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1. Introduction. Perhaps the most characteristic feature of
SCHOUTEN's methods throughout his work is his perfect matching
of a notational system to geometric intuition. He never adopts
such a system for its formal beauty alone, and thereby escapes
the danger, pointed out by HERMANN WEYL, to fall into “Orgien
des Formalismus’’. On the other hand he is never content with a
geometrical investigation which does not reflect in its description
the true geometrical background, i.e. its most general properties
of 1nvariance.

Every mathematical method of great generality becomes too
clumsy if it is applied to very simple problems only. In the same
way, as long as onl/y linear and quadratic forms occur, ordinary
matrix calculus has some undeniable advantages, in particular
from a purely formal point of view, although it does not reveal
the geometric background by not distinguishing e.g. in space point-
point transformations from!point-plane-transformations (e.g. polar-
ities) T';;. Also, as long as only (or mainly) skew-commutative differ-
entral forms occur, CARTAN’s w-methods have the advantage of
great conciseness. But for the field of geometry as a whole, including
the more mtncate cases where geometric objects with all kinds of
symmetry and al kinds of invariance occur, SCHOUTEN’s ‘“‘nucleus-
index-method’’ has not been surpassed.

One of the simplest results of SCHOUTEN’s methods is his classi-
fication of the quantities in a Euclidean »-dimensional space £,
under the affine group.

The purpose of the present paper is: to show that this classifica-
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tion, the importance of which in geometrical and mathematical-
physical researches 1s well known, 1s useful for a better understand-
ing of the quantities occurring in elementary physics also, in parti-
cular from an epistemological point of view.

For simplicity we shall restrict ourselves 1n the main to classical
(non-relativistic and non-quantum-mechanical) physics. For the
same reason we shall not .assume anything to be known of Riccr
calculus, and we shall not use SCHOUTEN’s nucleus-index-method,
but scetch roughly and genetically a system of notation, which is
appropriate for an elementary introduction, but which — as will
be seen by the reader — becomes too clumsy when we pass to the
less simple physical relations, and then can better be replaced by
SCHOUTEN’s notation, to which it gives a rather natural access.

The present considerations do not have the pretention to be
preferable for the purposes of everyday physical research or instruc-
tion to the ordinary development, in which a free use is made of
metrical geometry and the corresponding vector- and/or tensor-
calculus. For such purposes the ordinary methods are quite satis-
factory. But it will be found interesting to look, how far we can
come 1n physics without making use of any metrical assumptions
at all, and restrict the geometrical tools used to those provided
by affine geometry. From a philosophical point of view the replace-
ment of metrical by affine geometry, of course, might seem a rather
half-hearted procedure, but 1t serves here only as an elementary
introduction to a more consistent sifting out of metrical elements,
which may be based on similar principles, but requires a more
intimate knowledge of Ricci-calculus techniques than we presup-
pose here. _

Also 1n order to keep things as simple as possible we shall work
with ordinary (threedimensional) Euclidean space, and assume
the concepts of affine geometry to be known (straight lines, planes,
parallel lines and/or planes; ratio of parallel directed line-segments,

ratio of areas of bounded oriented parts of parallel planes, etc.,
and to satisfy the ordinary axioms. '

2. Examples of affine treatment of physical concepts. a. V ec -
tors; displacements. A contravariant vector (shortly: a
vector) in Euclidean space is defined 1) as an ordered pair of points’
determined except for a simultaneous translation of both points.

') ScrouteEN (1], I, § 2, [2]. p- 10.
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We shall consider each physical quantity to belong to a definite
point of a material body (or, more generally, a definite point in
space or space-time). In the present case we may identify it then
with the initial point of the ordered pair, so that the latter is com-
pletely determined by its endpoint; the vectors then correspond
one to one with the points of space (their endpoints). A vector is
often denoted by a symbol with an arrow above it.

It 1s then trivial that a displacement of a material point corre-

—
sponds with and can be represented by a vector dx. As in classical

physics time occurs as a scalar, it follows immediately that, after
—
choice of a unit of time, the velocity dx/d¢ and the acceleration

._}.
d*x/(df)? of a material point become vectors also. In relativistic
mechanics the same is true for the proper velocity and acceleration

- —>
dx/ds and d2x/(ds)2.

b) Forces; covectors. In classical mechanics the con-

cept ot force usually is introduced in connection with the socalled

— ———n
law of NEwTON K = ma. The current treatment suffers from

many logical deficiencies, in particular in statics, where no accel-
erations occur at all. Although this difficulty can be overcome by
introducing fictitious accelerations, some difficulties remain in
connection with frictional forces which, when working on resting
bodies can cause no accelerations at all.

From the point of view of modern physics it seems therefore
more natural to introduce the concept of energy first, and then to

define a force working e.g. on a material point by means of the

—
amount AW of work done if the point suffers a displacement Ax.

Then a force determines a scalar AW with respect to every (suffi-

ciently small) displacement Ax. Assuming, as usual, this relation

to be linear 2), the force;becomes a linear vector function. Hence,
the initial point of the displacement being given, a force can be
represented, after choice of a unit of energy, by the plane of all
endpoints of displacements for which AW has te value 1, or also, if
an 1nitial plane parallel to the other one through the initial posi-

®) Here and further we neglect, for simplicity of expression, second order quanti-
ties, i.e. e.g. those caused by dependence of the force on place or time.
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tion of the material point is drawn, by an ordered pair of planes.
This is — apart from the common translations of the planes, which
we omit — SCHOUTEN’s definition ([1], I, § 2, [2], p. 1) of a co-
variant vector, or, as we shall shortly call it, a covector. We may
denote it by a symbol with an arrow below it. In order, however,
to simplify the writing, we may notice that the ““bars” of the
arrows are superfluous, and that it is sufficient to use their heads
alone. We shall therefore further denote wvectors and covectors

by means of arrowheads only: v, F.

} & L
If F is a covector and v a vector, their transvection (or scalar pro-

duct)} is defined as the ratio of the “length’ of the vector and the
intercept of its working line with the two planes of the covector,
taking account of their signs (orientations). The occurrence ot the
metrical term ‘‘length’’ here is only apparent (and could be avoided),
the whole procedure being affinely invariant.

Hence from our point of view the natural representation of a
force is by a covector, not a vector. This could also be seen 1mme-
diately from the Hamiltonian theory.

The relation of the covector F now

representing a force and the vector F
by which 1t usually is represented is
the following one (fig. 1):
1°. F is orthogonal to F and has the
same orientation;

2°. the length of F is the reciprocal
Fig. 1. value of the distance of the two
- planes of F.

Clearly both relations are of a metrical nature.

We shall show by some examples that the representation of a
force by a covector 1s 1n several respects (not in all) far more satis-
factory and closer to “‘physical reality’’ than that by a wvector.

a) The work W done by a force under a displacement r of a
material point is usually formulated as: the product of the dis-

placement and the projection of the force (force-vector) F on it,

i.e. |F| |r| cos & if © is the angle between the two vectors (fig. 2).
By means of F the description is far simpler and not dependent on

the metric (fig. 3): W 1s the ratio (provided with a sign according




77

to the correspondence or non correspondence of the orientations)

of » and the intercept of the line along which it takes place with
the two planes of F.

Fig. 2. Fig. 3.

B) A conservative field of force can be represented by its equi-
potential surfaces. Assuming — for simplicity of the verbal descrip-
tion — that the unit of energy is chosen sufficiently small and that
the forces vary sufficiently ;slowly, the force covector is immedia-
tely visualized (fig. 4) by a pair of tangent planes in two neigh-
bouring points where the potential differs one unit, i.e. essentially
by the equipotential surfaces themselves. The representation by

>

vectors F lacks wvisual evidence.

> >
F || __4F
_ Pt
Fig. 429). Fig. 5.

The equipotential surfaces possess an immediate physical reality:
they are the only surfaces on which, if they are replaced by smooth
material surfaces, a material point, not subject to other forces, can
remain in rest, or move freely.

v) A material point on a smooth plane suffers a ‘“normal force”
(fig. 5). Here, like in the previous cases, the arrow orthogonal to
the surface has nothing to do with physical reality, but is just a
mathematical device, useful for those who are better acquainted
with metrical than with affine geometry. The direction of the force-
covector 1s not orthogonal, but parallel to, i.e. the same as that of
the plane.

2a) The vectors in fig. 4 should be orthogonal to the corresponding curves in
jheir initial points, instead of vertical.
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d) What ha.ppens if the surface is rough? Then the reaction

force-vector F is mno longer normal to the surface, but makes an
angle @ with 1t, so that tg ¢ = f is the friction coefficient. Hence

under varying circumstances F describes a cone of revolution,
the axis of which is orthogonal to the surface. Evidently both con-
cepts: ‘“‘cone of revolution” and ‘“‘orthogonal” are metrical. The
force-covector F envelops a cone having the same two properties.

How it is possible that, just by making the plane rough instead of
smooth, we have introduced metric?

Evidently this can only be so because we have unconsciously
introduced metrical assumptions. The two above-mentioned pro-
perties of the cone do not follow from the assumption of roughness
alone, i.e. do not hold for every rough surface, but only 1f the rough-
ness is isotropic, i.e. is the same for all directions. If f 1s different,
e.g. in two orthogonal directions, the first property is lost; it it 1s
different in two opposite directions, then also the second property
is lost. Examples are: a rough board, or a brush with skew implanted
hairs, e.g. a cat.

Finally we mention a few cases where the representation ot a
force by a covector is not the most natural one.

a) Of course we may not expect the distinction between vectors,
covectors, etc. to remain tenable if we have to do with rigid bodies,
the concept of rigidity being itself of a metrical nature.

B) If a force has a definite “working line” (e.g. a force working
on a point of a rigid body), it can better be represented by a vector
thanbyacovector, and thereby requires the introduction of a metric.

v) The concept of a central field of force, dealing with the working
lines, 1s of a metrical nature.

¢c) Momentum- and wavecovectors. Historically
NEwTON's law did not state that the force 1s the product of mass

and acceleration, but that it is the fluxion of the “‘impetus’ (kinetic
momentum), which is the product of mass and velocity. Without
going into a detailed discussion we may state here the fact that the
kinetic (and also the potential and the total) momentum which
we denote by 2 , behaves as a covector. Then NEWTON's law states

‘hat F = 4, whereas the relation between momentum and velocity:
7 = mo

s a “linking equation’ and implies metric. As it is equivalent with
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7 = 8T/8v or with v = 8T/c’:37 = BH/agb where T = 1/,mv2 = 72/2m

is the kinetic and H the total energy, we can also say that the link-
ing equation expresses the relation between kinetic energy and
kinetic momentum. It loses its wvalidity a) in special relatively
theory as soon as we have to do with systems consisting of more than
one point (because there the concepts of point of gravity and ot
resulting velocity get lost), and f) in relativistic quantum mecha-
nics, where the relativistic velocity corresponds with DIRAC’s
matric vector ¢ and § with y2 -—% . Between these two quantities
> > -

no relation at all exists.

Also the wave ‘“‘vector’” in optics is rather a covector. Its planes
are tangent to the surfaces of equal phase, and are made visible
in interference experiments. The direction of a light-ray has not

directly to do with the wave-covector x (it is orthogonal to » under

conditions of isotropy), but with the energy-current, i.e. POYNTING’s
“vector”” (which rather is a vector-density cf. ¢, f); a ray 1s rather
a tube than a line). The quantum theoretical relation » = % » does

not depend on metric.

The laws of impact (e.g. of a material point against a pertectly
elastic wall), of reflection and of refraction consist of two parts:
1°. a condition expressing the conservation of energy and thereby
implying metrical geometry, 2°. a “geometrical condition’, not of
a metrical nature, although it usually i1s expressed in a metrical
form. In fact, one usually says that (in the case of a light-ray) the
“normal component’” of the wave-‘‘vector’” is continuous on the
surface of continuity, and, in the case of impact, that the difference
of the velocities (momenta) of the point before and after the colli-
sion 1S “‘orthogonal’” to the reflecting surface (fig. 6). Here again
the direction orthogonal to the surface is quite foreign to the
physical phenomena, Wh1ch aregmore appropriately described by

k‘-ﬁ“"-

Fig. 6. | Fig. 7.
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he wave- or momentum-covector, which, when passing the dis-
continuity surface changes by a covector parallel to the surface
(fig. 7). Hence the direction of the difference between the reflected
or refracted and the ingoing covector is determined by the geo-
metrical nature of the discontinuity surface alone, and that inde-
pendent of metrical geometry, whereas its magnitude depends on
- the linking equation, e.g. the energy law. The equality of the angles
of the surface with the ingoing and reflected covectors, as well as

SNELLIUS' defraction law depends, of course, on the latter, and are
thereby of a metrical nature.

d) Electric field and magnetic induction
(bicovector). An electric field E is defined as a force per unit

of charges, and can therefore, after choice of a unit of charge, be

&* » } » L
represented as a covector. Line integrals / E ds occurring in the

>

theory of MAXWELL have therefore an invarlant meaning (cf. the
“transvection’, defined under b)).

The magnetic induction has the nature of a bicovector (or co-
bivector). This is defined 3) as a cylindrical tube, the direction of
the generating lines being given, as well as the area and orienta-
tion of the intersection with one (and then with any) plane, not

parallel to the generating lines (fig. 8).
B We shall denote bi-covectors by symbols
' with two arrowheads below them, e.g. f .

In metrical geometry it is replaced by a

vector B parallel to the generating lines,
and having a length equal to the area of a
cross-section orthogonal to them (and cor-
respondingly directed). Now it is evident
that FARADAY’s picture of the lines (or
tubes) of magnetic force is far better
represented by the bi-covector § than by

Fig. 8.

the corresponding vector B. The orientation around the tube has
an 1mmediate physical meaning: it is the orientation of a moving
positive charge which might generate the magnetic field.

If O 1s a bivector (i.e. an oriented bounded part of a plane, two

3) SCHOUTEN [1], I, § 7, [2], p. 26. Here the term “covariant bivector’” is used.
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bivectors being identical if their planes are parallel and the areas
and orientations equal), then the transvection OB equals the ratio
of the area of the intersection of the tube of B w1th the plane of

O to the area of O taking account of the two orientations. The
surface-integrals occurring in MAXWELL’s theory are of the type

[/ B da hence invariant.

e) Mass- and other densities; pressure. Where-
as in the metrical form mass-densities occur as scalars, they occur
in the non-metrical invariant form as scalar densities 4) of weight
1, 1.e. under transformation of coordinates they are multiplied with
the reciprocal absolute value of the JACOBIAN determinant of the
transformation. Geometrically a scalar density of weight 41 or
—1 1s represented by a bounded part of space, provided with the
sign -+1 or —1 according to the sign of the scalar density (not of
the weight). If the weight 1s —1 or -1, the value of the scalar
density 1s directly and inversely proportional respectively with
the volume of the part of space. Densities of weight +1 and —1
will be denoted by symbols with a tilde respectively above and
below 1t. A volume-element is a scalar density of weight —1. The
terminology becomes more closely related to the geometrical
representation, 1if we remind that a scalar-, vector-, bivector- and
trivector-density is equivalent with a pseudo-cotrivector, -cobi-
vector, -covector and -scalar respectively, and use the latter
terminology instead of that of the densities 9).

In the present case this means that a mass density p is affinely
invariantly described by a part of space of any form, containing

just one unit of mass. Hence ¢ and a volume-element dV are repre-

sented by the same part of space if p dV = 1.
A completely analogous argument holds for a charge-density P

and (in non-relativistic physics) an energy-density E, although
here the sign must be taken into account.
It 1s somewhat more surprising that also the pressure p (say of

1) We consider here WEVLIAN densities only, and therefore drop the letter W
used by ScHOUTEN [2], p. 31.

°) Usually one will prefer to ca,llE a scalar-density rather than a pseudo-co-tri-
vector, but to call a line-element ds a pseudo-vector rather than a bicovector-den-

. ~ D>
Sity.
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a gas) 1s a scalar-density ot weight 41 and depends on the unit of
energy only. This can be seen as follows. The pressure is defined as
a force on a unit of area. Let the gas be contained in a closed con-
tainer, a portion dO ¢) of the wall of which is replaced by a plane

piston in a cylinder. Let the piston be allowed to move backward
so far that the pressure exerts one unit of energy. Then the initial and
the final position of the piston are the two planes representing the

force F 0 — % dO exerted on dO and the pressure itself is repre-

sented by the volume contamed between these two positions of the
piston and the walls of the cylinder (cf. fig. 9). Whereas the “distance”
of the planes of K depends on dO, viz. is inversely proportional to

ot

it, the volume representing 4 i1s independent of it.

Fig. 9. Fig. 10.

/) Current; vector-densities. A current density?
(be it a mass- or electric current, or — in non relativistic physics
— an energy-current) 1s a vector-density represented by a tube like
a co-bivector, but provided with an orientation along the generators,

not around them (cf. fig. 10). Clearly g‘}dO, hence also [/ Sdo is

an mvariant.

In electromagnetism also the dielectric displacement D and —

~ D>

in non-relativistic physics — POYNTING’s vector P, are vector-
densities.

®) A surface element dO is a covector-density; it is represented by a bounded

oy D>

portion of a plane provided with an orientation, not of the plane, but of any line

crossing it, i.e. such that a ““front” and a ‘back’ side, or an ‘“‘interior’ and an
,‘exterior’’ side is distinguished.
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g) Magnetic field; bivectordensities. The mag-

~ D>

netic field A 1is found to be a bivector-density (or, equivalently,
a pseudo-covector), represented by a pair of parallel similarly orient-
ed planes. It occurs together with a line-element ds with an orien-

~ r

tation around (not along) it, 1.e. a bicovector-density or pseudo-
VeCtor.

h) Some tundamental equations of physics.
In order to illustrate the coherency of the system of concepts we
introduced we write down some of the fundamental equations of
physics. In order to show that the tensor-analytic calculus becomes
‘more and more preferable to the ad hoc calculus we introduced
here, as the equations become gradually more complicated, we
write the equations down according to both formalisms without
going 1nto the precise distinction of the different multiplications
necessary in our elementary formalism (which difficulties constitute
its main disadvantage). (The suffixes 7, 7, £, / run independently
through the numbers 1, 2, 3).

NEWTON:
7 = K 7:2* = — K,
PLANCK:
/% = fot P = M,
Pressure force:
Fi0 —  $d0 - F¥° = 3do,
ILAGRANGE:
oL ol - oL oL -
vy ib > — ? > — ﬁi 20" — f)i
oq > oq > oq q
L =—H+p.g L =—H+pg
HAMILTON
QE__ > 9H___.._____ oH . 81‘{____¢)
aﬁ o q > ? apz - g aqz - i
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MaxweLL 17) 8) (differential form)

Pt v > ,:.,..:-

cV.H—D=1 c o,H# — Di — I
VEEE 8jD5:E

(integral form)

~ ~

¢fs Hds— [[s D dO = [ [s I dO

D

P

[fo D0 = s/ fs¢dV [Ja D* A0, = [ [ /g & aV
MaxwerLL II (differential form)

cVXE+B=0 2co, £y + By =0
17 ><>§ 0 OB = O
(integral form)

¢ s EAS 4 [ /s BAO = O ¢ [ E;ds* + 1 [ /s B, dOY = 0
ff;gdé’mo i /[ /e B. dO¥ = 0
Potentials ®)

§:mg@+0“1é E,=—0,D+ c1A4,
Energy-density

E = }[ED + 4BH] E = y{[E,D' + 3B HI
POYNTING

P = EH Pi — E, B4
LORENTZ

f — ¢ [§ L ;Bi;;] F,=¢eE, + c1 B, 1]

2) Linking equations and metric. In order to
write down the most important equations, it is easier to use the

——

o

) Here I is the electromagnetic current-density; the integrals are to be extended

over open two — or three dimensional domains S or G or their (complete) one — or
two dimensional boundaries S/, G’ respectively.

: . d :
%) The gradient is a covector-operator; 0; == Cy For the meaning of the square
#3

brackets cf. ScHouTEN [2], p. 20.

°) Here @ denotes the scalar, 4 the (co)vector potential.
>
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symbolism of RiccCr-calculus only, and to use the (spacial) funda-
mental tensor g;; (its reciprocal and the square root of the absolute

value of its determinant being as usual denoted by g#, and g respec-
tively.

NEWTON’s impetus i, =mg,;
Kinetic energy T =imxig, o = (2m)-1 p, g P,
MAXWELL (in vacuo) B = yy 2.8, H*

Di =¢g,ggE,

3. Some remarks on the relations between physics and geometry.
. In 1917 A. EINSTEIN showed that under certain conditions Rie-
mannian geometry could be used as a model for a class of physical
phenomena, viz. gravitation theory. Since then a large number of
authors have tried to find more general geometries, which could
be used as models for a larger class of physical phenomena. Among
these we mention only such names as J. A. SCHOUTEN, H. WEYL,
TH. KALvuzA, O. KLEIN, L. ROSENFELD, A. EDDINGTON, O. VEBLEN,
A. EINSTEIN, E. SCHRODINGER and A. Pais. All these efforts are
based on a common fundamental i1dea: independent of definite
physical phenomena space-time exists as a definite geometrical
structure (a differentiable manifold, in which a connection is defined
either by a fundamental tensor or in a more general way); physical
phenomena are described by fields, determined by this structure
by means of differentiation processes, 1.e. they are ““manifestations™
of definite geometrical properties.

In the thirties this situation lead the present author to the ques-
tion whether there really was an epistemological basis for this
preponderant position of geometry. This question was answered
by the author in the negative, and lead further in a natural way
to the question, in how far physical phenomena can be described
~without introducing either a fundamental tensor or even a more
general connection, but only by means of ‘‘natural mvariants”
(gradients of scalars, exterior derivatives of multi-covectors, etc.)
applied to the physical field themselves. In a subsequent survey of
several parts of physics this was found to be possible for an aston-
ishingly large number of the fundamental equations of physics,
but not for their totality.

2. This is not astonishing, for it stands to reason that the equa-
tions of physics can not 4/l be invariant with respect to arbitrary
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transformations of space, independent of some metrical quantities.
For the existence (at least in the non-relativistic approximation)
of nigid bodies and their rotations shows that metrical geometry
has some kind of physical reality, which can not be disregarded.
Anyone who ever has knocked his head against a sharp stone has
jelt the large curvature, 1.e. metrical geometry.

This fact, however, does not prevent the possibility to bring the
equations of physics in such a form that some of them are invariant
with regard to affine (and even more general) transformations,
whereas the metrical relations are contained in a second set of
relations only. The author is inclined to consider the first ones as
the more fundamental ones, although they become physically
meaningful only after the second set, the ‘“linking equations”,
have been added.

This can easily be seen by considering analytic dynamics. The
Hamiltonian equations are invariant, even with regard to arbi-
trary contact transformations. They do not themselves imply any
metrical assumption 1%). Assoon, however, as we apply the general
theory to any special problem, we have to substitute for the Ha-
miltonian H a special function of the momenta #, and the coordi-
nates ¢°, which in all important cases depend upon the metrical
properties of space, 1°. through the kinetic energy being a quadratic
function of the momenta, 2°. through the potential energy being a
metrically determined function of the coordinates (e.g. by a NEw-
TON or COULOMB energy being proportional to #»-1). In this case
one could consider the Hamiltonian (or the equivalent Langrang-
1an) equation as the fundamental ones, and the equation speclg-
tying H as a (metrical) function of the s, and ¢¢ as the “linking
equation”. In relativistic mechanics the situation is not essentially
different, the main alteration being the replacement of the kinetic
energy of any mass point T° = $2/2m by T = ¢V m2c2 - b?% — mc?;
In both cases metric enters through the norm 42 of the vector D
With appropriate alterations the same holds true for quantum
mechanics, as 18 seen most clearly by SCHOUTEN’s (3] beautiful
analysis of DIRAC’s equation by means of sedenion systems.

The program of splitting the equations of physics into a “‘funda-
mental”™ and a “linking” set, i.e. of “localizing’”’ the occurrence of

1%) Of course, a generalized metric can be derived from them by means of the
tensor d2H/op, op;.
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metrical relations has to-some extent been carried out by the
author a number of years ago, a task which even to this degree
could only be performed by making an extensive use of SCHOUTEN'S
methods.

3. In all cases hitherto studied the metrical relations could be
“localized’ 1n three places:

a. The equations linking the energy and the momenta, be it

kinetic or potential;

b. Material constants of rigid or non-rigid matter (like dielectric
constant, permeability, wviscosity coeffcient, conductivity,
friction coefficients, etc.) behind which often 1mplicit
assumptions of isotropy are hidden;

c. The corresponding limiting case of “empty space’.

The less fundamental nature of the “linking equations’™ reveals
itself by their losing their validity in several cases, where the
fundamental equations remain valid. With respect to the localiza-
tion a, this 1s the case already under transition from classical to
relativistic physics; with respect to b, under relief of the implicit
assumptions of isotropy. Examples were given above.

In the case c¢. of empty space it 1s somewhat less easy to see
that here also implicit assumptions of isotropy (which naturally
are of a metrical nature) are hidden. In order to understand this we
have to look for cases where the isotropy of empty space 1s released.
The possibility that “empty space’” may have definite properties
like isotropy, is connected with the fact that the former absolute
distinction between empty and non-empty space has been replaced
by a more gradual one since quantum mechanics has shown that
radiation is not essentially different from matter, the question
whether the rest mass and the spin of some particles (photons)
disappears or not, being rather irrelevant in this respect. As it seems
rather doubtful whether any physical reality or even meaning-
fulness can be attributed to the concept of ‘‘absolutely empty™*
space, not even containing any radiation, it seems plausible that
the isotropy of “‘empty”’ space (containing no ordinary matter) may
be disturbed by letting non-isotropic radiation pass throughit, e.g.
a directed beam of strong y-rays (or even an ordinary lightray) 11).

11) DrS. A. WouTHUYSEN kindly suggested to me that a beam of neutrinos would
suit the purpose better, as it would make the distinction clearer between the
phenomenon to be described (the electromagnetic field) and the cause of the

anisotropy (the directed beam).



88

Although I am not aware of any attempt to settle this point
beyond doubt, it seems reasonable to expect that the equations,
say of electromagnetism, in empty space, would have to be
altered if this space were materially empty but anisotropic with
respect to radiation. In particular the “linking equations’ 12)

Par DD v >

B = u,H D = gE would have to be altered in such a way as not

>>

to depend anymbre on the abstract metrical geometry, but on the
anisotropic stress tensor of the radiation.

4. If this conjecture were found to be correct, it would show that
metrical geometry would enter the physics of “‘empty’” space
only through its stress tensor {which usually is isotropic with regard
to the surrounding material bodies). This would lead to a stafistical
interpretation of metrical geometry in terms of the stress tensor
of large assemblies of material particles (or photons), expressing
properties of the moments of second order of the distribution or
the assembly of some physical quantities attributable to the indivi-
dual particles. The possibility to restrict the order of the moments
to two because of the central limit theorem of probability theory
would thereby lead to the quadratic nature of the metric.

It must be added that the restriction to general aifine geometry
(natural invariants in differential manifolds) (which in the present
paper was narrowed down for purposes of simplicity to elementary
affine geometry) is by no means essential and can be released without
great difficulty. The introduction into physics of a space-time con-
tinuum, apart from the physical phenomena themselves, seems to
be completely superfluous, although it appears implicitly 1n quan-
tum physics also.

Apart from these, perhaps too abstract and too speculative,
:onsiderations the examples given in § 2, taken from elementary

hysics, may perhaps present some conceptual and educational
terest of their own.
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