 

. 

The partial unit matrices also serv•e the purpose of truncat-

ing functions: . 
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• 

• 

./ )( ;~ X E A 
• 8.48 

o ii not • 

--
Fx 11' XcA 

o 11 X"c E---A 
8.49 

and analogously IA ? I JJ • 
. co 

_. ~ Je where 

the P,, are bounded matrices for all and X is the convergence 
e,,> 

of L • 
1 

• 

It follows in particular 

1/P" < 1 , pn denoting the n ... th 

• 

"1 , whence by 8.32 
c:>Q 

matrix-power, .Z pn 
0 

converges and is the unique left a1~1d ri t-handed inverse of 

I - p : 

;.,e 8.50 
0 

More generally J if a matrix M can be breught in the form 

M _ R+ Q 

where R- 1 exists we use this expressi.on 

one and only one ~elution 

or exists and 

• 
. 

I 

8.51 

if RX= XR= I has. 

• 

8.52 
• 

The proof that both series in 8.52 &re identical, converge 

if• e •f the ine~uality conditions is satisfied, satisfy the 

equations for the i verse, and are their~only solution, are 
• 

trivial. 
• 
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A special and well-known case 6 oc if ~ rt curs · "=.,. . is a 

diagonal matrix, 8.51 and 8.52 become 

8.53 

8.54 

X . 8.55 

for all x • 
,, 

As a generalization of the invariant p esses studied in 

a set £ such that a group 

of transformations r of£ in itself exists, which is tra.r1sitive 

over E • An important special case of this is the one in which £ 
' 

is a sphere in any number of dimensions, being the group of all 
J 

rotations of£ in itself. We consider then a matrix P which is 

invariant under all transformations of 
• 

p .x :::::: p ?: )( 
X .. rX 

for all rE' , where 

• • 

• 9.1 

6 Cf. R.G.Cooke · 1950, pag. 31., · .. 2.4, II· · a.nd for the case of 

finite matrices Olga Taussky 1 1949 . , and the older literature 

mentioned there. 
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• r:X dt .Ens tx .x: e X • 9.2 

We choose arbitrarily a point a:. EE and define II as the sub-

group consisting of allre which leave a. invariant 

1-1 a~ Ins re -r:a=a. ,, 

Putting for any 7: e 

9.4 

The sets Fr are mutually exclusive and have as their union. 

Choosing arbitrarily in every F, a .unique representative ¥, , 

let A be the set of all these representatives. 

Now to eachxe£ exists art= with rQ.-x , hence a ?IE-A 

with t"= 710 1 
, hence with. X= ¥ a..::: ra. I 

as 7a.=a. 

because of 7'/ 1 € I-/ • If 
_, 

a-;= 7, , hence a----1 ==-• as the representatives are 

unique so that is uniquely determined by x=71ra .· in general 71. is 

not • Then 9.1 
. . d a 

• 9.5 

Here is countably additive, and ~o with Pe:::1 , and, 

als• by 9.1 

for all rte H . 
• 

9.6 

For any re ~ we put 

Then for. a given Y and varying re Ll Py4 Hra. is oomplete 1 :y 
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• 

additive in r, >o = ' , · and s ctr , and can therefore be written in 
• 

the form 

9.8 

Here rf 

y can be chosen to be completely 
• 

additive in Y and to 

vanish unless ra. ~ I-IY. the conditional probability 

thatxeY under the condition thatxEHra. - . 

For every fixed Y the functions are defined as mea.sur-

able functions on L1 except for a. set of q, -mea.su1 .. e o . 

We introduce now: 

Assumption A: The definition of the quantities ¥ 
•. y can be- extend-

ed in such a way that they are defined for all Y an9 all a as 

univalent functions of their arguments, for t'ixed Y measurable in 

and for fixed~ countably additive in Y. 

According to Doob 1948 a sufficient conditi~n for assumption 

A to be fulfilled is: £ is a Borel-set in a Euclidean space an.d 

the e- -field over £ consists O•f all Borel-subsets of: £ . 

The equality 9.6 entails 
• 

for all 7l e 1-1 .. · 9-9 

Taking in 9.9 especially Y=Kra with Kc.I-I, re'°. , re r, 

ror variable K is countably additive., ~o , bounded, a1id invariant 

it has the properties of a Haar-measure. 

We now introduce: • 

ror a proportionality factor. 

According to 
• 

L.HoLoomis 
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fulfilled is: H is a locally compact topological group. 

Assumptions A and B together are certainly satisfied e.g. 

if£ is a Euclidean sphere of ·any number of dimensions and 

group of all rotations of £ into itself. Hence., if µ,x is the 

the 

Haar-measure~ normalized to µ..H = 1 

factor; 

the proportionality-

9.10 · 

;,,-er . Moreover .. , whence m • , • unless 

Extension of to with arbitrary Y gives 

• 9.11 

and substitution into 9.8 with r;~ gives 

Py = 9.12 
• 

and finally by 9.5 • 

9.13 

' 

that 9.13 satis~ies our conditions. 

Ir in particular 

H consists of the unit element only, A:: and 9. 7 and 9 • 13 s im -

plify to ir = Pra. and 
' 

9.14 

I~ more in particular, and are identical, we can take 
• 

a= 1 , 't".x = .x , and we get 9..r = Pr and 

I:f is 
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• 

to 2.8. 

• 

§ 10. 
, a -.;cc 

• 
• 

Exactly the same argument, which leads to Wald's fundam&ntal 

identity 5.17 ~ holds if£ is an r -dimensional Euclidean space, 

:J. and y are real vectors and is a complex vector in r dimen-

s ions, and x is the scalar product. It also holds in the more 

general casej where£ is an additive Abelian group and !=g1 +i , 

where !
1 

and 32 are homomorphisms on the set of real numbers, i.e. 

:for all x and .!/ in £ , ;, x is a real number such that i_(:X.+':J)= 

• • 

We can resume our result in: 

Theorem 4: If E is an_additive Abelian rou 
<'A a n 

~· 

0 j '! 1 and 

J = i,+- .2 

identity 

• 

is satisfied. 

'I 

and 

• 

5.17 

A partial generalization of this theorem to arbitrary stochas

tic processes, determined by the transition 
• • 

satisfying 2ol-2.4 is derived as follows. 
• 

We make the additional assumptionJ that when the wandering 

point arrives in the state x 11_., (n~.,, after having passed if n~ 2 

A .XO,·· .. ;xn-, that the 

point will be absorbed hence a probability 
, 

• 



• 

- 55 -

B .x0 , .••• x ... _1 v .,, , ,, A -o,-" .. ., -n-., 
(n) = 1 - (n) 

that it will not be absorbed. 

Moreover we 

that the 

catastrophe G does not happen under the condition that the wa11der-

ing point has passed through -"o) .... , x.n_ 1 ar1d has for U or has not 

for T been absorbed in xn_, • Finally we define C Xo• ... . ., Xn-1 
(n) 

as the total conditional probability that will not occur under 

condition that the point has passed through .x.0 , ••• , .x.n_, • 

C Xo ~ • • • , .'Cn ... 1 
In order to compute rn) · for n ~ 1 , we remark that 

✓ 

ther·e are two complementary cases: either the point is absorbed in 

, in which case non- t has proba

or it is not absorbed 

and '8 does not occur 

into some '' small 11 set ay 

happily ever after i.e. 

and 1 t jump•s 

·, and it lives 

does not occur further on; probability 
• 

. Hence we have 

For n = o we have a similar equation, with the only difference 

that the upper suffixes except y fail. 

In order to simplify the formulae we shall omit the lower 

suf'f'ixes ·(n)' and replace the sequence of upper suffixes Xo,··•,.xn ... 1 

by a single symbol :rr path. Then 10.1 becomes: 

cn!I 10.2. 
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.. # • 

In order that this development be convergent and a solution 

of 10.2 it is necessary and sufficient, that 

• • a 

tends to zero for le • 0() • 

> 

In order to generalize theorem 2 we consider aolutiona of the 

system of equations 10 .1 in t·he unknowns C .x. , .. • . , ,;c,,.,_, 
(n) 

where the 

and the T need not be probabilities, but may be arbitrary real 

or complex sequences of not necessarily bounded functions • 

Theorem -.--·----
• • If A- for all 11 -

T»- exist such that 
0 ..-. •.i• • 22 a a z : /», a a •s:r ,a a n• r ar ,., ,.1a:i1 ••---"" 

... 
and all n::: x , •.• , JC • E ... fl real numbers 

. 0 ·If.-.. ' 11 LI 1, 0 ••• ,.u ; o:" _71WIINW'llto• I '1.1 . r:t1wtr::st;P 4 ill: 

A.l 

A.2 

A.3 T.,,. -n1r ,Ii »-v :S tL ,,. 
O ,- UQ - 0 for all n and all Ji with B":;o; 

If B. the 

B.l 0:10<1, 

B.2 

B.3 

for all n and all Jr , 

for all n and all ,,. , 

for all n and 
I l PII 1 l5P IHI il?IUI[ M"l'.il[~v'--

10. · which 

10.5 · 
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• 

for all n and- all :rr 
----....... - a ,.1,~1• &:b IWJl••aiJ- , ; .. ~. and on~z if 

e a 

I 

:tr_ TH' pn 
a{!:I 

for all n and all 7T with Bh;e o. 
• ,Jl'I 

Proof: Writing 

••• x-

Ao3 becomes 

)Tr7rp,,. 
...... X , 

:J'r 

ox= 

• 

·10.6 

10.7 

.10.8 

from which the existence of the left member follows .• The terms of 

the sum 10.3 with 7; J lL0 instead of , are ~ o . The k + 1 st 

term of this sum is ~ the same expression with the factor A.,,.~ .... _y* 

which is < 1 instead of 

7r and Y.1c instead of ~ the k. -th term with ·· Any.,··· ~k-t replaced by 

EJr!I, .... ·Y,1:_, • Added to the k -th term itself the sum is < the k -th 
• 

term with the factor AJTg, ... •)'!(._, omitted. Continuing in this way 

we find that the sum of the first k+t terms is ~ 
Jr 

0 , so that 

the series is bounded, hence convergent. Denoting its 
• 

we have then and also 
-

J'T· 
, where o:,k 

is the expression 10.4 with T and C replaced by 7; and 0 • From 

B.1-B.3 it follows then that the integrals in 10.3 as well as the 

whole series,, exist absolutely and that , 

whence 
Jc .... c-o 

, so that 10.3 satisfies 10.2. Now, if a solu-

tion,of 10.2 satisfies 10~5, it is trivial by 5.17 that also 

10.6 holds. If, on the other hand, 10.6 holds together with 

10.3, we have 

' 
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• 

Q »-~, • '• !/1<-1 AHY, • • ~ S'..t / f »-f, • • • YJc 
. . .. dy1c ~ -

lim 
n. >OO ' • 

.... . . 1ry, • • · Yk.1 ~,,.~, • • ·~JtUhY,• ··Y1<_ 
dyk 

+ • • • • 10.9 

• 

The expressions between the curved bracke~s vanish because of 

10. 6., 10. 7 with :n-~,., . .. , V1c .. 1 instead of»- and rk. instead of y 

hence they remain zero after repeated ··integrations, and the first 

sum between the square brackets in the right member of 10 .9 
• • 

vanishes. The last term between the square brackets is absolutely 
• 

• rem. 

In the proof of theorem 5 lemma 5 Appendix§ 8 has not been 

used. It is therefore to be expected that theorem 5 will not com-
• 

pletely imply theorem 4. In fact, in the special case of theorem 2 · 

we have 
• 

p ~;, ... •Jen-,, - p .x.,,_, Ax_, ..... ., ~l'J-7 - A Xr, .. -, BX.•· .. , Xn .. 1 - .B Jt..n-1 
· (n) X - · X :, (n) - ) (n) - ' 

I / .XO ~ •••• Xn.,.' - Xn,.. t T .x. ' ... , x,, .. :, - T ~,., .. 1 
<A. (n) - • (n) - • 

10.10 

Then the conditions of theorem 2 except 5.8 are satisfied, but 
• 

10.6 passes into 
~, • • • > X n- 1 · ~n .. 1 

(n) = 10.11 

- so that it rematns to be proved that 

-x., ... , Xn.-, 
-n) ., 10.12 

where- ~xis given by 5.10, if 5.8.is satisfied. We shall not go 
X 
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' 

rela-
• 

/l.X>'f /) u 
..,.. instead of r;;, is needed. • 
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