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STATISTIC METHODS BASED ON FEW ASSUMPTIONS 

by D. v a 11 D a 11 t z i g ancl J. H e n1 el r· j j 1-c 

.111 (1,f }1 einat 1:(_>.r1,l O e'rit-re-, ~4 11iste,;· cl a11i 

1. - B11 oaclly co11siclered fot1r stages ca11 be clist,i11guisl1ecl i11 tl1e cle,re]<)1)me11 t of 
mathematical statistic~s 1 . Tl1e first stage, l>egi1111i11g e.g. ,vitl1 Jol111 Gr·at111t (1662) 
is ch.a1·c1cterized l)y the t1·eatme11t of statistical q11a11t1t,ies as if t,hey we1--e c~c)11stant, 
as long as 110 obvious cl1a11ges in tl1e sitt1t1tio11 l1acl occ111·1·ecl. E.g. t,l1e 1·ctti<) of 
tl1e yearly 11umber of cleatl1s ancl c>f livi11g "\\'as estjn1at,ecl b)r G1·au11t as 1 :32, in 
l1is summary as 1 :30. Hence Si1· '\Vil]ian1 Petty '' con1p11 t<::cl '' the po11ulcit,io11. of 
Paris, Rome, Amsterdam etc., simply by multip1Jri11g t,he k110,,,11 yea1·Jy 11um be1_• 
of deaths by 30. Graunt apparently kne"½~, that his 11uml)ers ,vere mean v~i1,lues, 
a11d had some a,,,,.areness of the phenomeno11 of statistical v'"a1·iabi]ity, l)lit not 
of its dependence on tl1e nl1mbers of ol)se1·,,,·at.io11s. E.g. G1·a1111t believ"e(l t,hat he 
could (lra'v\r co11t;ll1sions alJout col111t1-.y-life bei11g l1ealthie1· t,l1c111 tc)\\~11-life f1·om the 
fact that tl1e ratio of the g1·eatest to the smallest cleatl1 1·ate clu1--i11g a 11uml)er of 
years was at, moRt 2:1 in Lc>ndor1, but 5:1 i11 a (small) cc·)1111t1:·y pa1·ish. Using 
modern terminology v\ire can Sa)r tl1at, in the fir·st stage the dist,1·il)11tio11 of c1 de­
mographic quantity '"'as character·izecl by one r1umbe1·~ e.g. tl, mea11 ratio <1r a r·atio 
of means, etc. 

The serond stage is characterized by t,he gro\v-i11g a "\\-Tareness t)f the phe11ome­
non of variability. Its main l1istorical sour·ces were the eff()1·ts to flncl la,v?s for 
tl1e errors made i11 astro11omical obse1"vations. It culmi11atecl i11 La1)la(~e's discov­
ery in 1778 that tl1e normal la,\,. of errors 1 .. esults from a la1~ge 11uml)e1· of i11de­
pendent elementary er·r·ors, whatever thei1~ i11divi<ll1al '' laws '' (assumed to be ide11-
tical) may be. Its somewhat more eleme11tary t1·eatme11t 1Jy P<)isson a11<l~ in par­
ticular, its imbedding i1:1 the fo1·malism of least sc1ua1·es by Gauss (1809) r·apidly 
worked as the Mephistophelian drink: '' Mit diesem Tra11.k in1 Leibe siehst eine 
Helena in jedem Weibe '' : many statisticia11s soo11 be1ievecl to fi11d the 11c>rmal 
dist1·ibution almost al\vays and everywhere. In particula1" Adol1)l1e Quetelet (1796-
18'74), llnder direct i11flue11ce of' Laplace, and in his tracl{ F1·ancis Galton (1822-
1911) clid much to spread knowledge of the no1·mal clist,r·ibut,io11~ ,,rhieh in that 
stage doubtless was 11.ecessa1·y for their~ most in1po1·ta11t contrib1.1t,io11~ ,,,l1icl1 was 
the introduction of methods and results, hitherto mainly 1.1secl in ast1·onomy and 
geodesy, into the social and biological sciences. Mathematie~.ll}" speaki11g the sec­
ond stage is chara(-•ter·ized by the descriptio11 of empi1·ical (u11i"\'"ariat.e) distribu­
tions by means of two parameters, e.g. n1ean and standa1·d de,riatio11, a.11cl, more 
ge11era]ly, if multivariates a1·e conside1·ed, by means of the mome11ts of fi1·st and 
seco11d order. Hence the method of' least squares, the sin1ple a11cl 111ultiple co1~re-• 
lation- and regression-analysis, t,l1e old theor·y of r·isk by Hatte11dor·ff, and in a 
way also the analysis of variance and covariance ca11 be conside1·ed to belong to 
this stage. 

1 Cf. D. VAN DANTZIG (1951). 
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The thi1·(l stage is cl1a1·acterized by the discover·y by Edgeworth, Kapteyn and 
in particular Karl Pearso11. of the fact that uncler closer examination really occur­
ring dist1·ibutio11s r·arely prove to be nor·mal, and that thei1· descriptio11 req11ires 
more co11stftnts, e.g. the moments of third and fourth orcle1~. Th.is led to the 
system of P e a rs o n c11rves, to the G r a m-C h a r l i e r clevelopments, and, 
more gener~illy, to the tl1eory of curve-fitti11g. Pearson's '' goodness of fit '' cri­
terion z2 proved to be a useful tool for the judgment of the degree of fitting reach­
ed. The thi1·d stage, like the seconcl one, had been based on the more or less 
explicit/ belief that statistical phenome11a we1·e go,,erned by laws of general validity 
albeit that they showed somewhat g1·eater complexity than just the n<)rmal law 
Not,vithsta11di11g the b1·illiant results obtained, in pa-rticular by Kar·l Pearson, it 
e11ded more or less in disappointment. The parameter v3.lues ( ancl sometimes even 
the types of the curves) obtained by adjustment sho,ved hardly any constancy 
or regularity. Moreover some otl1er laws, partly dati11g f1·om an older peri.od~ as 
Gompertz-Makeham's law of mortality (1825-1860), P.F. Verhulst's law of growth 
(1845) rediscovered by R. Pearl and L.J. Reed (1920), a11.d know11 under the queer 
name of'' logistic curve''), Pareto's la.w of income distribution (1896), J. C. Kap­
teyn's logc1rithmically norma.1 law (1903) for the distributions of the dime11sions 
of biological individuals etc. proved to fit rather badly in many cases, and to 
resist decisive impt'ovement by introducing a greater number of parameter·s. Also 
the Gram-Charlier and similar developments were found to be of rather limited 
usefulness. 

The growing uneasiness about the possiblity of maste1·ing distrib11tions clepend­
i11g on four 01· more parameters led the way to the ·fourth stage together with a 
renewed critical attitude towards the fottndations of probability theory in the 
twenties (John Mayi1ard Keynes, Richard Von Mises, Ronald A. Fisher) and thir­
ties (Hans Reichenbach, A. Kolmogoroff, Jerzy Neyman, e.a.). Asfar as prac­
tical statistical methods are concerned this increased desire for logical rigour 
showed itself a.o. in the grad.ual replacement of asymptotic relations, which refer 
to indefinitely increasing numbers of observations, by exact relations, valid for re­
stricted sample-sizes (cf. ''Student's'' and R.A. Fisher's ''theory of small samples '') 
in R.A. Fishe1·'s r·efl1tation of the Bayes-Laplace theo1~3-,. of inverse probability and 
its replacement by his '' maximum likelihood methods'', and in Jerzy Neyman's 
revision, partly in common with Egon S. Pearson, of the principles of testing hy­
potheses. It is as an outcome of this desire for logical rjgour that we see today's 
greatly" increased interest in the class of methods, desig11ated by various terms, 
as '' non-parametric '', '' distribution-free '' and ''rank-invariant'' methods in 
mathematical statistics, which we conside1~ as being more or less characteristic foi:­
the four·th stage of this science. Hence, grosso modo we could characterize the 
four stages up to now by the use (in univariate distributions) of one parameter, 
two paramete1~s, many parameters, and no parameters respectively1 . 

• 

1 By s1.1bdividing the history of mathematical statist,ics into this four stages, we, 
of cour·se, do not wont to stress this point, of view as the only reasonable one. Other 
subdivisions, or gr·eater stress laid upon ot,her aspects of modern statistics 1nay be 
eq11ally j11stified. 
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2. - The gener·al fc>rm of sta.tistical infe1'e11.ce is as follo\v"S. Sc,1ne obse1·va­
tio11s, wl1ich we rept·esent in their totalit,y by t}1e let,ter z }1~1,re been macle ; 
son1e n101:e observatio11s, \vhich. ,,,.e 1·eprese11t i11 tl1eir totality by the lett,er w \vill 
be made ; it is requested to make some p1·edicti<)n c>11 1.t,, based t)ll s<-1n1e assump­
tio11 co11ce1·11ing the simulta11eous pro babilit)r dist1·i1)ut.io11 of z ancl it,. The ,ra. 
riables i11volved ar·e tl1us co11sidered as ra11clom va1 .. iables 01· vc1,t4 ·ia,tes. Tl1.is will be 
denoted by underli1iinq their· symbols. Tl1e same sy"'"n1bols, not, 11nderlined, rnay 
tl1en be usecl to de11ote valt1es, which these va1·iates n1ay ass11me. 

011e of the simplest cases occur1·ing i11 prac'.tice is the 011e whe1~e z, called the 
f'"~ 

'' evide1ice '', consists of ri nt1mbers zt , ... , Zn ,vherea:;;; iv consists of N 11umbers 
·-··-.. 

w1 ~ ••• , wN, the zi and wi bei11g stochastically independent 1 and all having the -- ,....... 

same probalJility distribution 2 • The problem is, to determj_ne a region S i11 the 
space R;.7v~ of all possible W; such that the probability that w act11all)1 will l)e 0011-

tained jn S is at least equal to a given number 1 - r:x. We denote this condition 
by sayi11g tl1at w is contained in S spr rx, where '' sp1~ rx '' is a11 abbreviation for 
the expression '' salva proba,l)1~litate r:x '', meaning '' except for a proba1Jility at most 
equal to Cl.. ''. In other cases more 1·estric,tive, and often mor·e complicated assump­
tions tha11 the ones me11ti(J11e(l above have to be made. The n11mber Cl.. will be 
called the '' itnreli(ibility tli1·1::,shold ''. In the theory of testing hypotheses it is 
often called the '' level of sig1iificance '', the exact probability [3 ( <.. Cl.) of t,he ex­
ceptecl ca.ses being called '' si:ze ''. In general ~ might be called the (true) ·' ·unre­
liability ''. In t,he theory of confidence regions 1 - a is called the '' confidence 
coefficient ''. 

Empirically tl).e assumption that z and w have a commo11 probability dist1"i­
bution means that the way in which z and w actually have been or ,vill be obtain­
ed, can, with an accuracy sufficient for practical purposes, be assimilated with 
a '' random clioice '' of an element underly.ing this probability clistribution. This 
random choice is a procedu1--e which can 011ly be described in empirical terms, 
e.g. as drawing a lot from a lottery under definite empirical conditions which ,ve 
shall not t1·y to describe here. In order to ensure that this '' probcdJility model '' 
can be used, it is not strictly necessary that the combined o bser·vation of z and -
w itself is a repeatable phenomenon, but it suffices that either some natl1ral cause 
is at work, ascertaining the requested similarity with the model, or other,vise 
some '' rand(Yniizatio1i p1·ocedure '' is applied. The repla,cement of t,hese en11lirical 
conditions by tl1e matihematical moclel of probability thec)ry is called the '' sw,itch­
ing on '' of the latter, ,vhereas the '' switching off '' is pe1·fo1~med by applying 
the law of lar·ge numbers together with the d'Alembe1~t-Borel principle of neglecting 
sufficie11tly small probabilities. In particular this is done by 11eglecti11g t,he pr·o­
bability _that among a large n11mber of predictions, all made with the sa.me unre­
liability threshold Cl.., an appr·eciably larger fract,ion than a "\\'ill prove to be fail11res, 
provided the '' switching on '' conditio11s always are satisfied and the predictions 

• 

1 '' Th-'.Itittially C()mpletely i11clependent '' acco1·di11g t,o J. NEY1\taN's ( I 950) terrninology. 
2 More gene1·ally ri and/01-- N may also be variates (as i11 stochastjc p1~ocesses, e.g. 

sequent,ial analysis). For the present we leave this generalization out of consideration. 
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are stochasticall:5r i11dependent .. 
of the same kind 01· nor. 

It is i1·relevant, whethe1.· the z and u, al,vaJrs are 

If, in th.e special case me11t,io11ed above1 11, is so large t,}1at tl1e devia .. tio11. from 
the law of large 11umbers ca11. be 11eglected, ,ve have es::;e11ti::1,lly to do wi.th a p.re­
diction basecl 011 a lc1ioi1J1i p1·obabilit3-r dist1·ib11t.ic)n. If' tl1is is the case fo1· A7 in­
stead of n, the prediction ca11 be co11siderecl as (v,.iz. is in the limit for N .. > oo 

spr O equivalent with) a statement 011 the p1'obabilit},. dist,r·i1J11tion. 
A statement abo11t a probability distr·il)ution is us11a.lly callecl an (i11 general) 

'' compo.~ite hyp()thesis '' ancl, if it, determi11es the p1·obabi]ity di_stribution uniquely, 
a '' .sim,ple hypothesis ''. Wher·eas often tl1e term '' compc)site '' is omitted= ,ve 
prefer to dr·op the ter·m '' simple '', i.e. to use t,he te1·n1 '' hypotliesis '' only for 
simple 011es a11(l to call a'' co1nposite hypothesis,; a'' set (01· 1·egion) of hypotheses''. 
In particular the set of all possible hypotheses ,vit,11 1·espect to a given situation 
is callecl the '' hypothesis space ''. A set of 11.ypotheses, statecl~ 011 the basis of a 
given evidence z, to contain sp·r a the unk110,,r11 u11dt~r·lJring pt·o bability distribu­
tion, is called a (safe) '' confide11ice set'' (or confide11ce region) spr a for tihis pro­
bability clist,1·ibution. The acljec~tive '' safe '' is a.dded l)ecause tl1e true unrelia­
bility (3 may be smaller tha11 rJ. • 

It is of importa11ce to 1·ema1·k that some conclitio11, e.g. of stochastical i11de­
pendence and cor1stancy of pl·obability dist,ributio11s is unavoiclable. Such an 
assumptio11 ca11 be tested as a hypothesis, but only by means of other assumptions 
of a simila1"' nature. Without/ a1iy such assumption nothing at all ca11. be done. 

Fc>r instance the two hypotheses 

(t) z1 , ... , Zn are '' un,ivalu.ed '', i.e. each takes one u11known value sp1* 0 

(.creed elf complete cleterminacy) 
. 

b) z1 , ... , Zn are independent random variables, e.g. all normally distrib11ted 
-

with positive standard deviations and 11nkno"½'ll means ( cr·eed of complete 
indeterminacy) 1 are always ir1·efutable. 

The fundamental difference l)etween the '' fourth stage methods '' and the 
previous ones is contained in the greater liberality with which such assumptions 
previously ,vere admitted. At present one prefe1·s to aclmit assumptions 01tly, 
which, with no mo1"'e than a relatively slight degree of idealization, ca11 be consid­
ered as bejng guaranteed by the empi1·ica1 '' switching on conditions ''. The set 
of hypotheses, singled out i11 this way by these conditio11s, is called the '' cla.<ss 
of admissible hypotheses '', denoted by Q . Each confide11ce region has to be con­
tained in this class. 

There are cases where the experimental conditions ''guarantee'' (with an 
accuracy ancl a certainty sufficient fo1" practical purpose.s) t.hat the class of admissj­
ble hypotheses has a finite number of dimensions only, so t1hat every admissible 
hypothesis can be determined by specifying th.e values of a finite number of '' pa­
rameters '', co11stant for every admissible hypothesis, variable over the "rl-1.ole c~lass 
In sucl1 cases the second 01· third sta.ge methods, '' pct1·c-1.,rriet1·i:c methods ''; can be 
applied. 

1 If we tal~e the standa1--d deviation to be a, case b) cc)1·1·es1)oncls with a11y cr =f= 0, 
wl1e1·eas case a) is the speci.al case c 0. 
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Abu11dant, however, are the cases ,vhere this is not so and this has lecl to 
the development of statistical meth()Cls based on as fevv assumptions as seemed prac­
ticable. These methocls are usually called '' no11. pa1·amet1·ic '', '' distir·ibut.ionfree '', 
etc., witl1out precise definitions of these terms bei11g give11. Indeed, such defini­
tions prove to be difficult to give. An int1eresti11g a11a].ysis of these ter·ms is given 
in a forthcoming plll)lication by 1\1.G. Kenclal] and R.M. Sundi·um: ,vhich the au­
thors had the kincl11ess to sh.ow to us in manuscript. 

Without trying to give definitions for t.hese notio11s certai11 types of conditions 
will be indicated, ,vhich are usl1ally~ aclmitted in this type of ,vork and which 
ofte11 happen to be '' gt1a1·anteecl '' by the empirical co11ditio11s (always with the 
a bovementioned p1·oviso). 

a) Conditions of stochastic independence. The class Q of admissibl.e hypo­
theses is often restr·icted to dist1·ibutions, wher·e all Zi ( or groups of them) are 

-
independent va1·iates. Mo1·e ge11erally this may hold for some kno,v.r1 functions 
of the Zi instead of for the Zi themselves. 

b) Cond·itions of identity of distribution functions. 111 particulac it often 
happens that it is known tl1at some <Jf the Zi have the same distribution function 

(which itself is unknown), that some other ones also have the same distribution 
function (which may be the same as the first one or not), etc. For brevity we 
shall call two variates '' isomorous '' if they have the same diRtrib11tion functions, 
so that conditions b) may be referred to as '' conditions of i,sornory ''. 

c) Conditions of continuity. - Rat.her often the condition can be imposed 
that all Zi have co11tinuol1s prol,ab1].ity distr·ibutions. 

Although further con<litjons are to be mentioned Iat,er, it may be ren1arked at 
this point, that ~ numhe1" of st,atistical methods, a11d i11 particular mctny st<ttist,ical 
testR, have been developed, based 011 eond~tions of tihese tht·ee types only. Some 
of t,heRe will be used in later sect.ions oft.his pa.per to illustrate the progre~s n1ade 
in this direction cluring t.he last t·e'\\r y·ears ancl ,vc wi11 1~eturn to this set of con­
ditions in the 11cxt1 section. 

Furthe1· it n1ay r>e noted t,ha.t a set of' conditions of t,ype a) b) ~nd c) always 
js rank ·in·va1·iant, i.e. invar·i,tnt, under simultaneous transformations of al] z,; into 

--
va,riables zi = i:p (,zi) , where '-? (z} :is a monotonous inereasing contin11.ous function 1. 

-
The reverse, however, is not t-rue; conditions like F 1 (z) < F 2 (z), F 1 (z) d .F 2 (z) 

1 
< 2 ' etc., where Fi denotes the distributior1 f-unct,ion of z · are rank 

1- ' 

invariant, but are not covered by the above con<litiions. We therefore generalize 
a), b) and c) together by introducing : 

d) Condit1:ons of a rank invaria1'if charactt-1·. '11 l1e 11ot,i<>n of rank invariance 
' 

seems to be a rather· f undtimental one i11 this context,, but it. is not, ~ufficient to 

' 

1 F()r reasons of simplicity we here leave 
intervals of oonstanoy out of consideration. 

the IJossibilit:;,'" of discontinuities or of 
' 
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cha1'acterize tl1e statist,ic·al met,}1ocls ''"hich form the Sl1hject1 of this pape1·. Tt is 
e.g. noteworthy that, Pit,ma11's test,s, 011e <>f' ,,,l1i<~l1 is t,re~tted in a late!' section, 
a1·e based on rank i11\7 t1riant, ccJ11cliti()11s, l~)11t f:t,1·e then1selves not, 1·ank invariant, 
i.e. their res11!t is 11ot i11varia11t 1111<1er 1•a,11k i11va1·.~a11t, tra11sfor·matio11s of the ob­
servations. 

Apa1·t from the co11clit1ic,11s n1e11tio1·1ecl alr·eacly, others are sometimes used. 
Without, laying any cla,im t<) c:<)n1plete11ess: ,,,.e gi"Te some more tyl)eS of these. 

e) Algebra-1:c relation8 between dist1·ibu.t1:l,n futict·ions. Some algebraic rela­
tions between tl1e distributic)11 f11ne:t,ions Fi (>f zi (i -- 1 : ... , n), e.g. 

-

tO<p <:: 1) 

may be considered. Alsc> condi tio11s of ide11titv 01~ algebr·aic~ equalities may hold 
' ~ 

for the distributio11 funct1011s of· some knou,1i i'1111c~ti()llS of the Zi jnstead of for the 

Zi themselves ( e.g. fo1· z2 + a a11cl z1 , a bei11g a k110,vn 01~ unknown constant,, et~.)-
-

f) Oond·it,ions o.f bo1.lndedness o·r symmetry. Examples : 

' 
Fi (a) == 1 - Fi ( b) --= 0 (a.<b), 

F;, (-z) = 1 -Fi (z) 

fo1· all i or for some of tl1em, etc. 

3. -The field of all methods of such character as has been indicated in the fore­
going section, is so large al1·eady, that it woulcl be impractjcable to give a com­
plete survey of what has been cl.one, as may be illustrated by the 72 pages of 
titles of papers on these s11bjects in the bil}ljograpl1y compiled by I.R. Savage 
{1952). On the other hand some exce]le11t su1·veys of parts of the field have 
been given already, e.g. by H.Scheffe (1943), J. Wolfowitz (1949), P.A.P. Moran, 
J.W. Wh~tfield and H.E. Daniels (1950) and W.H. Kruskal and W.A. Wallis (1952). 
Therefore no attempt at completeness i11 a11y sense has been made in this paper: 
a rather special complex of distributio11free test,s has been chosen more or less 
arb·itrarily for its illustrative qualities. In particular a nt1mber of tests for the 
following hypothesis wi11 be tr·eated. 

H O : a) the varia.tes z1 , . . . , Zn a1·e indepencle11 ti, 
- • 

b) they are isomoro1:rs (i.e. all of them have the same dist1 .. ibution function), 
c) their distribl1t1ion f't111ct,jo11 is contiinuous. · 

The class Q of' admissible }1ypotheses is cletermjned by requiring a) and c) 
to hold, and b) to hold for some subsets into which the set of variates (z1 , .... , Zn) 

can be divided. Often special subclasses of Q are considered .. in particular with 
regard to the power function. 

The h)rpot,hesis H 0 tested implies th.e hypothesis H 00 : the sim·ultaneou.~ distri­
bution .functio:a of z1 , ... , Zn is ·invari:anf under the group G of all permutations of 

-
these variates, 
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whereas Q corresponds with the class of hy·potheses ro : the siin,ultaneous di,~tri­
buti:on functiori of ,:i , ... , z?,. is invariant under t}ie groiip J( of all such p ermuta-

t·ions of thesP 'Variates which leave each o,f the subsets of isom,orous i,ci1-,;a,tes 1:nvariant. 
Evidently K js a s11 bgr·oup of G. 

No,v H 0 may be t,ested by testing H 00 ancl tl1i8 is done accorcling to t}ie fol­
lowing pri11ciple (due to R.A. Fisher· (1935)). If z1 ~ .•. , z1, are a11y observatioris of 
t,b.e va1'iates z1 , ... , :n , ,vhjch may be supposed to be all differ·ent (a.s this is 

true spr 0), then H 00 impJies the probability of the ineqt1alities zi
1 
< ... < Zi for 

mutations of these suffixef:l, hen,:;e = 1/g, g == n ! being the number of permuta­
tions in G. Choosing some set M, consisti11g of m permutations, as a critical re­
gion, its '' size '' is m/ g, hence -<::: a if m-< = a g. The critical set M in G for test­
ing H 00 corresponds with a critical region in the complete sample space for testing 

ned in M if and only if Zi1 < ... < Zi.n• Then the probability that (z1 ; ..• , z11-) is 
contained in this 1 .. egion is mfg, as the conditional probability that this is so, given 
z1 , ... , Zn , has the same value for al.I samples iz1 , ... , Zn , the probability of 
equal val.ues among the Zi being zero. 

The condition of continuity, although convenient, is not necessary for applying 
th1.s principle. If it is dropped, sets of obse1"ved values z1 , ... , zn which are 
not all unequal have to be conside.red too. The above principle, however, may 
also be formulated as follows. Let H 00 be true and let the set of variables ~~~ , ... Zn 

assume the values z1 , ... , Zn in any order. We define the random permutation 
i1 , ... , in of the numbers I , ... , n by Zi taking the value Zii• Then all g = n ! 
possible -permutations have equal probabjlities. This formuiation implies the one 
given above, but now equal values among the zi are permitted. To give a pop­
ular picture of the principle: H 00 implies that the values, taken by the varia ... 
bles z1 , . . . , Zn might be written down on n lottery tickets a11d then, by succes-
sively drawing these tickets at random, be assigned to the variables z1 , z2 , etc. 
without changing the simultaneous probability distribution of z1 , ..• , z,... 

4. - Thus critical regions for testing H 00 may easily be formed, their sizes 
may be computed exactly or approximatel)1 ; it also oft,en is feasible to take into 
account certain subclasses of ,Q. as classes for which the test is meant to be espe­
cially powerful and consistency for this class may then often be proved ; but the 
computation of the po,verfunction of these tests is very complicated and usually 
not much is known as yet about this very important function even for restricted 
classes of alternatives, except sometimes for large samples. Accordingly most head 
way has been made in the directions mentioned first a,nd 011ly during the last 
few years the problem of the power function has yielded to the efforts of a nl1m­
ber of prominent statisticians, among whom W. Hoeffding has obtained the most 
important results. 

Following the general line of the historical development a description of the 
tests without bothering much about their power functions will be given first, some 
remarks about the power functions in special cases being given afterwards. 
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5. - Our· starting point is the method oJ rank correlation, based on the 
rank cor·1·elatio11 coefficient t, ,vhich was first considered by R. Greiner (1907) and 
F. Esscher (1924) and which "ras 1·ediscove1·ed by M. G. Kendall (1938), who gave 
the theory its present form. 

Co11sider a set (u1 , v1) , ... , (u1i, v11,) of n pairs of arbit1"ar·y real numbers, among 
wl1ich at least t\vo of the Ui (and two of the v1) are differ·e11t from each other. Ar­
ranging the numbers u1 , ••• , Un according to increasing magnitude, assigning an 
a1~bitra1'y order to equal numbers, we obtain a rankjng, which may contain groups 
of equal numbers, called ties. In this ranking each number ui has a rank; to 
·all numbers of a tie the arithmetical mean of the ranks of these numbers is assign­
ed, equal numbers ui thus having the same rank. The same procedure is ap­
plied to v1 , ... , v,,.. Denoting the 1·anks o btainecl in tl1is wa3r by s1 , ... , sn and 
1·1 , .... , rn respectively, we have a set (s1 , r1), ••• , (sn, rn) of pairs of ranlrs. 

From these pairs of ranks Kendall computes a quantity S by scoring 

and by addi11g the scores for all pairs (h, k) with h < k. The definitions may 
also be given precisely in the same ""ray with the numbers ( ui , vi) themselves 
instead of their ranks and in words it may be given as follows. For every pair 
(h, k) (h, k = I, ... , n; h < k) + 1 is scored if the order of magnitude of uh 
and uk is the same as that of vh and vk ,-1 if t,hese two pairs have opposite order 
and O if none of these two cases is fulfilled, i.e. if uh == uk or v,, = ,,_,k or both. It 
is clear that the value of S only depends on the pairs of ranks (81 , r1 ), •• • , (sn, rn) 
but not on the arrangement of these pairs. 

Given the set of numbers u 1 , .•• , u 11 , v1 , .•. , Vn ( or the set of 1·anks 8 1 , ••• 

Sn ,r1 , ••• , rn) there are g = n! ways of forming sets of n pairs (u, v) (or (s, r)). 
Supposing these g sets of pairs to have equal probabilities 1 /g, the probability dis­
tribution of S may be derived. As will be seen later this supposition reduces in 
a number· of special cases to the hypothesis H 00 of section 3 and it will therefore 
also be denoted by H 00 , although it is of a more general form. 

When no ties are present the probability distribution of S under H 00 may be 
computed directly by means of a recursion formula (cf. M.G. Kendall (1938) and 
(1948)) ; tables up to n 10 are given there, a more extensive table up to 
n = 40 has been given by L. Kaarsemake1~ and A. Van Wijngaarden (1952)) . Fur­
thermore in this case S is asymptotically normally distributed with mean O and ..... 
variance n (n-I) (2 n + 5) 18 (cfr. M.G. Kendall (1938), G.B. Dantzig (1939)). 

Tests for H 00 , developed along the lines indicated in section 3, may be used 
to test several hypotheses imply.ing H 00• E.g. if u and v are two independently 
distributed random variables and (u1 ,v1), ... ,(un, v1i) are n independent pairs of ob­
servations of these variables, ·then H 00 is satisfied and the statistic Smay be used 
as a test statistic for this independence, large val11es of I S I being critical values .. 
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Moreover W. Hoeffding (1948 b) proved, that for n ~ 5 not only H 00 follows from 
the independence of u and v but on t!he other hand, if u and v l1a ve co11tinuol1s 

,-. 

joint and marginal probability distributions, then H 00 also implies independence 
of u and v. 

If only one of the two ro,,rs of numbers u 1 , .•• , Un and v1 , ... , v
1

i is a row of 
o bser·vations of one o.c more random variables, the other row may e.g. be used to 
order these observations. Taking ui = i and vi == Xi (i = 1 , ... , n), where Xi 

denotes an observation of a 1·andom variable xi, H.B. Mann (1945) uses S 1 to 
test the hypothesis H 0 , that, the random variables x1 , •.. , xn are independently 

,--

distrjbu ted according t,o the same continuous probability distribution. H
0 

implies 
H00 and thus the (·listribt1tion of S under H O is known. Defining e:ii by the re-
lation 

Ma11n proves the onesided test with. large values of S critical to be consistent for 
alternatives satisfying 

3 --
lim n 2 L e,li = + oo. 

n > co ·i<i 

The test may then be used as a test against (upward, or, with small values 
of S critical, downward) trend. This result also throws some light on the kind 
of alternatives for which the abovementioned test of independence is consistent. 
Mann gives a conclition for unbiasedness of the onesided tests and discusses a class 
of alternatives for whjch the test is most powerful among all tests based on ranks. 
These conditions, being rather involved and not easily expressible in simple prop­
erties of the distributions of the xi , will not be discussed here. 

\Vb.en there are ties in one ranking only (e.g. when equal values occur among 
the ui but not among the Vi) not so much is known about the distribution of S 

• under H 00 • G.P. Sillitto (1947) tabulated the exact distribution for n = 3, ... , 10 
,vith pairs and triplets of equal values allowed in one ranking and T.J. Terpstra 
(1952 a) proved the asymptotic normality of S under mildly restrictive condi­
tions. Terpstra uses his result to construct a test against trend f·or groups of ob­
servations from a number of random variables x1 , ... , xh with continuous distri-

,...... 

bution f11nctions, the hypothesis tested being, that these distribution functions 
are identical. Given n1 (i = I , ... ; h) independent observations of x1, he takes 

U1 = U2 = ... = un1 = I , un1 +1 = ... = un1 +n2 == 2 , etc. and substitutes for 
v1 , ..• , vn1 the n1 observations of x1 , for vn1 +I , ... , vn

1 
+n

2 
the n 2 observations 

of x2 , etc. Then S ( or a linear function of 8) may be used as a test statistic 
for tl1e abovementioned hypothesis (which again implies H 00 ), large and small va-

1 His statistic, denoted by T., is in fact a linear function of S. 



12 

lues of S being critical for an upward and a, downward trend respectively 
in the arrangement of variables x1 , .•• ; x,i .. This test is co11.sist,ent for a 

-· iarge class of alte1~11atives similar to tl1.e alternatives co11sidered by Mann 1 . On 
the other hand Terpstra's result may also be used to genera1ize Ma1111's test against 
trend, with one observation of each of the random variables x1 , ... , Xn, fo:r the 

....... 

case that the distributio11 functions of these variables are not continuous. The 
ties then occur in the Vi and not in the Ui • 

Another test, which may be derived from Kendall's S, is the well-known test 
of Wilcoxon (1945) for the problem of two samples. As a matter of fact, Terps­
tra's test against trend is a generalization of th1.s test and reduces to Wilcoxon's 
test when h = 2, i.e. when there are two groups of observations. This test, which 
has been developed independently by a number of authors (cf. W. M. Kruskal 
and W.A. Wallis (1952) for historical details) is a test for the h.ypothesis, that 
two independent samples a.-1 , ••• , Xn, and y1 , ••. , Yn-, have been taken from the - - - ... 
same continuous distribution. Putting u1 = ... = Un1 = I , u,,1 +1 = • . • = Un1 +n2 = 2, 
Vi = Xi (i = 1 , ... , ·n:i_) and Vn1 +i = Yi (j = I , ... , n2 ) , Kendall's S becomes a - ......, -
linear function of the test statistic used by Wilcoxon, which is the sum of the 

n1 

ranks of the xi , i.e. ~ r i . The hypothesis, that the t,'1~o samples are taken from 
' i=l - .. 

the same population implies H00 and thus S may be used to test this hypothesis. 
The power of· Wilcoxon's test will be discussed in a later section of this paper. 

For the case, wht;;n ties occur 1in both rankings, the mean (which is equal to 0) 
and the varjance under H 00 are known (M.G. Kendall (1947)), b11t no general 
theorem about the limiting distribution of S for large n seems t,o have been given 
as yet. For some special cases asymptotic normality has been proved and it seems 
1.ikely that this property holds under very general conditions concerning the ties. 
It is e.g. likely, that in the case of Terpstra's test against trend applied to varia­
bles with discontinuous distributions S is asymp·totically normal: but ·this hM 
not been proved as yet. It has been proved, however, for Wilcoxon's test, when 
ties are present by W.H. Kruskal (1952) (cf. also J. Hemelrijk (1952)). In all 
these cases the test statistic Sis a ljnear function of the ranks of the observation..~ 

when arranged according to size. 
Another special case, noted by Kendall (1948) p. 35, is the 2 x 2 table. When 

n objects, possessing or not-possessing a quality A and a quality B, are jnspect­
ed and when ui is taken to be 1 when the i th object possesses the quality A 
and 2 otherwise, v,;, taking the same val11es according to the presence or absence 
of quality B, then S2 is proportional to the usual x2 of a 2 x 2 table, the margi: 

• 
nal totals being fixed. This shows S to be normally distributed in tl1e limit for 
the extreme case, when both r·anking consist of a dichotomy. In a sj_milar '\\7ay 
S may be brought into relation with the general contingency table and with tests 
which may be derived from 2 x 2- and contingency tables, like the median test of 
Westenberg (1948) and G.W. Brown and A.M. Mood (1948) and generalizations of 
this test (cf. e.g. A.M. Mood (1950), G.W. Brown, and A.M.Mood (1951), J. He-
melrijk (1950 b), N. Blomquist (1951)). . 

1 rrERPSTRA.' S condition A l O ( ( l n) ½) should be read )..""''"1 = 0 ( l2 n ½). 



6. - The trend tests mentio11.ecl in sectio11 5 and Wilcoxon's test a1·e basecl on 
linear functions of the ranks of the n observations when ar1•a.nged accordi11g t,o 
size. Ge11.eralizations have been made by mea11s of quadratic ft1nctio11s of tl1e 
1~anks. Wilcoxon' s test has been ge11eralizecl to a test for· k samples independe11tly 
by W. H. K1·uskf1l (1952) (cf. also W. H. K1·uskal and W. A. Wallis (1952 ), by 
P. J. Rijkoort (1952) and by T. J. Terpstra (1952 b) i11 t"\\'O clifferent ways. Let 
ni (i = I , ... , k; L ni = n) independent observations of xi be given and let 

-Ri be the sum of the ranks of this sample of xi in the ranking of all n obse1·-
vations together, then Kruskal uses as test statistic 1 

' k R~ 
~ _i 
,. I 

' i=l ni 
and Rijkoort uses 

k 

~ R~. 
i=l 

Terpstra's first test coi11.cides with that of Kruska] ; his seco11d test is more 
elaborate. Apart from the sums of ranks Ri he introduces the quantities Rh,; 
(h , j = I , ... , k ; h < j) , defined as the s-ii'm of the ranks of the h,th sample, 
computed f1·om the pooled hth and jtn sample, arranged according to size. His test 
statistic is then 1 

In al] three cases the hypothesis H 0 tested is again, that the variables x1 , .•• , xk 
-

are isomorous (i.e. have the same distribution). As before H 0 implies H 00 a11d the 
exact distribution of the test statistic as well as approximations and the limit­
ing distribution for large (or many) samples may be derived from H 00. No com­
parison of the power functions of the three tests has been made as yet. For 
k = 2 tl1ey reduce to Wilcoxon's test. 

Another general method, which strictly speaking, is not a generalization of' 
Kendall's rank correlation method but of C. Spearman's (1904), is M. Fried­
mann's (1937) method of m rankings. In this case there are m rankings of 
equal length, the hypothesis tested being that for each of these all permutations 
of the ranks have equal probabilities. The variance of the column totals of 
the 1·anks is used as a test statistic for this hypothesis, large values being critical. 
The original theory is only applicable to a rectangular scheme of plots with exactly 
one observation in each plot. Lately tihis rather severe rest1·iction has been partly 
removed by J. Durbin (1951), who generalized tl1e method to incomplete block 
designs, and practically completely by A. Benard and Ph. Van Elteren (1953), who 
generalized it to arbitrary number·s of observations in the plots (empty plot.s 
being permitted also), subject to weak restrictions. Tl1eir method contains several 

the 
1 Strictly speaking the test statist,ics in the original pape1·s a1·e linear fm1ctions ,1f 
statistics given here ; this does not change the test. 
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others as special cases, in particular the method of m, ranki11gs itself, Dl1rbin's 
generalization, the k sample test of Kruskal a11d Terpstra, Wilcoxon's two sample 
test and the sig11 test. In this method also a quadra,tic function of the ranks in 
the m rankings is used as a test statistic, but its gene1·al form is too involved 
to be given here. 

7. - In the foregoing sections the power fu11ction of the t,ests has not been 
mentioned. For most of t,he tests considered not much is known about t,he 
power as yet, but in some cases importa.nt progress has been made. A number 
of general theorems of great interest have been given by W. Hoeffding (1948 a) 
(1951) (1952), and these have been applied to several problems by other authors, 
e.g. by E. L. Lehmann (1951) (1953) and M. E. Terr·y (1952). The theor·ems of 
Hoeff ding, which are too technical by nature to be given here, refer to the 
asymptotic distribution of statistics based 011 ranks uncler several hypotheses. 

To illustrate the resu]ts in this directio11, the problem of two sam'Ples will be 
discussed a little further and five tests for this problem will be compared. 

Let x1 , •.. , xn
1 

and y1 , .•. , Yn2 be n = n1 + n 2 independently distributed ran-
- -

dom variables, one observation of each of these variables being available. The 
hypothesis tested is, that the probability distributions of x1 , ... , y 1i,> are identical, 

,- - ... 
the alternative hypotheses being, that this is true for ,:1 , ... , ~n1 and for ,'Y__i, ••• ,'}!_n2 

separately, but that the probability distributions of these two groups of varia­
bles differ in some specified way. Let us denote in general the cumulative 
dist.ribution functions of the Xi by F and of the Yi by G and omit th.e indices i 

iii ... 

and i when this is convenient; then ,ve have 

for the hypothesis tested. 
The following tests will be considered. 

I. ~tudent's test (W. S. Gosset (1908), R. A. Fisher (192~) ), using the sta­
tistic 

with 

-
X y n 1 n 2 (n 2) 

ts - ----
Si+ S~ n 
-- -

n1 'fl9 - '32 
... 

~ (xi x)2' Li (Y; ,._ ') ,_, 

i=l -- • ' " - J
0

=l --

II. Pitman's test (E. J. G. Pitman (1937) ), based on the statistic 

n1 

tp= ~ Xi. 
i=l 

III. Wilcoxon's test (F. Wilcoxon (1945) ) using 

• 

-
y)2. 
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according to size. -t' -

IV. Terry's test (M. E. Te1"ry (1952) ). Tl1e t,est st,at,istic of this test, is 

r1, 1 

tp= ~EZn1··, 
- . 1 - ,_;t 

1'= 

wl1ere r i is again the rank of Xi and E Zn,r 1 is the n1atl1ematical expectatio11 c>f 
• - -

the r th order statistic of a ra11dom sample of size n ( = n 1 + n 2 ) from a st,andard 
normal distiribution. 

V. Van der Waerden's test (B. L. Va11 de1· "rae1·de11 (1952), (1953) ), based on 

7t1 

tx = 1: '¥ 
- i=l 

where '-Y (q) denotes the q-c1uantile of' tl1e standard normal clist1·il)uti()ll 1 . 

The first of these tests is 11ot distributio11free. Ho,ve,7e1·, several of tl1e 
• 

other tests have been co11structed with tl1is t,est in mind and their po,ver func-
tions have beer1 investigated especially in compa1·ison "\vith tl1e powe1· of Stude11t's 
test, which is uniformly most powerful if applied 011esicled for onesided alternatives 
implying that. x and y are normally distributed with equal varia11ces b11t differ-
ent 

we 

for 

means. 
The test S'tatistic of tl1e 
denot,e the t,vo samples 
• 

these statistics is 

other four tests a1.·e see11 to be closely related. If 
taken together b}' z1 , ••• , z,i , a ge11e1·al expression 

t* = 

--------

1 Let ~ ( q) der1ote tl1e q-quantile of· tl-ie standar·d 1101·mal tiist,1·ibutio11, i. e. lAt. 

I 
e d X -· q' 

_CIA 

then 

I 
E zri ,. = B-·-- - + l ) 

· • ' ( 'J' , 'YiJ - ·r 
1 (¥ (F) ( 1 _ 1!')1,, ,r d l!' , 

0 

1 
I 

• 
-- B (r.; ,r1., - r. + I) I - F ., _, 't -0 

-
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• ,,4 
respectively, r i being the 

takes plac~e 0 ,:~r tJ1c>s;i for "·l1ich t,he corresponding ~i constitute the sample X1, • •• 

of these fc)lll' ftinctioi1s. !11 gener·a] a11y mo11otonous f11nct1on of z and or r, 
would gi,:-e a useful test statistic for the pr·oblem considered. 

Tl1e h)'})t)thesis H
0 

testecl implies again 1-100 , ,,,hich may here be e~press_ed by 
consideri11g t,}1e sample x1, .•• , x,.,

1 
to be generated by random sampling without 

replacement from the v;i11es z1 ~- •. ~ z,,,, fou11d in the experiment, i.e. the values of 
both samples pooled. Tl1e sampling moments of _ t,,* may thus be derived by 
means of the well know'11 f orm11 lae for sampJin_g without replacement from a finite 
population (this method l1as i11 fact been used by the aut,}1ors of the tests in 
one form or anotl1er). 

With 
I 11 

:E cp (zh • r1i) 
n h=l 

and 

tl1is leads to 

and 

I n.i n2 2 
cr2 (t* Hoo ; Zi ' ... , z,i) = n - I cr • . 

These forn1ulae being valid irrespective of the values of the Zi , they may also 
be used wl1en ties are present in the observations, provided some convention has 
been adopted for determi11ing the value of cp for these tied observations. The 
simplest way of allocating values of cp to tied individuals is to average in each 
tie the vall1es of rp which the members of this tie would have had if they had 
bee11 unequal bl1t otherwise i11 the same position with respect to all Zi not belong­
ing to this tie. This method has been used by many authors, especially when 
ranks are cc.)ncer11ed; cf. e.g. M. G. Kendall (1948) and for historical references 
W. H. Kruskal and W. A. vVallis (1952) footnote I, page 11. It was also proposed, 
in a lette1· to the authors, by Van der Waerden for his test and it seems to the 
authors to co11stit,ute an imp1·ovement (i.e. it is deemed likely that the power 
function is improved) on the randomizatjon procedures, which are sometimes 
proposed as a mean of dea,ling "\\,.ith ties (cf. e.g. M. E. Terry (1952) ). It may 
be remarked t-hat the variance of t* always clecreases when untied values are 
replaced by their average and that the difference is usually small wh.en there are 
no large ties. This means that the fo1--mulae for the variance without taking 
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tl1e presence of ties into account ca.n safely be l1sed as a fi1--st approximation, 
correcting for ties onJ37 if the1~e are large ties. The mean It (t* I H 00 ; z1 , ••• , z,i) 

. -
does not depend on the presence or absence of ties. 1 

We thus fi11d for the f 011r tests C<)11side1·ed the f ollo,vi11g expressions for the 
mean and variance of the test statistic ur1der H 00 . 

tp 
• 

-

tx 

I 

mean 

n 

~ zh 
n h=l 

n1 (n + I) 

0 

0 

• var1ar1ce 

n . 

)~ -'zh -
h=l I 

I 
12 

n n n 
1 2 .., , ( EZ ) 2 

·"' n h n (n - I) h=l - ' 

(a) 

-1) t (t + 1) (b) 

(c) 

( c) 

(a) Equal values of zh being permitted. · 
(b) t denotes the number of individuals of a tie of z1 , ... , Zn, the l: - sign 

denoting summation over all ties (cf. J. Hemelrijk (1952) and W.H. Kru­
skal and W. A. Wallis (1952) ). 

(c) being 

substituted in the case of ties ; t.he mean is not affected by this. 
The asymptotic distrjbution of t*, under H 00 , is a normal distribution as 

has been proved for tp by A.' Walcl and J. Wolfowitz (1944), for tw by H.B. Mann 
and D.R. ,i\Thitney (1947) and for t 1 , and t ... Y by the authors of these tests. The 

conditions for this asymptotic behaviour are slightly different fo1· the different . 
tests, but this does not, Reem to be essential. For tp and tT also other approx-

r .. 

imations of the distr·ibution of the test statistic have been given, which are more 
accurate for smaller samples. The asymptotic normality when ties are present 
has only been proved as yet for tri,, by W. H. Kruskal {1952). 

-
Pitman's test II is clearly not rank invariant. It differs from the rank inva-

riant tests III-V in that it is based on the cond1,:tional distributio11 of t p for given 
values of the Zi , whereas the tests III-V depend on the ranks only, and a1~e there­
fo1·e, if ties have probability zero, unconditional. In the case, however, when 
ties are present, the latter also become conditional. 

• 

1 Instead of ar1·anging the val ties <)f' cp it.self', one 1night also ave1·age t,he a,rgume11ts 
of cp, when cp is defined fo1· these average arguments. Then both the mean and the 
variance oft* depend on the tl1ies, wher·eas the methocl p1·oposed above does, not change 
the mean under H 00 • 
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Tl1e difference bet,\'\·ee11 tl1e tests III-\T is ill11st,rated in figu1·e 1, where the 
cur,re C represe11t,s the sta11da1·d r101·n1al (listributi<)n f11nction. . . 

For· a11 observation with ra11k 1· the random ,7"ariable Zn,,· has a probab1!1ty 
dist1·ibutio11, ,vhich, when 1~ep1·esented by a mass-dist1·ibution on the z-axis and 

. r 

r 

intersection G' of Cf with tl1e l1orizo11tal line through G. ri,he · three quantities 

1 

r 
n+1 

CWi le o xo n) 

r 
n+ 1 

Cv.d. Waerden) 

Fig. 1. -- Tests III, IV and \ 7
• 

z 

c:p (z, r) used by Wilcoxon, Terry and Va11 der Wae1,den are thus clearly indioate,1 
in this diagram. 

For small samples, whe11 one wishes to use the exact p1·0 bability distribution~ 
Pitman's test has the disadvantage, caused by the use of the observations t,hem­
selves, that no general expressio11 for the probability clistribution uncler H 00 , not 
involvi11g tl1e values z1 , ... , Zn , can be given. This means, that the distribution 
has to be worked 011t for every case separately, wl1ich is rather an elaborate pro­
cedt1re. Fc)r the other tests the exact clist1·ibution under H 00 may be ca]culated 
once and for all for small samples, aA has been do11e by the authors of the tests 
and others (for· refe:r·ences about t,he distribution of t 11 , cf. W. H. Kruskal and 
W. A. Wallis (1952) ). , -

When choosing bet\veen these tests f"or· applications the main point of interest 
is their po,ver under alter·native hypotheses. Unfortunately not much is known 
about this for sma]l samples, but a 11umber of resu1ts have been presented for 
large samples. 
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Pitman's test statistic t p is, given the values z1 , ••• , z1i , equivalent with Stu­
de11 t 's statistic t>s computed fr,om tb.e same observatic:.)ns, as may be seen as 
f'ollows. Introduci11g 

n -
(t J:> n1 z)2 

n1 n2 1 n -
'lV z --- ~ Zk n ' n I; (z·h z)2 11=1 

h=l 

it follows that a cr·itical regio11 based on large values of w coincicles with a symme-
r 

n1 n trical bi]ate1·al critjcal region for tp , n1 z = -- >-: zh 
n lt=l 

sho,vs that 
- ♦ 

of tp u11der H 00 . Ho\\"ever: computation 
.. 

w t2 
~'-:I -

1-w n-2' 

being the expected value 

he11ce w is a mo11otonous ft1nction of ti and Pitman's test may be clescribed as -
using Stuclent's t.9 as test statistic, b11t deriving its distributio11 under H O by 
means of the equality of the p1·ol)abilities of all permutations of the observations. 
The differ·ence between Pitman's a11d Stude11t's test can be seen as follows. Tak­
ing, according to Pitma11, fo1· every set of· Zi a critical regio11 ,vith size ~, the 
sum of these regions constitutes also a critical region \vith size (3 , under any 
common clistribution function of the zi . In particular this is the case if this 
distribution is normal. Then Student's critical region with size (3 differs from 
Pitman's, as the former co11sist,s (in the onesidefl case) of values t"g > t~s ((3) , where 
t;_~ ((3) is some constant depending on n 1 , n2 , and (3 011ly, whereas the latter consists 
of values ts ~ ts ( (3 ) z) , where the right hand member clepends on z ~-= z1 , ••. , Zn 

and on n1 , n 2 , and ~- Considering Student's critical region for fixed values of 
z1 , ... , Zn, this conditi.onal region will thus for some sets !z1 , ... , z,

1
~ be larger 

and for other ones be smaller in size than Pitman's conditio11al critical region. 
A. Wald and J. Wolfowitz (1944), however, proved the asymptotic normality 

of Pitman's tp under H 00 ancl J. Wo1.fowitz (1949) states that tihe test iR '' asymp­
totically the same '' as Student's test as a consequence of this property. The 
mean.ing of this expression is not made clear, but it probably is, that t,he above­
mentioned difference l)et\\reen t,he critical regions decreases for increasing n, or, 
more precisely, that if x and y have the same; normal distrib11tio11, tl1e proba-

• 

bility of rejecting H O with one of the t,ests and not vvith the other c·ne- tends tio 

zero for n ➔ oa (with n1/n2 and n2/n1 both bounded). For alternative hypotheses 
for whi.ch both tests a1·e <}onsis+ent, this propert,y is obvio11s. the probabilit.y (>f reject­
ing H O tencling to 1 fo.r both tests. The further consequences of the '' asymptot­
ic identity'' for the power of tihe tests under alternative hypotheses s0em not 
yet. to be completely clarified. As far a,s the authors a;re a-w~a:i·e nothing is known 
about the po·we1, function of Pitman's test for small samples. 

The power of Wilcoxon's test has been investigated for very small samples 
from normal distributions with equal variances by H. R. Van der Vaart (1950). 

• 
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He f()tltl(l (for 11., < 5) tl1at tl1e slope ot· t,he power function of the onesided test 
of ,Vilc<>X(->11 ct.t t,he poi11t H O : F -.:=-= G diffe1·s 0111)' s]igl1tl.y from th.e corresponding 
slope of t}1e po,\re1· functio11 of St,t1clent,'s 011esiclecl test (the ratio ha,ving valt1es 
betwee11 1 ancl <)~94). Tl1e san1e was pro,7ed to hold (again under normal alter-
11atives with ec1l1al vr,1ria11ces) for t,he (liffer·ence between the second derivative8 of 
the po,i"e1· ft111cti<>l18 of tl1e t'\\rosidecl tests i11 the J>oi11t. H O • Fo1~ largE:, samples the 
ratio of the seco11d de1·ivati,res appr·o,1,cl1es t,he value 3/r.: {~ 0,955) 1 . A similar 
rest1lt, (as }ret u11published) ,va.s obtai11ed by G. E. Noether and .E. J. G. pj_tman 
for bot,h tl1e or1esi(lecl ancl twosicled tests. '1'}1ey pro,red that the relative asymp­
totic efficie11e:y, defi11ed as the 1·atio ot· the 11umbers of observations necessary to 
give the t,vo tests locally the same po,verfunction in the neighbourhood of the 
point F · G (cf. G. E. Noether (1950) ), tended also to 3/n for n · > CD with n 1/n2 
and n2/n1 bol1ndecl. On t,he other hand they found Wj]coxon's test to be far more 
efficientt han Stude11t's test whe11 F a11cl Ga-re not, 1-iormal but skew distributions of 
a special tyJJe E.g. the ratio mentioned proves to be 3/2 for x2-dist1--ibutions wit,h 4 de­
grees of freedom (Student's test, is not applicable without changjng the probability­
distri butio11 of ts for small samples in this case, b11t asymptotically i~ remains 
valid). A11otl1er important result is due to E. L. I"ehmann (1953), "\i\7ho prov.,.ed 
that t,he test is most powerfl1l among all 1~ank . tests in the point H O : F === G 
with regard to alter~nat,ives of the form 

P+q=l, 

i.e. that t,}1e first derivative of the po~rer function ,vith regard to p in the point 
p - I is maximized by this test; Jt1 denotes any continuous distribution function. 

As for other asymptot-ic results, D. van Dantzig (1951b) and E. L. Lehmann 
(1951) proved the consistency of tl1e test for alternatives ,vith 

1 
p [x > y] =p 2 . 

The onesided t~st was proved by Lehmann (1951) t,o be unbiased agai11st 
the alter11atives tl1at 

F (u) > G (u) for all u 

(or< insteacl of"> for the ot.her onesided test). Van der Vaart proved (as yet 
unpublished) that the t\\·osided test is biased fo1· a large class of skew distri­
butions as alte1·11atives, ,vhen n1 =f= n 2 • 

Ter·1·y clesigned his test to be asymptotically a locally most powerful rank 
<)rder test at t,he point H 0 : F - · G for normal alter11atives, i.e. the slope of t,he 
power fu11c~tion ()f tl1e 011esided test at this point is asymptotically a maximum for 
all tests based on ranks. Terry also investigated the power of his test under 
11ormal a]te1·nat,ives expe1~ime11t,ally fo1~ n 1 = n2 = 4 ancl found. the difference with 
the po,ver of St11dent,'s test to l>e c~onsiderab]e. 

Van der Waercle11 proved his test, to be asymptotically tl1e same as Student's 
test for the case, that y is distributed 11ormally and n2 > ()() , n

1 
being bounded ; 

1 
In a letter to the authors V~.:\.N DER VAART l1as announced that the coi--resporiding 

ratio fo1· the 011esicled tests has the limiting value y' 3/ r: • 

' 
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the xi only need to be clistrilluted indepe11dent]y according to conti1111ous distri­
butions, which need 11ot be identical. 

The tests of Ter1·y a11d Va11 cler Waerde11 are (~lc>sely relat,e(l ( cf. fig. I) ; in 
fact their critical regions differ 011ly very sligl1tly. For n 1 - n 2 == 5 e.g. compu­
tation shows the exact 011esicled c1·itjcal regio11s t() coi11c~i(le up t,o a level of signifi­
ca11ce 0,08 a11d above that level only incide11tal (liffere11ces of little importa11ce are 
present. An impor·ta11t differe11ce between these t,ests a11d v\7i]c()XC>11's test is, 
that more clifferent le,Tels of signific~a11ce are o btai11e(l l)y the fc>1'mer 011es : in n1any 
cases permutatio11s of the observations givi11g- the same "\7alue of ti-Jr yiel<l different 

• 
values for tT and tx . A co11seque11ce of tl1e struct1l11·al cliffe1--ence between t,he three 

• 
test statistics is, that in tr.,, and t _y ml1ch greater weight is laid upo11 the extreme .. 
o bservatio11s than i11 tri· . v\T e l1a ve e.g. :for ·n = 2(► for the largest z the following 

., . ~ 

weight~. 
20 

Wilcoxo11's test : 20 ~ }1, = 0.065, 
li=l 

20 
Van der Waerden's test: 4J 

21 
20 

20 
)~ i.J; 

h=l 21 

h 

Terry's test : E Z20,20 L E Z 2 o,Ji = 0.122. 
h=l 

=0.117, 

The weight of the extreme observations is largest for Terry's test, but the 
difference betwee11 the weights for this test and Van der Waerclen's is small compar­
ed with the difference with the -w~eights for Wilcoxon's test. 

For Pitman's test no fixed wejghts are attached tel the observations, the Zi 

being used themselves. 

It is not quite clear, what the consequences of these different weights on the 
power function will be. Van der Waerden compared the power of tw and tx for ..... 
a number· of numer·ical examp]es with small n1 and n 2 , including normal alt,ernatives 
and some distributjons satisfying the relation G (u) = F (u + d) for all u. He 
found tx to have more power than t1v for these cases. On the other hand it follows 
from Lehmann's result, that for alternatives of tbe form G == p F + q F 2 Wil­
coxon's test has the largest power. A further i.nvestigation seems desirable. The 
larger number of different values assumed by tx and tT in comparison with tw 
certainly is a point in fa,vour of t,h.ese two tests, but this could also be obtained 
by substituting much simple f11nctions for cp (z, r) in the formula for t* and there 

,. ' 

is no special need to use the normal distribution function. On the other hand the 
smaller weights of the extreme observations for tw, has the important aclvantage, 
that the influence of outlying observations, which may (but need not) be caused 
by mistakes of some kind and which may have a bad effect on t,he reliability of 
a statistical analysis - both when they a1·e used and when the}r are eliminated, 
the elimination often being of an arbitrary character - is much smaller for this 
test than for the other two tests. Furthermore Wi1coxon's test is the easiest of 
the three as far as computations are concerned. 

8. - It is clear that results like those mentioned in section 7 only form the 
beginning of a statistical theory for situations, where 110 assumptions about the 
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form of tl1e underl}ri11g probability distribution are "\\rarra11ted. Especially the 
lack of kno,vledge of the po~'"er functions for small san1ples is ir·ritating, because it 
1·ealljr is the small sa.mple theory which we are after, so that asymptotic r·esults 
usually a1·e ll()ti of' g1·eat importance. Althc>ugh the1·e is nothing against tl1e use 
of limiti11g clist1·ibut,io11s ,,,.hen the degt·ee of app1"oximation is known: 01· may be 
estimat,ed by conipariso11 ,vith exact distributions - for these cases the limiting 
clist1·ibutions ai·e i11 fact ,rery llseful -, one should not forget that., asymptotically 
speaki11g 11early all statist,ical methods a1--e distributionfree owing tc., the central 
limit, theo1·em. 

Tl1e possibilit,y of making as many dist1·ibut,io11free tests as 011e wishes is 
i11dicated. by t,he met;hod outlined in sectio11 7 for the problem of two samples. 
Pitman, Ter1·v and Van der "\Vaerden used fu11ctions for rp (z, 1~) which connect 

. ... 
their tests with the normal distribution. The same maJ1 be done analogously 
with other distrib11tions and their principle of '' normalizing ranks'' may also _be 
appliecl to the ge1ieralizations of "\Vilcoxon's test which have been described in earlier 
sections of this paper. On the other hand the influe11ce of the tails of the unclerly­
ing dist,ributions may also easily be diminished still further than is done b3-r the 
llSe of ranks, b:>,r choosing smaller weights for the small and large values among 

. n + I 1;2 
z1 , .... , zn, e.g. by taking rp (z, r) == r -

2 
. It seems, however, rather use-

less to go ·furthe1· in this direction of developing new tests, whe1·e tests are available 
already, wit,hout first developing methods to evaluate the powerfunctions for small 
numbers of obse1·vatio11s, with respect to different classes of alternative hypotheses. 

On the other l1and it is important that one should not be compelled to make 
unwarra11ted suppositi.ons (like normality and equality of variances, if these are 
not known to be fulfilled) only because of the lack of methods which do not need 
these suppositions. Some headway has been made in this direction especially by 
the recent development of tre11d tests and k sample tests mentioned in section 5 
and 6 and by the generalization of the method of m rankings by Bena1·d and Van 
Elteren. Also there are many other developments which have not been mentioned 
i·n this paper. However, large fields of statistical methods like those commanded 
by the classical theory of regression and analysis of varjance anrl covariance have 
not yet been conque1·ed completely by methods which do not depend 011 normality 
and homoscedacity. Several attempts in this direction have been made and 
incidental 1·esults l1ave been obtained. Cf. e.g. G. W. Brown and A. M. l\tlood 
(1951), J. He1nelrijk (1950 a), H. Theil (1950), J.E. Walsh (1952). The method 
of Mood and B1·0,vrn goes farthest in the direction of an analogon of the analysis 
of variance witl1 more tl1an one classification, but it is based on the median and 
is probably not very po,verfuJ. The metl1od of m rankings and its generaliza­
tions seem more p1·omising in t,his respect. The development of a general ana­
logue of the classical tl1eo1'y in this field -would be very important. 

It would also be ,,ery important, if a unifying theory of ranking methods, 
distributionfree methods etc. "''"ere built up. The papers of Hoeffding are a start­
ing point fo1~ this, but even the conceptio11al background of the methods in que­
stion is not yet clear, as may be seen from section 2 of this paper and from the 
fortl1comi11g paper of M. G. Kendall and R. M. Su11dr·um. 

As a final 1 .. emark we draw attention to the fact, that the foregoing methods 
all deal with the testing of hypot.heses and that this only is a first step in the 
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theory of sta.tistical analysis. More impo1·tant is the clet,er·n1j11atio11 of e<-_)11ficlence 
r·egio11s and the ol)tainmer1t of predictit111s on f11t1t11·e ol)se1·,---ctt,it)11s. To find corlfi­
dence regions by mear1s of test,s of h)rpotheses it is desi1·alJle t1t) l1a\:-e a n1etl1o(l 
which e11ables us to test eve1'y l1ypc>tl1esis of t,}1e l1)rpotl1esis s11i1ce se11a1·ately 01· ,1t 
least to test differe11t gr·oups of h)--rpot}1eses. The11 tl1t~ set <)f ~tll l1ypotl1eRes 01· 

groups of hypotheses which a1·e 11ot 1·ejectecl, \\1it,}1 a, gi, .. e11 level of sig11ifica11ce a .. 
on a given eviclence Z, fo1·m a conficlence set f<)l' the t,1·t1e l1Jrpotl1esis ''"·it,11 co11fi­

dence coefficient I - c,.,. In many cases, 110,vever, ()lllj,1 a, rest,1·icted group of· h3/po­
theses - often of the cha1·acter of '' 11ull-l1):I)Ot,}1eses '' like H 00 - ca11 l)e teste(l 
and for the larger part of t.}Je hypotl1esis space 110 appr·opriat,e test,s are a,.,.ailable. 
This is a weak poi11t of the t11eo1·y. Nevert,l1e1ess somethi11g ca.11 be done in tl1e 
directjon of determining a confide11ce set, eve11 if fo1· only one critical 1"egio11 
R some knowledge about the po\\rer f11nctio11 {?, (H) is available. A situation ofte11 
occu1·ring is : {?, (H) = P [Z E R I H] , i.e. the p1'<)bability that the evide11ce Z lies 

in R, if H is true, is exactly comput.able and < oc for some especially simple l1ypo-
--

thesis H O ; for hypotheses near H O, an uppe1· estimate [3 (H) of{?,* (H) is known, 
and for hypotheses greatly cliffering from H O , a lovver estimate {?,* (H) of ·{?, (H) 
can be computed. If: in tl1.at case, a Z E R is found, 11ot 011ly H O , but- also all 
H for whicl1 ·{?,~~ (H) ~ a may be rejected, ancl the set of all remai11ing H is a safe 
confidence set spr c,., • If, on t.he othe1· hand a Z 0,1.1,tside R is f ou11d, all H with 
~*(H)> 1 - rx can be rejected. For, if such a l1ypothesis ,ve1~e true, P [Z e R] would 
be =1-~*(H) < 1- {?, (H)-:::::: a. Hence, f()r all Z E R all H \vith [3* (H) < 1- a 
form a confidence set. In general, o± .. course, both co11.ficlence sets ,,,ill be too large, 
i.e. with more mathematical trouble jt ,voulcl be possible to obtai11 smaller sets in 
which we coulrl alrea,dy have co11fi.dence sp'i· tl. • For· the c.,ase of a single -unknown 
pa.rameter with a power function of the ordinary t,ype "\\'e illustrate tl1e situation 
in fig. 2 1 . For H near H 0 ~ (H) > '3 (H), {?, (H 0) < a; for H far from 
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I 

C 

1 
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a 
Fig. 2. Safe confidence sets. 2 

1 
I 
I 
I 
l 
I 
I 

d 

z E R is found ; all H in ( c, d) form a safe confidence set 1f a Z outside R 1s foun~l .. 

1 For an analogotis discussio11, basetl on tl-10 critical r·egio11 belo11gi11g tt) \\r1LooxoN's 
test, of. D. V.<\.N DANTZIG ( 1951). 

2 In fig. 2 ~ and [3 stand for P.,* a.nd f3* r·espectively. 
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\Ve see t,hat from tl1is point of vie,v H O is not of particular impo1·tance~ ex­
cept for the fact t,l1at it may be helpful in comput.ing ~* (H) and {3 (H). On the 
other hand tl1e metl1t1-d clescribed here is very primitive and only two different 
conficle11ce sets are possible as the result of the experiment-. Nevertheless we 
must, ir1sist that, 011ly by clete1·mining (sa,fe) (..onfidence sets within the whole class 
n of all empiricall)r gua1"a11teed hypot,heEies we can keep the unreliability threshold 
of the con1plete statist,ical pr·oredu1·e un(ler contr·ol. 'l,his clearly indicates the 
fac·t, tl1at the n1etl1(xls of st,a.tistical analysis based on few ass11mptions (i.e. wjth 
large classes Q of admissible hypotheses) l1ave only just been started on their way 
of de,relopme11t a11d tl1at. much remains to be done to give them mo1·e scope aJ.?.d 
po'\ver. 

Appendix 

Let z1 , ..• , Zn l)e a set of n 1"eal numbers. If all Zi are different, the rank 
of an} ... 011e of them, say Zi, after ar1"angement ae,co1·ding to increasing order is 

tl) 
n 

ri = ~ t (zi - z1), 
i=l 

where t (z) denotes the '' unit fun,Jtion '' 

(2) r. (z) def , 
I if z>O 

0 if z<O. 

The mean rank I , 
tn +I); the'' reduced rank'', i.e. the difference of the 

rank from its mean, wluch ,ve shall denote by ~ , is 

(3) - I n 
ri = -- !; sgn (zi - z1), 2 i=l 

where the '' signum function '' sgn z is defined by 

I if z> 0 

(4) sgn z def 0 if Z=O 
• 

1 if - z<O. 

1es occur 1 or not. 
For abbreviation '\\re write 

>) 
Zi; def sgn (zi - z;) , 

1 
It is custornary to say that '' no t,ies '' are present if 

f the number of t,ies is n. · all ties have size I, • 
I. e. 
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so t,hat for arbit,rary i and j 

(6) 

Moreover, if' I=== l I , ... , n / 
subsets of I, we put 

is the set of all s11ffixes, a11d if S and 1 1 are arbitrary 

(7) 

and 

(8) 

We have then 

(9) 

By means of (3), (5), (7) we find 

I':'/ ,,.; . 'I' 
1. ' 

. zs·-. c• = 0 . 
I ).._ ,u 

I 1 

Zr,, . 
_L ,-i 

1 

(10) ri =-Z 2 i,I 2 zi,l'(i) 

• 

by (10), if I' (i) de11otes the Gomplement of i in I, i.e. the set of all j e I which 
are =/= i. In th.e same way, if i e T,. zi,T is twice the reduced rank of Zi in the 
ranking 2 of the elements of T, and, if i { T, zi, T is the difference between the 
number of elements in T whicl1 are < zi and the number of elements in T which 
are > zi. 

If the sets S and T are disjoint ( have no elements in common), the quan-
tity zs,T, is twice the reduced ,ra]ue of the test sta,tisti.c U (acco1·d1ng to Mann 
and Whitney's notation) of Wilcoxon's test : 

(11) 
...,,.... 

[Ts,T = I 
Zs,T, 

if n1 =IS I and n2 = j TI are the sizes of S and T respectively 3 • We remark 
that zs,T is an addit·ive setfunction witl1 respect to both it:s a.rguments 4• 

1 We remind that the symbol j E T means '' 1· belongs to T '' (1· is an element of 
T), so that the sum in (7) is to be ex.t,e11ded ove1· all j belonging to '11

• {€ is G. Pean6's 
cc esti-sy1nbol )> ). 

2 We omit ftir·t,her the co11ditior1 '' acco1·di11g to non decreasir1g <)rder, ties lJeing 
account,ed f<JI' in the cttst,tlma1·,, n1a11ne1· '' . ., 

8 Gener·all}r we denot<:~ the size (l1er·e : = 11u111ber of ele1ne11 t.s) <)f a set, S by 1 "-t;;J 1-
4 Fox· some pt11·poses it, is easie1· to use, inst,ead of' the si1,r1is zs.T, the correspon-

di11g mear1,s z,._~,'ll = z8 , 1 ,/n,1 n 2 , wl1icl1 lie al\vays between - J and -t- l. rl1hen the ad­
ditivity is 11.ot 1·eplaced by a p1·ope1·ty c)f si1nila1· simplicity. \Vhe1·eas, if S and T are 

d · · · t } S 1S + T 'Ii 1 S, T 1sJ01n , zs.s+T = zs,T, we 1ave z = ---- z . 
- n 1 + n2 
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Now~ let, I be the sum (u11io11) ot· k disjoint Sl1bsets (''samples'') SJ.. (A == I , ... , k) 
of sizes 1il = I S..1 I , so tihat n = "iii . Ther1, the quantity T used i11 Terpstra's 
test against trend is 

(12} T= 
1 

• 

).,µ 

Tl1e qua11tit,y 

(13) 12 ,~ 11,~ H -- ___ ,____ ,, I -- ' 

k (k + 1) ;, n.:t 

used in the k samples test-, i11t,1·oduced i11dependent,ly b)t Ter·pstra a11d K1·t1skal, 
as well as Rijkoorti's 

(14) 

used asymptotically f()r the same purpose, botl1 are quad1·atic forms in the quan­
tities 

(15) • 

By tl1e additivit,y of ZR.:t,S as a funct,ion of S, toget,her witl1 (9)~ 1 can be replaced 

by the complement, of SA in /, making obvious that, (according to Te1·pstra's ori­
ginal definition) 'lt;. is Wilcoxon's between Ri and its complement. 

Terpstra's second test statistic ( cf. section 6) is t,he quadrat.ic form 

-
6~ 

u2 
i'; .:t,S µ 

-nH. 
l,µ n;. nµ 

]"inall)':. if' I is the sum of nm disjoint subsets (," cells '') Cµv, wl1.ere µ = 
1, ... , m ; v = 'i, ... , n, arranged in m '' rows '' 

V 

and n '' C<)lumns '' (belonging to differe11t '' observators '') 

' 

then the q11antity 11sed in Be1·nard and Van Elteren's generalized m -ranking test 
-is a qltadratic form in the quantities v,, each of which is the sum over rows of 
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the ranks occurring i11 the 'J
th col11mn, each 1'()1V bei11g ra11ke<l S("I>iir·<it<.~I.)"". Ht~iice 

(16) - I 
V ==--~o/1 R 

V 2 I .J ,._,() µv ' µ • 
µ 

-
Compa1·ing tl1is "\\ritl1 (15), we see tl1at. 'l'v is the st1n1 <_)\re1" t'()"\\r:..; t>f. t.l1e (lllclI\t;i-

ties (16), obtained by co11sicle1·i11g eacl1 1·0,v as bei11g bt1ilt. lll) 011t <)f the Cl~lls as 
samples. 

Ge11erally speaking we may ask to test the 11)1J)()t.hesis t}1c1t tl1e z;. (-1'. € I) :-trt.~ 

independent variates, the C!ommo11 distribution of \\~hicl1 is ir1\ra.1"iant, 11n(ler i1 gi\"'eti 
group G of· permutations of I, witl1in tl1e set of admissible l1}7P()t.heses stati11g t,l1at 
this inva1·iance is required u11der a subgroup 11 of G 0111)"· \Ve sl1all, }·1()\\revt~r, 

not go into those, as yet incon1plete, results i11 this clireet,io11, ,,rhicl1 l1a,~e l.)t...,l•I-1 

obtained. 
Insteat1., ,ve want tc) make a remark on the possibility c>f ge11t~ralizi11g t,l1e t l1ec)r)? 

for t11e cabe whe1·e the Z·i are m11ltivariates. Let, us assun1e t:hcit each zi is a v·ec~t,c>r 

in an Euclidean f -dimensional spac~e., it,s con1po11ents bei11g Zt,1 , ••• , Zf,f C)t', ge11-

erally, Z-i,a ( a = 1, ... , /). The11 it.: seems a 11atural ge11eralizati()ll, t(> c·c>r1sicler 
statist,ics which a1·e fu11ctions of· tl1e qua11tit,ies 

(17) , ... , it = sg11 <let 

only, as for f = I these reduce t,o 

(18) 
., 

• 

• 

• 

... ' Zi ,f ' 1 
0 

• 

• 

• 

in accordance with (5). To which tra11sfo1·mations z > z1 = Cf (z) n1ay tl1e 11., \rE:~c•t,(:}rs 

be subjected simulta11eously without altering the qua.ntities (17) l Fc>1· .f = l ,,·e 
know that (18) (witl1 i and j instiead of i0 and i1) rema,ins in"\ra.ria11t if '?i -- C? (zi), 
z1 = cp (z-), whe1."e q:, (z) is a11y st,rictly inc1·easing ,-onti11uous funct,io11 of z. F()t' 

1 • h f = 2 the jnva1,.ia11ce of ( 17) req1111 .. es t at 

z.i,1 Z.i,2 1 
• 

1 (19) sg11 Z·1 Zj •J sgt1 1, , ... 

Zk,l Z/c,2 1 

I 
Z· 1 
i.' 

I 
Z· 1 J, 

I 

Zk,1 

I z. ~, i, ... 

I 
Zj •> ,.., 

I 
Zk 9 , ... 

I 

1 ' l 
l 
' 1 I 
l 

where (zt,i , Zi,.2) = (f) (zi,l , Zi,2). In pa1·ticular both membe1·s o·f (19) ~11st, :'"t:i11-

i.e. the transformation must be affine and, moreover, or·ientft.t1on preserving. Tlie 
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same l1<>l(is tr·ue f<)r all}' / > 2. For / . I tl1e co11clitio11 of si111ulta11eous ,ra11ish­
in~ of (18) ar1cl it,i;; t.1·a11sf'orn1 reql1i1·es onl_yr that the t1·a11sformatio11 is bi-univoqti.e. 

- ,.fl1e gro11p of all affi11e tr·a11sfc>1·mati<)ns, however~ depe11ds on a finit,e number 
of co11sta11t.s 011l}r, ,,,11creas fc>I' f = I \\"e hacl the grot1p of all orientation p1·eserv­
ing topological t1·c111sfo1·matic,11R: depen(Jj11g 011 a11 arbit,rarJ· fur1ction Here we l1ave 
a11 a11al()tYV \\ritl1 tl1e o'I'Ollp <:>f' co11formal t1ra11st<.)rmatiC)l1S, \\'hich in t,vo clime11sions 

b. r, 

de1)e11ds 011 a11 arbitrary fu11ctic>r1, btrt, i11 all}·· larger 1111ml)er of climensions (vvl1ere 
it, n111st tr·t1r1sfc>rm spheres i11to spher·es) 011 a fi11ite number c,f cc>nst,ant.s only. 

The ge11eralizati(>11 ( 18) }1as two othe1· <ljsacl\r}111tages. Firstly, the q,uantities 

'"·hicl1 (aptir·t f1·<)ID a facto1· (/ + ] ) ! ! 1
) gene1°alize tl1e Wi]coxonio11, viz. 

(20) • • • 
," z. . , , iu , . . . ' i 1 

it e St 

do 11ot leacl i11 a 11at11ral ,vt1,y to a t.,,rc• samples test, btr t t,:> an (I + I) Si:1n1ples 
test <)nly. Secondly, eve11 fo1· f = 2 a11d an n which is not ext,ren1ely small~ the 
a.ct,ual compt1t,atic,11 of (20) becc>n1es ve1·y Cl1mbersome as it requires the determi-
11ation of t,he or·ie11tatio11s c>f all triangles ,vhich can be formed out of the n points 

(zi,1 ; • • · ~ Zi,f ). 

At first sigl1t, 011e migl1t tl1i11k that the natural generaljzation of· rank-invariant 
statisticR, say for· / = 2~ ",.ere statistics invariant under arbitra.ry orie11tation -
preserving topological transformations of the plane int,o itself'. This, however, 
can 11ot be the case 1 as any point cloud ca,n by such a tra11sformation be trans­
formed into any other pojnt cloud having the same number of (r]ifferent) point,s. 
Son1e further restriction of the transformation group is therefore unavoidable. 
One can, of course, admit rank-invariant. t111 ansformat.ions of eacl1 of the coordi-
11at1es separately, l)ut f>ne might• admit other simple transformations, e.g. rotations 
also. As )·et the problem of finding the more dimensional generaJizatio11 of rank 
invariant statistics remains open. 
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Resu1ne 

Cette comr1-1unicatio11. est tin expose cle qt1elql1es tu1s des de1·11ie1·s 1•{·s11lt::1ts t:•t Jll<)fl· 

tre le developpeme11t dans le domai11e des met.hodes st,t1it,iRtiqt1es tl,)·a11t. J)<.)111· l)tlHt• citi<,.1-
ques l1ypotheses, method es gener·alement, dt~signees J)a1· (( clist1·ibt1t.i<)n 1 i bi·-=~ )l~ (; ll( ill· J):ll'tl· 

metriq1.1e >), << t)rdre inchangt1 >>. 

L' on indique specialeme11t tm e11se1nble de 1nt~t,l1tl(les etroit.<:~111ent. I ie<:•s it lt1. lllt~·t lic}<lt• 
de la corr·elation, en y co1npre11a11.t al.issi des cc t.est,s f{>1· t,1·t::~ncl i1 cles t,t-,.Hts <i'•~•c·littiitillt}Jl 
k et des gener·alisatio11s de la 1net.}1ode m << 1·anl\'.:i11gs )). Detrx t.est.s d~ec~l1a11tillti.11s (Stt1-

dents, Pitman, \Vilcoxon, Terr·y, Van de1· \Vaercle11) sont, ext1r11.i11.c·s Jll1._ts lit1·gt•i-t·tt'•J1t ; 

sont disc11t,es aussi les theo1·emes concernant let:t1·s fo11ct,io11s, tl1eo1·emt~S (lllS a J>ltlSit:llll'S 

auteurs. L'importance des er1ql1et,es concernant la po1·tee des ecl1a11t,il lc:l11s 111,Jir1<i1·f•s t•st 

mise en evidence aussi bie11 en ce qui conce1·11e l'opportl111ite d'une gc•11c•1·alistiti(">ll ci(lB 

methodes employees, pa1· a11alogie a l'a11.alyse cles ""a1·iations c~c)rnpo1•t,ant, t111 Jll11s g1·t111(l 
nombre de classifications, non basees sur la no1·malit,e cles dist1·ibl1ti<:)11-s pr·t~111-ie1·t:'s. 

A l'appendice se trouve tin resUIX1e des gr·ot1pes des 111etl1odes ex.pos<:>es . 

• 

• 


