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LARGE NUMBERS

BY
PROF. DR. D. VAN DANTZIG

In this paper the socalled (weak) ‘“Law of Large Numbers’’
(LLN) 1s proved in a new and very simple ‘‘limit-free”’ form. As a
prerequisite to the proof several properties of the functions y (a, b),
defined below, are needed. As these refer to a single stochastic
varnable (vector) only, they cannot be said to belong to the proof
of the main theorem. A few of them have been listed only because
they might perhaps be of some use on other occasions. Most of
their proofs are similar to steps occurring in the known proofs of
LLN also, e.g. by LEvy, FELLER and FREUDENTHAL. Neither
Feller’'s ““annoying” (according to FREUDENTHAL) supplementary
condition, nor the inductive reasoning in Freudenthal’s proof of
necessity 1s needed. The somewhat more general assumptions,
called the “modern” form of the limit-theorem according to M.
LOEVE, are used. Moreover the theorems are formulated and proved
for any (finite) number of dimensions.

In section 1 the definitions and results are formulated, in 2 the
auxiliary properties are proved, whereas 3 contains the proof of the
main lemma and theorem.

For every positive integer » #, 1s a positive integer and
X,q,...,%,,. 1) are independent stochastic variables; no assumption is
made about stochastic variables belonging to different values of the
first suffix. The suffix » will always run through the set N of

. i mbiial e

1) Stochastic vectors and variables are printed in bold type. In comparison with
e.g. Loéve’s notations the suffixes » and » have been interchanged.
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positive integers, £ through the set N,, consisting of the numbers
1, ..., n,. Further &, 1s a given sequence of positive numbers;

Spgng xv,kz) (I)

The problem 1s, to find necessary and sufficient conditions, in
order that the following statement LLN holds for the given sequence

b,: LLN. For every » € N a real number ¢, exists, such that for all
a > 0 |

lim P{|s,—¢,| > a d,} = 0 3)

Y 3OO
We use the letters N, P, R, R,, for the sets of all natural, positive
and real numbers and for m-dimensional Euclidean space re-
spectively, and, if S denotes any set, the symbols ‘V2 ...’ and
‘A7 .... for for all xeS....” and ‘an x € S exists such that ....’
respectively. Then LLN may be written in the shorter form:
LLN: V?Bi’\?’f lim P{|s,—c¢,| > ab} =0

y—>00
With any stochastic variable &, having the (cumulative) distri-

bution function F(x), we associate functions y(a, b) and y(d),
where a € R, b € P, defined by %)

y(a, b) 2 [min (1, y%) dF(a + by) 2
y(b) £ inf y(a, b) (3)
a & R

- lhe integrand min(1, y2), occurring in the definition of y(a, b)
could be replaced by a more general function V(y) without invali-
dating some of our results. In particular one could choose for V(y)
any absolutely continuous distribution function vanishing for
¥y < 0 and approximating y% for small y > 0, i.e. impose the condi-
tions

1. V(y) =0 for vy <O

2. lim V(y) = 1
y—>00
3. Imy~2V(y) = 1
y+0

4. V(y) = JPv(t)dt

%) The symbol E denotes an equality, defining the left hand member.
8) The script ‘P denotes ‘the probability of’ ...
*) In comparison with Feller's and Loéve’s notations the letters a and b, and

n and v respectively have been interchanged; min (¥, v) denotes the minimum
of # and v.



131

These conditions are e.g. also satisfied by the function
vl 4+ 921 (y = 0), used for similar purposes by P. LEvy, A.
KHINTCHINE, B. GNEDENKO and other authors in the theory of

Infinitely divisible laws. The common truncation method, corre-
sponds with the choice

Viy) = {

The fact that it does not satisfy condition 3 is the main cause of the
necessity of separate conditions for the truncated second moments.

The main advantage of our choice V(y) = min (1, y2) above that
used by LEVY, etc. is expressed by our auxiliary properties 13, 14,
namely by the fact that by minimizing y(a, b) for constant &, the
truncated first moment of b-1(x — a) vanishes in the minimum
a = &, whereas for other choices of V(y) it only becomes small
(conditions 3, 4 then only cause the vanishing of the expectation
of V(y)).

We denote by F,.(x) and G,(x) the distribution functions, by
() and g,(f) the characteristic functions, and by y,.(a, b), 7,.(b)

and I'(a, b), I',(b) the newly defined functions belonging to the
x,.. and the s, respectively.
We shall prove the

Lemma 1. LLN 1s equivalent with

1 ify > 1
01 y <1

lim I,(3,) = O (4)

P ——-00

This lemma admits of a “limit-free form”. Introducing as an
abbreviation

R, (x) L inf P{| s, — ¢, | > x} (5)
it 1s 1implied by
Lemma 2. The infimum tn (S) 1s a minimum, and
L,0,) —a® - I',(b,)

VIVD T < R(ab) <
— LS

(6)

miﬁw( 1, a?)’

the first inequality holding if O << a < 1.

In fact, the second inequality shows that (4) implies R, (abd,) = O
for all a > 0, 1.e. LLN. On the other hand the first inequality shows,

that R, (ab,) — O for some o > 0 and < 1 implies lim sup I',(,) <a2.
y—3 00
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Hence LLN, ie. R (ab,) — O for all a > O implies I,(5,) = O (as
identically I(6) > 0).

Feller’s theorem, applied to the ‘“‘modern” case, states: Under
the ‘“‘supplementary condition”

37 VYIV2n, max(P{x, > 0}, Plx, <O0}) <1—141
it is necessary and sufficient for LLN that simultaneously
lim 2k P{| x,,. | > b,} = O

i 7
| im 5,23k [x2d F . (x) = O
P 00 x| <,

Recently FREUDENTHAL showed how to avoid the supplementary
condition. His theorem (not in his limit-free form) can be stated
thus: For LLN it 1s necessary and sufficient that simultaneously

lim X% P{|x, —a,,. | > b,} =0

VN VN?Z,, 3R v-—:—}—c-c _ ’ 8
v Ok 77wk ) lim b2 Xk var x,;, = O (8)
Py —300

where var #,, denotes the variance of the ‘‘truncated’” wvariable
) Xk if l Xl — Aok { < bv
def |
Kogy = (9)
Ay U | Xy —a,| >0,

We shall prove
Theorem 1. Necessary and sufficient for LLN 1s

P—300Q

Using the abbreviation
Z,(b) 2= Tk p,,,(D), (11)

theorem 1 together with lemma 1 state that for v — co I')(6,) — O
1f and only 1f 2,(b,) — O. Asthe I',, y,,, and X are > 0, it is therefore

1mmediately seen to be a trivial consequence of its “limit-free
form”:

Theorem 2. If ve N:
(16 )~ 2,(b,) < I,(b,) < Z,(b,) — 2,(,) In 2,(b,) (12)

the left hand and the vight hand inequality under the additional
conation that 6rl’, (b)) < 1 and 2 (b,) < 1 respectively.
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Neither the lemma nor the theorems contain existential quanti-
fiers. Once it has been shown (cf. 3 in section 2) that Ay = &,z
exist such that y,, (&1, b,) = 9,.(b,), (10) is trivially equivalent with
Freudenthal’s (8). We shall, however, prove it independently.

Although the “modern form” of the theorems makes it possible
to put everywhere b, = 1 without loss of generality (as the «,,, -

i S:f
and ¢, can, for every », simultaneously be divided by 5,), we shall

not make use of this simplification.

We shall give the demonstrations such a form that they (unless
special notice is given) remain valid if the stochastic variables «,
are replaced by stochastic vectors in an m-dimensional Euclidean
space. In order not to burden readers interested in the one-
dimensional case only with vector-notations we shall maintain the
simple notations used for this special case for the general case also,
with the following new interpretations. The letters x, vy, s, 7, a,
&, ¢, t (with or without suffixes) denote vectors in R,,, whereas the
letters b, a, &, I, T, g, v, I, 2, p, R, ¢'° remain, like before, non-
negative (or positive) real numbers. A product like ¢x or ty of two
vectors denotes their scalar product; the square (x — a)2 or 92 of
a vector 1ts scalar product with itself. The length of a vector, e.g.
x — a 1S denoted by |x —a |, so that (x —a)2 = |x —a |2. We
have, however, instead of the identity |fx| = |7¢]||x]| only
Cauchy’s inequality |ix | < |¢] ]| x|

Even a somewhat more general interpretation is possible, by
interpreting y2 = |y |2 as an arbitrary positive definite quadratic
form 1n y (and, just so, (x — a)? etc.), and ¢y as the corresponding
bilinear form in ¢ and v.

With these interpretations the lemmata and theorem 1 remain
valid without alterations, whereas in theorem 2 only the numerical-
coefficients must be changed. The lemmata and theorems are then
invariant with respect to arbitrary affine transformations in R,,,
provided that the wvalues of the distribution functions are kept
invariant. In fact we have ‘

Theorem 2'. In R,,, if ve N ,
(*¢/sm(m + 2))71 2,(5,) < I,(b,) < 2,(b,) — 2,(5,) In 2,(b,) (12)

the left hand and the right hand inequality wunder the additional
condition that 2x(m —+ 2)I',(b,) < | and 2,(b,) < 1 respectively.

Evidently this implies theorem 2.
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2.

In this section we consider a single stochastic variable (generally
a vector) ¥ with distribution function F(x) and characteristic
function f({) = &€ &' (€ denoting the expectation operator), and we
shall derive the prerequisite ®) properties of the functions

1. y(a, ) 2= [min (1, y?) dF(a + by)
2. v(b) &8 inf y(a, b)
a € IR

where a 1s an arbitrary real number (generally a vector in R,,) and
b an arbitrary positive number.

3. ViV, 0< pb) < y(a, b) < 1
Trivial.
4 Va"Vy y(@d) > P{lx —a| > b}
| —y(a, b)) < P{lx —a | < b}
Trivial. |
5- A VzI; I —y(a, b) = ./iylél (1 —y*)dF(a + by) =

= [0 P{l* —a| < ba}d(a?)

= Px—a| <iq}
where q is a stochastic variable, independent of &, with distribution
function

0 1 g<0O
Vi =Plg<gf 142 if 0<g< I
1 f 1 <q

Proof: obvious, as

Pl*—a| <bg}=faV(g) P{lx —a | < bg} =
= [dF(x) P{q > b7 |x —a |}
Remark. Evidently also
¥(@ 0) =P —a|>bq} =
= 1 — fa—arape (1 — b=2%(x — a)*)dF (x)
6. V.i» Ve VP o(a, b) < a? 4+ (1 — a®)Px —a | > ab}

Proof: Asforeachg > a > 0 Plls —a|>qb} < P{lx—a = ab}
we have from 5

°) Some of the properties, marked by an asterisk, are not needed for the proofs
of the theorems, but are listed for completeness only.
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9(@,5) = fracy P{| & —a | > gbld(g?) <
< fqﬁs..:..aa a(q®) + ﬁzﬁ%qﬂ@ P{lx—a | > abjd(g?),

whence 6. i
7. VEmY, V., v(a, b) > min(l, o) P{x — a | > ab}

Proof: y(a, b) = P{|x —a | > qb}
as 0< qg< 1, hence > P{{lx—a|>ab}if a > 1, and, if a < 1,
> P{lx —a|>ab and a>q} = P{x —a | > ab} P{q < a} =
= o2 P{{x —a | > ab}
whence 7.
8. V, lim y(a, b) = 1
| @] —>00

Proof. Choose e > 0,/ > Owith P{|&a | >} < eand|a]| > bl
Then 1 —y(a,b) <K P{lx—a | < b < P{x| >0 <e.

o*. Vim  lim y(a, ) = lim y(b) = O

b—>o0 b —>00

Proof. Choose ¢ > 0 and < 1 and / so that P{|a —a | > [} < &
and take b > ¢'2. Then, for any ae R,,:

0 < y(8) < 7@, 8) = [ yaF(a + by) + [ min(1, y)aF e + by) <

vi>1

Vi
< b L Px—al| > < 2
I0*. Vim lim y(a, d) = 1| — P{¥ = a}

b—>0

Proof. By 5
Iim (1 — yp(a, b)) = lim P{|x —a | < bq} =

b—>0 b—>0

= P{lx —a | = 0} = P{x = a}
as q < 1.
1r*. It a 4 b and a — b are continuity points of F(x), then

ov(a, b 2
y(ab - — 7 Jwi<1 ¥y*aF(a + by)

Proof. By 5
| —yp(a,b) =202 [7 P{{x—a| < B}Bdp

is for & > O a continuous alnost every where differentiable function
of 4, as both factors of the last member are. Hence

ov(a, b 2
i y(;b 2 — ; [ P{| a—a | < B} dp — "g‘?{l x—a | < b}

II'*,
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whence 11* follows by partial integration. In particular rr* shows
that y(a, b) for constant a is a monotonous non-increasing function

of b.
Remark. 11 1s equivalent with

N oy(a, b)
Ir'’*. =l = flp—ai<p | ¥ — a |2 dF(x)

which is almost obvious with y(a, A~/2) = [min(l, A(x—a)?)dF(x)
and shows, together with ¢* that

I, y(a, b) =[5~ d(B7?) flz—aj<p (¥ — @)A1 (%]
r2*, If P{{a—a| =0} =0, then
0 2 .
= (@ b) = —— fy<1 ¥*dF (@ + by)
0
where - (for m > 1) denotes the gradient of the scalar y(a, b)
a

with respect to a, whereas y* = y for m = 1, and, generally, 1f 32
stands for the ordinary scalar product; but, if vy 1s a general
positive definite quadratic form, y? 1s the transform of y by the
matrix of the quadratic form, i.e. |

0
* — (1] 42\
= (*/2V%)

Proof. In the second member of the remark to 5 the boundaries
of the integral and the integrand are differentiable functions of «,
hence y(a, b) is. Differentiation of the boundary gives no contri-
bution, as the integrand vanishes there. Differentiation of the

integrand and substitution of x = a + by leads immediately to r2*.
13 vy 3 y(b) = (£ b)

Proof. As y(a, b) for constant & by 5 (or r2*) is continuous in «,
and by &8 tends to 1 for | a |+ oo, its infimum (cf. 2) is a minimum,
which 1t reaches for some finite a = £ (in general not uniquely
determined), whence r13. |

Henceforth we shall denote by & some vector for which 73 holds,
and by M(b) the set of all these &.

4. Vp VIV < tydF(E + by) =0
Remark. With the notation used in r2*, this is equivalent with
ffzzial y*ad F(& + by) = O
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Proof for m = 1. In this special case ¢ is a numerical factor, which
may be omitted. If 0y/da exists in the minimum a = §, it vanishes
there, so that r4 follows from r2%*. 1If, on the other hand for some a,
only the left hand and the right hand derivatives exist, partial
integration of r2* (using the assumption m = 1), leading to

?y(a g;gi-@ == ; [P F(x)dx — -—-—b%— (F(a+b6+0)+ F(a—b640))
shows that the first term is continuous, whereas F(a + b) can make
only wpward jumps for increasing a. Hence, in a discontinuity
dy/oa can only make downward jumps. This, however, can not
happen in a minimum. Hence dy/da is continuous in a minimum SO
that the initial conclusion, whence 14, holds (for m = 1).

As this simple proof can not easily be generalized for arbitrary m,
we shall give a different proof for general », not using rz*.

For arbitrary ae R,,, a’' € R,,,

y(a, b) —y(a’,b) =P{{a—a|>qb} —P{|x—a’ | > qb}; =
=P{lx—a|>qb>|s—a' }—P{s—a | >qb>|r—al}=
— _/isc-—-a’]&;min(b, le—al) {1’1’111’1 ( 11 bm2(x T 3)2 ) T (x B a!)z} dF(x) T
— Jiz—aj<min®, [z—a’)) 10UN(1, 673(x — a')?) — (x — a)?}dF (x).

Now we put @' = &eM(b), a = & — &bt with ¢ > O, £ € R,,, then,
putting x = & 4+ by, z = y + &, we have

0 < p(&—e&bt, b) — y(b) = /iy 1<in<1 (BB—YR)AF (& + by) +
+ Jyi<1<jz) (1 —92) AF(& + by) — [ <pi<1 02— 22)AF(E + by) —
m./}z]-élc:[yl (1 — 23)dF (& + by)

as y? — 22 = — 2e ty — £%2 Hence the first and the third term
are together

< + Zg fmax(ly!; 1z]) <1 L'y dF(f -+ by) + &2t°

The last term 1s << O, whereas for |z | <1 < |y, because of
yl<|z|l+|y—z], O0<1—|z|<|y—2z|=ct |—z2=
= (1 +]2]|)(1—|2]) <2 Hence we find after division by
e > 0:

0 < &M p(§ — &b, ) — (b)) < 2 fmaxyl, y—eth <1 YAL(E + by) +
+et? + 2|t |P{l —elt|<|y—et| <1}

As this holds for every ¢ > 0, we can pass to the limit e — 0. Then
the last term in the last member tends to zero, like the second term,
and we obtain

0 < fi<a &y dF (& + by)
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This is true for every e R,,, hence 1t remains valid after re-
placement of ¢ by — £, whence 14 follows.
In the same way r2* could have been proved, by using Fréchet’s
definition of the differential of a tunctional, 1n casu
0 , a + &) —y(a
t““é““ y(a, b) ——— llnl y( + ) S y("‘"“)".
7

g—>() &

This one is the most important among the properties of y(a, d)
which allows us to avoid Feller's supplementary condition, as well
as the complete induction in Freudenthal’s proof of necessity. The
main difference between their methods and ours lies in the fact that
they have to consider all a, which (substituted for &) make the left
member of 14 small, whereas we, by minimizing y(a, b), could make
1t zero.

In the following theorems ¢ always denotes a real vector.
15. VYV VIO | [sinty dF (& + by) | < (m — 2)p(d) if 2] < 2

Proof. For|y|>1 |sinty|<1. For|y|<1 sinty =
==ty — (ty —sin ty). The integral of #y vanishes because of r4.
Moreover, for 0 < z < x, 272(2 — sin 2) is a monotonous Increasing
function®) of z, so that for |2|<T <=z |z—sin 2| <(T—sinT)2272,
and for |y | < I, |¢|<T: |ty —sinty | < (T —sin 1)y?, since
I—2(ty)®? < T—%2%y% < y2. Hence, taking T = 2 with T —sin T~ —
= 1,091 < 7 — 2,

| [sinty dF (& + by) | < | Jii<1 | + | Sys1 ] <
< (#—2) ./iylsgl v2aF (& 4 by) + ﬂyl:»-l arF (& + by) <
< (7 —2)y(§ ) = (. — 2)y(d)
This theorem replaces Feller’s [1] (16) and Freudenthal’s [3] (12.4).

76. v, VMO | 11 —eMAE(E+ by) | < mpd) if |t]| < 2
Proof.

0 < /(I — cos yt)dF (& + by) = 2 [sin2 1/,ty arF(& + by) <
< 2 /min (/,(#)%, 1)AF(E + by) < 2y(£, b) — 2p(8) for |¢| < 2
Hence |
| J (1 —el™)dF(& + by) | <
< /(1 —cos ty) dF (£ + by) + | [sinty dF (& + by) | <
< 27(0) + (w — 2)y(b) = 7y (d)
8) In fact, the derivative of 3%z —sin z) is

Z2sinz—z(1 4 cos z) 4 cos? iz

e =0 — (tg 32 — }z), which is positive for 0 < z < 7.
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‘The argument is similar to Freudenthal’s [3] (12.2)—(12.5).
I7. Vy VMO ([t @)™ flycr dt [sin? ty AF (£ + by) >

3 l
> 7 (1 —— )y if < 1,7
2(m—i—2)( 22‘)”()]l D= <

Proof. By means of an affine transformation (cf. the remark before
theorem 2’) we may reduce the qua.dra.tm form y2 to its diagonal
form X (y*?2, where 1 = 1, , m, and y* are the coordinates of y.

The denominator then is the volume 1 ™1, of asphere with radius 7T,
where |

p _=py
(3m)!
As the whole expression then is invariant under rotations, we may;,
atter having interchanged the order of the integrations, for any
fixed y, choose the orthogonal coordinates ¢,, ...., ¢, of ¢ so that
the f;-axis has the direction of y, i.e. ty =¢ |y |, and put
3+ ... + 2, = T%? Then assuming first m > 2, the integration
over r = const. can be performed, and gives O,, o(T7)™2, where

7 m—1
Om-—--2 — { } T
" — 3
2
1s the area of a unit-sphere in (m — 1)-dimensional Euclidean space.
We find that the left hand member of 17 is

- |

0, |
> 7= [orm a7 fcrviza dty [sin? 4 |y | dF(§ + by) =
Om—2 1 — [ ( sin 27|y V1 — ;72)

I, Jo ) ZT]yi‘\/Imrz (

Abbreviating for a moment |y | V 1 — 72 by %, we have
sin 27T u 1
| 2Tu 2Tu

hence, for |u | > 1 :
~ sin 2Tu 1 ( | 1

sl BN Y min {1, u2.
oTw 2T 2T) min {1, w7}

Moreover, for 0 < 2z < @, 273(z — sin 2) is a monotonous decreasing

1 Z2 z4
~tion. In fact, it equals — — — — — . ... 1ts derivative
function. In fact, 1t equ : + 2040
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o3

—— + T also 1s an alternating series, hence 1t 1s
1260 o
m-—--—-—-'l?’m with 0 < 9 < 11122 < 72 < 21 = -, hence 1t is
60 60
negative. For | | <1, 0 < 27T < we have then

sin 27 u sin 271 ] ] '
] — > 1—- > > | l—— Ju? > | 1— — Jmin(1, u?)
2Tu 2T 2T 21

Therefore, for ally and 0 < 27 < =n
SIn 2T|y[ﬂ/l-—--—-72 (1 1

T Vi 2T> min(l, y*(1—%) =
y F——

> (1 1) (1 — #2) min (1, y2)
2T ’

Now, as
S m— 1 m—3 3 m + 2\ \1
./0 1/??%--*2(1 __*72)3/2d7' e %—B(z 2.4 ): — > !5‘ (2‘»(.................é ﬂ)!)
= Ty am =
C4m+2) 2 Y T 2m ¥ 2)0,._,

we see that the left member of 17 is

3 | o
> S5 (1 — ZT) Jmin(1, y2)dF (£ + by),

so that 17 has been proved for m > 2. For m = 1 the integration

over 7 does not occur; except for some simplifications the proof
remains the same.

3.

It is now easy to prove lemma 2. The fact that the infimum in (5)
1s a2 minimum follows exactly in the same way as r3. By applying

6 and 7 to s, instead of & we have at once for any a > 0, > 0
and any wvector c,

v(cw br) — a? 1’ (C )
v e ?) S L > b 1!? r 4
] — 2 t | > ab) < mln(l a2)
(the left hand inequality for a << 1 only). |
For any ¢, the left hand member is > (1—a?2) —1(I(b,)—a?). Hence,
choosing for ¢, a minimum 7, of I, so that I(y,, b,) = I,(b,):
Fv(b:!) — a? I (bv)

DO = b P < 0
[ 2 = 4, S {I v s ‘ = abv} = min(l, az)’

(13)
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Now we can pass to the proof of theorem 2. As only one value of
the suffix » occurs in (12), we can consider any fixed » and drop the

suffixes » altogether. Then we have to prove for any fixed suf-
ficiently large positive b:

(16m) 12 (0) < I'(b) < X (b) — X (b) In X' (b) (12%)
where

2 (b) 2= Zk () (11°)

y«(0) and I'(b) being the functions defined by (2), (3), belonging to
the stochastic vectors ¥, and s = X «, respectively, the distribution
functions of which are F,(x) and G(x) respectively.

For every ke N, = {1, ..., n} we choose according to r3 a &,
such that

Y&k, b) = yi(b) (14)
Moreover we introduce for any % € N, the following abbreviations
pr = P{| % — & | > b} (15)
Vi £= 07Hx, — &) (16)
x'k-c}ff{xk i o, — &, | <0 (17)

Ep if | a0 — & | >0
§ 4ot Sk o (18)
c £ Tk &, (19)
0’2 2 var &', | (20)
B2 4ot yar g (21)

Then, as
€ x}:: = &y (22)
by 14,

G'k = (xz:, — &) = bzfy <1 v2aAF, (& + by)

Now, s = s’ unless &, % & for at least one k. The probabfflty
of this latter case is 1 — P{&; = &, . .., ¥ = &} = 1 —I P, =5}
(as the &, are independent) = I_H‘I’{x;,,ffk | <b}=1—TI(1—pp) <
< X p,. Hence, for any a > O:

R(abd) < P{|s—c]|>ab} <
< P{ s —c| > ab} + Zpp < (ab) 726" + Zp
ecause of £€s’ = ¢ by (18), (19),

by Bienaymé’s inequality, and
(22), B
= (ab) 2 Z o + s
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as B2 = Xk ¢,.* because the &, like the &, are independent

= Ek(/-?y%:»l Al (& + by) + amzj}ylgl Vial (Se + b))
by (15) and (23)

< max (1, ag) 2.k y},(fk: b):
1.€.
Pl s —c|> ab} < max (1, a2) X () (24)

This proves the sufficiency of the condition 2 = 2k y,(b) — O
for the LLN 1in its original form (p. 1). (The argument 1s practically
the same as in Freudenthal’s proof). Moreover:

I'(d) < I'(c, b) = /min (1, 22) dG(c + bz) =
= fo P{ls—c|>abld(a?) < by 5
< [y 4(a?®) min (1, X (b)a™?) = by (24)
= Jar<z@) A®) + Jop<ar<1 £(0) a7?da® = if 2(b) < 1
— 3(b) — Z(b) In Z(b).

This proves the second inequality in (12’), hence the sufficiency of
the condition 2'(b) — 0 for I'() — O.

In order to prove 1its necessity, following partly Feller’s, partly
Freudenthal’s lines, we define

ry, 5% 2.5 %8 = 8§ — ¥ (25)

and call H,(x) the distribution function of r,. Then we have for
each ke N,, 1t  1s a value with I'(n, b) = I'(b), then

() = faar P{| #+ rr— 7| > abld(a?) =

= Joacy 4(0®) A H (7)P{| %), + 7 —n | > ab} == (26)

— JaH ) yiln — 7, 8) > 3.0 by 5 and (3).
Hence, by 16, ,
nl'(6) = 7 yr(b) = | J(1 —el™)dF (&, 4 by)) (27)

for any vector with | ¢ | < 2. If I'(h) < (67)~1, the last member of
(27) 1s < L for each £ € N,,. Applying 16 again, but now to s instead
of ¥, and still assuming | ¢ | < 2, we have

7l(b) > | [(1 — el*®)dG(y + bz)| = |1 — & @7 E i)
| 1—e!?7He [IEMT o) | > 1 TT|Eel™*| > (28)
13k (1 — | Eeix)) >
1 2k var {sin ¢ y,},

=
=

asS
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| € e*|2 = ([ cos ty dF (& + by))24([sin ty dF,(&,-+by))? <
< [cos?ty dF (&, + by) 4+ (€sin fy,)?2 =
= 1 — (€ sin? ty, — (€ sin iy,)?) =
= 1 — var {sin &y,},
whence

| — |Ee™ | = (1 + | €)1 var{sin ty, } > 1 var{ sin fy;}

As (28) holds for all vectors ¢ with |{| < 2, we have by r5 and
7 ~—— 2 < g—-;
47 l'(b) > max 2k var {sin {y,} >

1] <2

> max Tk { [sin? ty dF (&, + by) — 38 (74(0))%} >

1] <2

> (Ju<r )7 fy<r 4t TH{ [sin® ty dF (&, + by) — £ (v2(0))?)
1f 0 < T <2,

= 2k (_/itl-.-s:._T dt)mlfit;gzv dt [sin? ty dF (& + by) — 2’% 2k (yr(0))? =

3 . 1 36 .
| — =) va(8) — 35 T(6) =¥ 4(0)

Z 2m ¥ 2)

by (26) and 17, if we restrict T to T < g—-—-, and [(b) to
2r(m + 2)1°(0) < 1,

3 ! 36 1) -3
vt — w5 Z
(m + 2) (’% a7 " me )% (0) > pYP—— (3)

it we take 27 = 3 < w. Hence 16x(m -+ 2) I'(b) > 3 2" (b), which
proves the first inequality in (12’) and completes the proof of theo-
rem 2'.7)

ADDITIONAL NOTE

The theorem proved in the text can be brought into another
torm by introducing an appropriate metric for stochastic variables
and their sums. ’ ' '

We remind that p(x, v) defines a distance between two elements
x,y of a givenset E, if p(x,y) > 0, p(x,y) =0 ==x =y, o(x,y) +
+ o(y, 2) = o(z, x), whence p(x, y) =, o(y, ¥). Moreover, 1t 1s well
known that, if o(x, v) is a distance on E, then also the ““truncated”

value
0s(#, ) %! min(o(x, 3), 3)

7} I wish to thank Dr W. Peremans and Dr H. J. A. Duparc for reading the M
and suggesting some improvements of the text.
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is, where b is any positive number. It determines the same topology

as o(%,y). _
We apply this to the case where x and y are real numbers, or,

more generally, vectors in a Euclidean space R,,. Instead of the
distances it is then sufficient to consider the norms, i.e. distances

from zero. We define the ‘““truncated norm”™

| x|, = min (| x |, b)

E o

where | x | in the first case denotes the absolute value, in the second
one the length of the vector x. The corresponding truncated distance
0s(%, ¥) is then the truncated norm of their difference:

Qb(x’ y) — |x-—-—-y Ib*

Moreover, if x is a stochastic quantity (vector) we can, following
the ideas developed by M. FRECHET, define its truncated norm

| % ||» €-g. by the generalized Pythagorean addition (integration) by
| % |]o S (€| x [,2)7

The corresponding truncated distance will be denoted by the sym-

bol o,
ap(®, Y) || a— ¥ |, = (€ op(x, ¥)?) 2.

(Of course instead of o(x, y) = | x — y | any other distance could
be taken, and instead of the root mean square any other tfunction
preserving the triangle inequality). f

With these definitions the quantity y(a, b) defined by (2) 1s the
square of the truncated distance between the stochastic vector x
and the constant one a4, and generally

yplﬁ(a’ bv) — va(ka1 a)z'

Moreover, defining as customary, the distance between an element x
of a set E and one of its subsets S as the infimum of the distances
between x and all elements of S, we have, 1f R,, 1s considered as the
set of all ““univalued’ (= ‘‘constant’) stochastic vectors:

' yv)'s:(bv) — Ubv(ka! Rm)2‘

The quantities o,(¥, R,,) can be considered as norms mod R,, and
will be denoted shortly by

1] & [[]p S 0p(%, R ).
Then
] % U 50 = vare(B,) 2
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In the same way we have
l” Sy l“bv — Fv(bv)llz
where §, =,;, + ... + &, , like before.

Then Lemma 1 states that LLN holds if and only if

lim ||| 5, {[| 5, = O

1.e. 1f the truncated norms modulo R,, of the sum s, tend to zero.
Finally theorem 1 states that this is the case if and only if

Tim (2 ||| £, [[]s)" = ©.

Hence theorem 1 states that the topology determined by the
truncated norms modulo R,, is equivalent with the one, obtained by
taking as the norm of a sum of 7ndependent stochastic vectors the
Pythagorean sum of the truncated norms mod R,, of the summands.
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