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LARGE NUMBERS 

BY 

PROF. DR. D. VAN DANTZIG 

In this paper the socalled (weak) ''Law of Large Numbers'' 
(LLN) is proved in a new and very simple ''limit-free'' form. As a 
prerequisite to the proof several properties of the functions y (a, b), 
defined below, are needed. As these refer to a single stochastic 
variable (vector) only, they cannot be said to belong to the proof 
of the main theorem. A few of them have been listed only because 

~,if// 

they might perhaps be of some use on other occasions. Most of 
their proofs are similar to steps occurring in the known proofs of 
LLN also, e.g. by LEVY, FELLER and FREUDENTHAL. Neither 
Feller's ''annoying'' (according to FREUDENTHAL) supplementary 
condition, nor the inductive reasoning in Freudenthal's proof of 
necessity is needed. The somewhat more general assumptions, 
called the ''modern'' form of the limit-theorem according to M. 
LOEVE, are used. Moreover the theorems are formulated and proved 
for any (finite) number of dimensions. 

In section 1 the definitions and results are formulated, in 2 the 
' 

auxiliary properties are proved, whereas 3 contains the proof of the 
main lemma and theorem. 

1. 

For every positive integer v n,, is a positive integer and 
xv1 , ••• , x,,nv 1) are independent stochastic variables; no assumption is 
made about stochastic variables belonging to different values of the 
first suffix. The suffix v will always run through the set N of 

1 ) Stochastic vectors and variables are printed in bold type. In comparison with 
e.g. Loeve's notations the suffixes -v and n have been interchanged. 
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positive integers, k through the set N n,,, consisting of the numbers 
I, ... , n,,. Further b11 is a given sequence of positive numbers; 

S,, def I;k Xv, k 2) ( 1) 

The problem is, to find necessary and sufficient conditions, in 
order that the following statement LLN holds for the given sequence 
b,,: LLN. For every v EN a real number c" exists, such that for all 
a>O · 

We use the letters N, P, R, Rm for the sets of all natural, positive 
and real numbers and for m-dimensional Euclidean space re
spectively, and, if 5 denotes any set, the symbols 'Vi ... ' and 
'3: .... ' for 'for all x E S .... ' and 'an x ES exists such that .... ' 
respectively. Then LLN may be written in the shorter form: 

LLN: v~ 3~ v;; lim P{I s" - c,, I > a b,,} = 0 
V )00 

With any stochastic variable x, having the (cumulative) distri
bution function F(x), we associate functions y(a, b) and y(b), 
where a ER, be P, defined by 4) 

y(a, b) det min (I, y2) dF(a + by) (2) 

y(b) def inf y(a, b) (3) 
a ER 

The integrand min(l, y2), occurring in the definition of y(a, b) 
could be replaced by a more general function V(y) without invali
dating some of our results. In particular one could choose for V(y) 
any absolutely continuous distribution function vanishing for 
y < 0 and approximating y 2 for small y > 0, i.e. impose the condi
tions 

1. V(y) = 0 for y < 0 
2. lim V(y) = 1 

y >oo 
3. lim y-2V(y) = 1 

ytO 
4. V(y) = fv(t)dt 

2
) The symbol def denotes an equality, defining the left hand member. 

3
) The script P denotes •the probability of' .... 

4
) In comparison with Feller's and Loeve's notations the letters a and b and , 

n and v respectively have been interchanged; min (u, v) denotes the minimum 
of u and v. 
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These conditions are e.g. also satisfied by the function 
y2(1 + y2)-1 (y:?.: 0), used for similar purposes by P. LEVY, A. 
KHINTCHINE, B. GNEDENKO and other authors in the theory of 
infinitely divisible laws. The common truncation method, corre
sponds with the choice 

V(y) = 1 if y > 1 
Oify<l 

The fact that it does not satisfy condition 3 is the main cause of the 
necessity of separate conditions for the truncated second moments. 

The main advantage of our choice V(y) = min (I, y2) above that 
used by LEVY, etc. is expressed by our auxiliary properties 13, 14, 
namely by the fact that by minimizing y(a, b) for constant b, the 
truncated first moment of b-1 (x - a) vanishes in the minimum 
a = ~, whereas for other choices of V(y) it only becomes small 
(conditions 3, 4 then only cause the vanishing of the expectation 
of V(y)). 

We denote by F,,,c(x) and Gv(x) the distribution functions, by 
fvk(t) and gv(t) the characteristic functions, and by Yvk(a, b), y,,k(b) 
and I',,(a, b), I',,(b) the ne\vly defined functions belonging to the 
x,,k and the s,, respectively. 

We shall prove the 
Lemma 1. LLN is equivalent with 

lim I'v(b,,) = 0 (4) 
V )00 

This lemma admits of a ''limit-free form''. Introducing as an 
abbreviation 

R,,(x) def inf P{l s,, - c,, I > X} (5) 

it is implied by 
Lemma 2. The infimum in (5) is a minimum, and 

--~ - ~(~) 
-----,, a I - a... min , a 

(6) 

the first inequality holding if O < a < 1. 

In fact, the second inequality shows that (4) implies R,,(ab,,) > 0 
for all a > 0, i.e. LLN. On the other hand the first inequality shows, 
that Rv(ab11) ➔ 0 for some a> 0 and < I implies lim sup I'v(b,,) <a2 • 

V ), 00 
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Hence LLN, i.e. R,,(ab,,) >- 0 for all a > 0 implies I',,(b,,) = 0 (as 
identically I',,(b) > 0). 

Feller's theorem, applied to the ''modern'' case, states: Under 
the ''supplementary condition'' 

3}~ V; Vfn,, max(P{xvk > O}, P{xvk < O}) < 1 -

it is necessary and sufficient for LLN that simultaneously 

lim Lk P{l x'Pk ! > bv} === 0 
" >oo 
lim b11-

2 Lk J x 2 d F,,k(x) = 0 
(7) 

11 >-oo I xi <b,,, 
Recently FREUDENTHAL showed how to avoid the supplementary 

condition. His theorem (not in his limit-free form) can be stated 
thus: For LLN it is necessary and sufficient that simultaneously 

lim Lk P{!x,,k - avk I > b,,} = 0 
V )00 

l . b 9. ..;;;;:, k I 0 1m ~.., £.,,j var x,,k = (8) 

V )00 

, 
where var x,,k denotes the variance of the ''tr1..1ncated'' variable 

' def Xvk === 

We shall prove 

x,,,k if I xvk - a,,k I < bv 

Theorem 1. Necessary and sufficient for LLN is 

lim Lk Yvk(b,,) = 0 
V )00 

Using the abbreviation 

E11(b) def ~k Yvk(b)' 

(9) 

( 10) 

( I 1) 

theorem 1 together with lemma 1 state that for v > oo I',,(bv) > 0 
if and only if .E,,(b,,) >- 0. As the I',,, Yvk and ,>:,, are > 0, it is therefore 
immediately seen to be a trivial consequence of its ''limit-free 
form'': 

Theorem 2. If v EN: 

(16 n)-1 Ev(b,,) < I'Ji(bv) < E,,(bv) -Ev(b,,) In ,Y:1'(bv) ( 12) 

the left hand and the right hand ineq14,ality under the additional 
condition that 6nI'v(b,,) < l and E,,(b,,) < I respectively. 
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Neither the lemma nor the theorems contain existential quanti
fiers. Once it has been shown (cf. IJ in section 2) that a

11
k = ~,,k 

exist such that y.,k(~vk, b,,) = y,,k(b,,), ( 10) is trivially equivalent with 
Freudenthal's (8). We shall, however, prove it independently. · 

Although the ''modern form'' of the theorems makes it possible 
to put everywhere bv = l \vithout loss of generality (as the x~k' s,, 
and c,, can, for every v, simultaneously be divided by b.,), we shall 
not make use of this simplification. 

We shall give the demonstrations such a form that they (unless 
special notice is given) remain valid if the stochastic variables x.,, 
are replaced by stochastic vectors in an m-dimensional Euclidean 
space. In order not to burden readers interested in the one
dimensional case only with vector-notations we shall maintain the 
simple notations used for this special case for the general case also, 
with the following new interpretations. The letters x, y, s, r, a, 
~, c, t (with or without suffixes) denote vectors in Rm, whereas the 
letters b, a, e, l, T, q, y, I', J:, p, R, a'2 remain, like before, non
negative (or positive) real numbers. A product like tx or ty of two 
vectors denotes their scalar product; the square (x - a) 2 or y 2 of 
a vector its scalar product with itself. The length of a vector, e.g. 
x-a is denoted by Ix-al, so that (x-a) 2 = Ix-a 12 • We 
have, however, instead of the identity I tx I = t I Ix I only 
Cauchy's inequality I tx I < I t I I x I• 

Even a somewhat more general interpretation is possible, by 
interpreting y 2 = I y I 2 as an arbitrary positive definite quadratic 
form in y (and, just so, (x - a)2 etc.), and ty as the corresponding 
bilinear form in t and y. 

With these interpretations the lemmata and theorem I remain 
valid without alterations, whereas in theorem 2 only the numerical
coefficients must be changed. The lemmata · and theorems are then 
invariant with respect to arbitrary affine transformations in Rm, 
provided that the values of the distribution functions are kept 
invariant. In fact we have 

Theorem 2'. In Rm, if v EN 
' 

( 16/ 3n(m + 2))-1 I"(b") < I',,(b,,) < E.,(b11 ) - E.,(b,,) ln E,,(b,,) (12') 
the left hand and the right hand inequality under the additional 
condition that 2n(m + 2)I',,(b,,) < 1 and E,,(b,,) < 1 respectively. 

Evidently this implies theorem 2. 
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2. 
• 

In this section we consider a single stochastic variable (generally 
a vector) x ,,rith distribution function F(x) and characteristic 
function /(t) = e eits (e denoting the expectation operator), and ,ve 
shall derive the prerequisite 5) properties of the functions 

I. y(a, b) def min (I, y2) dF(a + by) 

2. y(b) def inf y(a, b) 
a E It 

where a is an arbitrary real number (generally a vector in Rm) and 
b an arbitrary positi,re number. 

3.. V";}-m Vf O < y(b) < y(a, b) < 1 

Trivial. 

4. y(a, b) > P{I x - a ! > b} 
I - y(a, b) < P{I x - a I < b} 

Trivial. 

5. V!"' Vf 1 - y(a, b) = lvl~t ( I -y2)dF(a + by) = 
= fo1 P{j X - a f < ba}d(a2) 

= P{I x - a/ < bq}, 

where q is a stochastic variable, independent of x, with distribution 
function 

0 if q < 0 
V(q) def P{q < q} def · q2 if O ¾ q < I 

I if 1 <q 
Proof: obvious, as 

P{I x - a I < bq} = fdV(q) P{jx - a I < bq} = 
=f dF(x) P{q > b-1 Ix - a I} 

Remark. Evidently also 

y(a, b) = P{jx - a I > bq} = 

we have from 5 
- a I >ab} 

~) Some of the properties, marked by an asterisk, are not needed for the proofs 
of the theorems, but are listed for completeness only. 
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y(a, b) = q2~1 P{] x - a I > qb}d(q2) < 
< q2~a2 d(q2

) + a2~q2~1 P{I X - a I > ab}d(q2), 

whence 6. 
• 

7. V°;;m Vf V~ y(a, b) > 1nin( 1, a2) P{!x - a j > ab} 

Proof: ,,(a, b) = P{[ x - a I > qb} 
as O < q < I, hence > P{[ x - a I > ab} if a > 1, and, if a < 1, 

> P{lx - a I > ab and a > q} = P{lx - a I > ab} P{q < a} = 
= a2 P{I x - a I > ab} 

whence 7. 

8. Vf lim y(a, b) = I 
I al ➔ oo 

Proof. Choose e > 0, l > 0 with P{l x I > l} < e and I a I > b+l. 
Then 1 -y(a, b) < P{l x - a I < b} < P{[ x I > l} < e. 

9*. V!{m lim y(a, b) -- lim y(b) = 0 
b >oo b > oo 

Proof. Choose 13 > 0 and < 1 and l so that P{I x - a I > l} < 13 

and take b > s-112l. Then, for any a E Rm: 

0 < y(b) < y(a, b) = y 2dF(a + by) + min(l, y 2)dF(a + by) < 
blvl ~l blvl > l 

¾ b-2l2 + P{lx - a I > l} ¾ 2e 

IO*. v:m lim y(a, b) = 1 - P{x = a} 
b >0 

Proof. By 5 • 

lim (1 - y(a, b)) ==- lim P{I x - a I < bq} = 
b >0 b >0 

= P{I x a I = O} = P{x = a} 
as q < 1. 

II*. If a + b and a - b are continuity points of F(x), then 

oy(a, b) 2 

ob 

Proof. By 5 

1 -y(a, b) = 2b-2 ob P{[ x - a I < {3}{3 d/3 

is for b > 0 a continuous alnost every where differentiable function 
of b, as both factors of the last member are. Hence 

, 

I oy(a, b) 
II* = . ob -a I < b} 
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whence II* follows by partial integration. In particular II* shows 
· that y(a, b) for constant a is a monotonous non-increasing function 

of b. 
Remark. II is equivalent with 

II
11*. 

oy(a, b) 
= 

o(b-2) 
lx-al~b IX - a 12 dF(x) 

which is almost obvious with y(a, i-112
) = min( 1, l(x-a) 2)dF(x) 

and shows, together with 9* that 

II'''*. y(a, b) = boo d({3-2) lx-al¾P (x - a) 2dF(x) 

I2*. If P{j x -a I= b} = 0, then 

a 2 * -

where - (for m > 1) denotes the gradient of the scalar y(a, b) 
oa 

,vith respect to a, whereas y* = y for m = 1, and, generally, if y2 

stands for the ordinary scalar product; but, if y 2 is a general 
positive definite quadratic for111, y2 is the transform of y by the 

,. 

matrix of the quadratic form, i.e. 

y* = 

Proof. In the second member of the remark to 5 the boundaries 
of the integral and the integrand are differentiable functions of a, 
hence y(a, b) is. Differentiation of the boundary gives no contri
bution, as the integrand vanishes there. Differentiation of the 
integrand and substitution of x == a + by leads immediately to I2*. 

IJ. Vf 3fm y(b) = y(~, b) 

Proof. As y(a, b) for constant b by 5 (or r2*) is continuous in a, 
and by 8 tends to 1 for I a I > oo, its infimum (cf. 2) is a minimum, 
which it reaches for some finite a = ~ (in general not uniquely 
determined), whence IJ. 

Henceforth we shall denote by t some vector for which IJ holds, 
and by M(b) the set of all these t. 

I4. vf Yf(b) Vfm IYl~l tydF(~ + by) = 0 

Remark. With the notation used in r2*, this is equivalent with 

lv!~l y* d F(; + by) = 0 
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Proof form= 1. In this special case tis a numerical factor, which 
may be omitted. If oy/oa exists in the minimum a = ~' it vanishes 
there, so that I4 follows from I2*. If, on the other hand for some a, 
only the left hand and the right hand derivatives exist, partial 
integration of I2* (using the assumption m = 1), leading to 

oy(a ± 0, b) 2 2 
aa+bb F(x)dx - -

b2 oa 
-b±O)) 

shows that the first term is continuous, whereas F(a + b) can make 
only upward jumps for increasing a. Hence, in a discontinuity 
oy/oa can only make downward jumps. This, however, can not 
happen in a minimum. Hence oy/oa is continuous in a minimum so 
that the initial conclusion, whence I4, holds (for m . 1). 

As this simple proof can not easily be generalized for arbitrary m, 
we shall give a different proof for general m, not using I2*. 

For arbitrary a E Rm, a' ER,,,, 

y(a, b) - y(a', b) = P{! x - a I > qb} - P{I x - a' I > qb} = 
= P{I X - a I > qb > I X - a' I} -P{I X - a' I > qb > r X ~ a I} = 

lx-a'l¾min(b, Ix-al) {min ( 1, b-2(x - a) 2 ) - (x - a') 2
} dF(x) -

- Jix-al~min(b:, lx-a'I} {min( 1, b-2(x - a') 2) - (x - a) 2}dF(x). 

Now we put a'= ~ E M(b), a = ~ - ebt with e > 0, t E Rm, then, 
putting x = ~ + by, z = y + et, we have 

0 < y(~-ebt, b) -y(b) - !vl~lzl~l (z2 -y2 )dF(~ +by)+ 
+ IYl¾l<lzl (l -y2

) dF(t + by) - lzl~lvl,l (Y2 
- z2)dF(~ + by) -

lzl¾l <!YI ( 1 - z2)dF(~ + by) 

as y 2 - z2 - 2e ty - e2t2• Hence the first and the third term 
are together 

< + 2e max (lul, lz!)~l ty dF(~ + by) + e2t2 
• 

The last term is < 0, whereas for I z I < 1 < I y I, because of 
I y I < I z I + I y - z I ' 0 < 1 - I z I < l y - z I = st, 1 - Z

2 = 
= ( 1 + I z I) ( 1 I z I) < 2et. Hence we find after division by 
e > 0: 

0 < s-1 (y(~ - ebt, b) - y(b)) < 2 f ma:s. (lvl~ lv-etl) ~ 1 tydF(~ + by) + 
+ et2 + 2 I t I P{l - e I t j < I y - et I < 1} 

As this holds for every e > 0, we can pass to the limit e ➔ 0. Then 
the last term in the last member tends to zero, like the second term, 

-

and we obtain 
0 < IVl¾l ty dF(~ + by) 
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This is true for every t E Rm, hence it remains valid after re
placement of t by - t, whence I4 follovvs. 

In the same way I2* could have been proved, by using Frechet's 
definition of the differential of a functional, in casu 

. y(a + et) - y(a) 
= l1n1 ------. 

e >0 8 

This one is the most important among the properties of y(a, b) 
which allows us to avoid Feller's supplementary condition, as "vell 
as the complete induction in Freudenthal's proof of necessity. The 
main difference between their methods and ours lies in the fact that 
they have to consider all a, which (substituted for ~) make the left 
member of I4 small, whereas we, by minimizing y(a, b), could make 
it zero. 

In the following theorems t always denotes a real vector.· 

I5. Vf Vff(b) I sin ty dF(~ + by) I < (n - 2)y(b) if I t I < 2 

Proof. For I y I > 1 I sin ty I < 1 . For I y I < I sin ty = 
·- ty - (ty - sin ty). The integral of ty vanishes because of I4. 

Moreover, for O < z < n, z-2(z - sin z) is a monotonous increasing 
function 6} of z, so that for jzf < T <n jz.-sin ii< (T-sinT)z2T- 2 , 

and for I y I< I, J t I< T: I ty-sinty I< (T-sin T)y2 , since 
T-2(ty) 2 < T-2t2y2 < y2• Hence, taking T = 2 with T - sin T = 
= 11091 < :rt - 2, 

l/ sin ty dF(~ + by) I < I lvl~l I + 1./ivl>l [ < 
< (n-2) fivi<- 1 y2dF(¢ +by)+ lvl>t dF(~ +by)< 

< {n - 2)y(~, b) = {n - 2)y(b) 
This theorem replaces Feller's [I] (16) and Freudenthal's [3] (12.4). 

I6. vr Vf{b) I (I - eltv)dF(~ + by} I < n y(b) if It I < 2 
Proof. 

0 < /(1 - cos yt)dF(¢ + by) = 2 sin2 1/ 2ty dF(; + by) =< 
< 2/ min (1 / 4(ty) 2

, l)dF(~ + by) < 2y(~, b) = 2y(b) for It I < 2 
Hence -

I ( l - ett 11)dF(~ + by) I < 
< f (1 - cos ty) dF(¢ + by) + I sin ty dF(~ + by) I < 

< 2y(b) + (n - 2)y(b) = ny(b) 
6

) In fact, the derivative of z-2(z - sin z) is 

2 sin z- z(l + cos z) 4 cos2 ¼z 
z8 = z3 - (tg ½z - ½z), which is positive for O < z < n. 
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The argument is similar to Freudenthal's [3] ( 12.2)-( I 2.5). 

r7. vr Vff(b) ( ltl~T dt)-1 ltl~T dt .. f sin2 ty dF(~ + by) > 
3 _1 

2m+2 2 

Proof. By means of an affine transformation (cf. the remark before 
theorem 2') we may reduce the quadratic for1n y2 to its diagonal 
form ~ (y;.) 2, where Ji.= 1, ... , m, and y 1 are the coordinates of y. 
The denominator then is the volume Tm/ m of a sphere ,vith radius T, 
where · 

{(- ½) !}m 
Im= ~·-

(½m) ! 
As the whole expression then is invariant under rotations, we may, 
after having interchanged the order of the integrations, for any 
fixed y, choose the orthogonal coordinates t1 , •••• , tm of t so that 
the t1-axis has the direction of y, i.e. ty = t1 I y I, and put 
.t~ + . . . + t!i === T2r2• Then assuming first m > 2, the integration 
over r = const. can be performed, and gives Om_2(Tr)m-2, where 

2. {(- ½) !}m-1 
Om-2 = 

m-3, 
• 

2 

is the area of a unit-sphere in (m - 1)-dimensional Euclidean space. 
We find that the left hand memb,er of I7 is 

m 

_,,2 sin 2TIYI Vl - r2 

1 - dF(~ + by). 
2T I y I VI r2 

Abbreviating for a moment I y I v'1 -r2 by u, we have 

• 

hence, for I u I > 1 : 

sin 2T,z-t 

2T,zt 

1 
~---

--.. 2Tu' 

sin 2Tu 1 I 
I - ---- > 1 - > 1 -

. 2Tu 2T 2T 
min {1, u 2}. 

Moreover, for O < z < n, z-S(z - sin z) is a monotonous decreasing 
1 z2 z4 

- .... ; its derivative 
' • 

• 

• 

' ! 
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- . . . also is an alternating series, hence it is 

z 
=-fJ-

60 
with O < ,f) < 1 if z2 < n 2 < 21 

1260 
=== hence it is 

60 ' 
have 

I 

Therefore, for ally and O < 2T < n 

sin 2Tlyf Vl-r2 I 
I-------:::======--> 1--- min(l, y 2(I-r2) > 

2Tlyl v'1-r2 2T 

- r 2) min (1, y2) 

Now, as 
5 m-1 

01 rm-2(1 - r2)Sf2dr = .lB - ---
2 2· 2 

m + 2 I -1. 
• 

3 

4(m + 2) 2 

3/m - ½) I {(½m) !}-1 = ------
2(m ·+ 2)0m-2'. 

we see that the left member of I7 is 

• 
3 I 

~----- 1-
~ 2(m + 2) . 2T 

min(l, y2)dF(~ + by), 

so that I7 has been proved form> 2. Form= I the integration 
over r does not o-ccur; except for some simplifications the proof 
remains the same. 

3. 

It is now easy to prove lemma 2. The fact that the infimum in (5) 
is a minimum follows exactly in the same way as IJ. By applying 
6 and 7 to s,, in.stead of x we have at once for any a > 0, b > 0 
and any vector c,, 

(the left hand inequality for a< 1 only). . 
For any c., the left hand member is > ( l-a2)-1 (I',,(b,,)-a2). Hence., 
choosing for c,, a minimum 1J,, of I',,, so that I',,('Y/,,, b,,) === I',,(b,,): 

I',,{b 11) - a2 

a2 n - m1 , a 



141 

Now we can pass to the proof of theorem 2. As only one value of 
the suffix v occurs in (12), we can consider any fixed 'P and drop the 
suffixes v altogether. Then we have to prove for any fixed suf
ficiently large positive b: 

( l 6n}-1 £ (b) < I'(b) < E (b) - E (b) In E (b) ( 12') 
where 

( 11 ') 

yk(b) and I'(b) being the functions defined by (2), (3), belonging to 
the stochastic vectors xk ands = ~ xk respectively, the distribution 
functions of which are F k(x) and G(x) respectively. 

For every kENn = {1, ... ,n} we choose according to IJ a~" 
such that 

( 14) 
. 

Moreover ~re introduce for any k E N n the following abbreviations 

pk def P{l xk - ~k I > b} (15) 

Yk def b-l(xk - ~A:) 

x' k def xk if I x k - ~ k I < b 
. . ~ k if I X k <; k t > b 

s' def ~k x' 
k 

C def Lk ~k 

ak'2 def var x' 1c 

fJ'2 def var s' 

• 

{ 16) 

( 17) 

( 18) 

(19) 

(20) 

(21) 
Then, as 

(22) 

by I4, 

(23) 

Now s = s' unless xk =I= xk: for at least one k. The probability 
1 f I '}· of this latter case is 1 - P{x1 = x1 , .... , X1c = xk} · l-ITP{x1e · xk ·. 

(as the xk are independent)= 1-IlP{lxk .·.tI<b}=l-II(l-· .. 1.)< 
< ~ Pk• Hence, for any a > 0: 

R(a b) < P{l s - c I > ab} < 
< P{l s' . c I > ab} + "£p1b < (ab)-2{1'2 + LP1c 

' 

(22), 
( b)-2 ~ . 1 2 +· "' J.,. = a ~. ak ·. ~ Yk 



142 

as {1'2 = i:k a~2 because the x~ like the xk are independent 

= ".Ek(fiv:>I dFk(~k + by) + a-2 ivl~I y2dFk(~k + by)) 

by ( 15) and (23) 

• 1.e. 
P{I s - c I > ab} < max (I, a-2) E (b) 

• 

• 

(24) 

This proves the sufficiency of the condition ~k = 1ik Yk(b) > 0 
for the LLN in its original form (p. 1). (The argument is practically 
the same as in Freudenthal's proof). Moreover: 

I'(b) < I'(c, b) = min (1, z2) dG(c + bz) = 
--= 0

1 P{I s-c I> a b}d(a2) < 
< 0

1 d(a2) min ( 1, Y: (b)a-2) = 
a2~:E(b) d( a2

) + :E(b)~a2:;;;;1 E(b) a-2da2 = 
= E(b) - L(b) In L(b). 

by 5 
by (24) 

if E(b) < I 

This proves the second inequality in ( 12'), hence the s11,/ ficiency of 
the condition £(b) > 0 for I'(b) > 0. 

In order to prove its necessity, following partly Feller's, partly 
Freudenthal's lines, we define 

(25) 

and call Hk(x) the distribution function of rk. Then we have for 
each kEN12 , if rJ is a value with I'(rJ, b) = I'(b), then 

I'(b) 0 2~1 P{I x,c + rk - rJ I > ab}d(a2) = 
= J:2~1 d(a2

) J d H k(r)P{I xk + r - 'f) ! > ab} -
== J dH k(r)yk(rJ - r, b) > yk(b) 

Hence, by I6, 

(26) 
by 5 and (3). 

• 

nI'(b) > n Yk(b) > I (1 - e1t 11)dF k(~k + by) I (27) 

for any vector with It I < 2. If I'(b) < (6n)-1 , the last member of 
(27) is < t for each k E N n• Applying I6 again, but novv to s instead 
of x, and still assuming I t I < 2, we have 

nI'(b) >· I (I-eltz)dG('fJ + bz)I = 11-eeitb-l(:Elxkl-11)! = 
== l l-eitb-l(c-11) neeitb-l(xk~k) I > 1 - TI 1eeifYkl > 
> ½ ~k ( 1 - I e e ifYk I) > 
> ¼ ~k var {sin t yk}, 

as 

(28) 
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I e eiiYkl 2 = (f cos ty dF 1c(~k + by)) 2+ ( sin ty dF k(~k+by)) 2 < 
< cos2 ty dF k(~ k + by) + (e sin tyk) 2 = 

= 1 - (e Sin2 fyk - (e Sin tyk) 2) === 

= l - var {sin tyk}, 
whence 

I - 1e eityk l > ( 1 l I e eitYkj)-1 var{ sin tyk} > ½ var{ sin tyk} 

As (28) holds for all vectors t with It I < 2, we have by I5 and 
-2 < l; 

4:nI'(b) > max ~k var {sin tyk} > 
I t I :s;;;; 2 

36 } > max ~k { sin2 ty dFk(~k + by) - 25 (yk(b)) 2 > 
It! ~2 

> ( ltl=s;;;;T dt)-1 Jitl=s;;;;T dt ~k{ sin2 ty dF k(f k + by) -~-~ (yk{b)) 2} 

if O < T < 2, 

= ~k ( ltJ:s;;;T dt)-1 !tl=s;;;;T dt sin2 ty dFk(~1c + by) -f{ D (yk(b)) 2 > 
3 _ 1 

211:(m + 2)I'(b) < I, 

3 1 

~4T 
-

and I'(b) to 

36 1 
25 6n 4(m + 2) 

if we take 2T = 3 < n. Hence 16n(m + 2) I'(b) > 3 E (b), which 
proves the first inequality in ( 12') and completes the proof of theo
rem 2'. 7) 

ADDITIONAL NOTE 

The theorem proved in the text can be bronglit into another 
form by introducing an appropriate metric for stochastic variables 
and their sums. 

We remind that e(x, y) defines a distance between two elements 
x, y of a given set E, if e(x, y) > 0, e(x, y) = O ",. x = y, e(x, y) + 
+ e(y, z) > e(z, x), whence e(x, y) .e·(y, x). Moreover, it is well 
known that, if e(x, y) is a distance on E, then also the ''tru.ncated'' 
value 

( \ def · (. ( ) b) eb x, y, ... m1:n e x, y , •.·.· 

7) I wish to tha.nk Dr W. Peremans and Dr H.J. A. Duparc for reading the MS 
and suggesting some improve1nents of the text. 
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is, where bis any positive number. It determines the same topology 
as e(x, y). 

We apply this to the case where x and y are real numbers, or, 
more generally, vectors in a Euclidean space Rm. Instead of the 
distances it is then sufficient to consider the norms, i.e. distances 
from zero. \¥ e define the ''truncated norm'"' 

I x I b def min ( I x I , b) 

where Ix I in the first case denotes the absolute value, in the second 
one the length of the vector x. The corresponding truncated distance 
e0(x, y) is then the truncated norm of their difference: 

• 

eb(x, y) = I x-y lo• 
Moreover, if x is a stochastic quantity (vector) we can, following 

the ideas developed by M. FRECHET, define its truncated norm 
11 x 11 0 e.g. by the generalized Pythagorean addition (integration) by 

' 

11 X 11 b def ( e I X I b 2) l/ 2 

The corresponding truncated distance ,vill be denoted by the sym
bol ab: 

' " 

(Of course instead of G(x, y) = I x -y I any other distance could 
be taken, and instead of the root mean square any other function 
preserving the triangle inequality). · ~ 

With these definitions the quantity y(a, b) defined by (2) is the 
square of the truncated distance between the stochastic vector x 
and the constant one a, and generally 

Moreover, defining as customary, the distance between an element x 
of a set E and one of its subsets S as the infimum of the distances 
betvveen x and all elements of 5, we have, if Rm is considered as the 
set of all ''univalued'' (= ''constant'') stochastic vectors: 

The quantities ab(x, Rm) can be considered as norms mod Rm and 
will be denoted shortly by 

111 X 111 b def (1 b ( X, Rm)· 
Then 
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In the same way we have 

111 s., 111,,,, = I',,(b,,) 1
' 2 

where s,, = x,,,1 + . . . + x,,, nv like before. 

Then Lemma I states that LLN holds if and only if 

lim 11 I S,, 111 bv = 0 
SI ) 00 

i.e. if the truncated norms modulo Rm of the sums,, tend to zero. 
Finally theorem 1 states that this is the case if and only if 

llin (:tk 111 ~,,Jc 111 l>t,) l/1 = 0. 

Hence theorem 1 states that the topology determined by the 
truncated norms modulo Rm is equivalent with the one, obtained by 
taking as the norm of a sum of independent stochastic vectors the 
Pythagorean sum of the truncated norms mod Rm of the summands. 
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