MATHEMATISCH CENTRUM

2e BOERHAAVESTRAAT 49

AMSTERDAM

STATISTISCHE AFDELING

1. B

Leiding: Prof. Dr D. van Dantzig Chef van de Statistische Consultatie: Prof. Dr J. Hemelrijk

Internal report S 1956-20(6)

A remark on representation of dependent random variables as functions of independent ones

by

Prof.Dr D. van Dantzig

June 1956

This note contains a remark which, although an only slightly less general remark has been made by P. Lévy ¹⁾, seems not to be generally known. A few simple consequences concerning stochastic processes are also mentioned.

§ 1

As usual two random variables \underline{x} and $\underline{y}^{(2)}$ are said to be stochastically dependent if they have a common distribution. A particular case is the one where they are functionally dependent, e.g. where \underline{y} is a function of $\underline{x} : \underline{y} = \varphi(\underline{x})$, $\varphi(\underline{x})$ being a measurable function. A more general case is the one where the ordinary function $\varphi(\underline{x})$ of one variable is replaced by a random function, e.g. a function $\varphi(\underline{x}, \theta_{1}, \theta_{1}, \cdots)$ depending on one or more or even an infinity of parameters for which random variables $\underline{q}_{\ell}, \underline{q}_{2}, \cdots$ which are stochastically independent of \underline{x} are substituted :

$$y = \varphi(x, \underline{q}, \underline{q}_2, \cdots)$$

At first sight one might assume this still to be a special case. This, however, is not so, and, moreover, one parameter is sufficient.

In fact, let \underline{x} and \underline{y} be stochastically dependent and let us assume that the conditional distribution function $F(\underline{y}|\underline{x})$ of \underline{y} , given \underline{x} , exists spr O^{3} , and is measurable with respect to \underline{x} and \underline{y} separately as well as simultanuously. We take here the distribution function continuous from the left:

(1)
$$F(y|x) \stackrel{\text{def}}{=} P\{ \underline{y} < y|x \}$$
 4)

We introduce the discontinuous function

(2)
$$P(y|x) \stackrel{\text{def}}{=} P\{y=y|x\}$$

which vanishes everywhere, except on a denumerable set. Moreover, we put for $\rho \leq q \leq \ell$

(3)
$$\varphi(x,a) \stackrel{\text{def}}{=} \sup\{y \mid F(y|x) < a\}$$

- 1) P. Lévy, Théorie de l'addition des variables aléatoires, 1e ed., Paris, 1937, p. 71-73, 122-123.
- 2) Random variables are denoted by underlined symbols.
- 3) spr \propto (salva probabilitate \propto) means: except for a probability \propto Hence spr 0 is equivalent with: almost surely.
- 4) $d\underline{e}f$ denotes an equality defining the <u>left</u> hand member.

Then, with λ stochastically independent of x and y and H(0,1)

(i.e. homogeneously distributed on (0,/)); putting

(4) $\underline{d} \stackrel{\text{def}}{=} F(\underline{y}|\underline{x}) + \underline{\lambda} P(\underline{y}|\underline{x})$

we have

 $P[q \leq c|x] = c$

for every c with $o \leq c \leq i$ and almost every x , i.e. \underline{d} is stochastically independent of \underline{x} and

(5)
$$y = \varphi(\underline{x}, \underline{q})$$
 spro.

Hence we have:

I For any pair of stochastically dependent random variables $\underline{x}, \underline{y}$ a measurable function $\varphi(x,q)$ of two variables can be found such that (5) holds with $\underline{q} = H(q,r)$ and stochastically independent of \underline{x} .

We notice that

- a) the assumption that X is one-dimensional enters nowhere.
- b) the case of stochastic independence of \underline{x} and \underline{y} enters as the special case where φ does not depend on its first argument.
- c) the case of functional dependence of \underline{y} on \underline{x} enters as the special case, where φ does not depend on its second argument.
- d) the above proof is identical with the one (obtained by putting $\underline{x} = o, spr o$) for the known fact that any one-dimensional random variable \underline{y} is a function of a H(o, i) distributed random variable.

Using these facts we obtain:

II If $\underline{X}_{1}, \dots, \underline{X}_{n}$ have a common distribution function and are one-dimensional, then for every integer k ($i \le k \le n$) a measurable function φ_{k} of k variables exists, such that for all $k \in \{1, \dots, n\}$

(6) $\underline{X}_{k} = \varphi_{k} (\underline{y}_{1}, \dots, \underline{y}_{k})$ spr o

where $\underline{\forall}_i, \dots, \underline{\forall}_n$ are H(o, i) and (completely) stochastically independent.

ξ2

Let $\chi(t)$ be a stochastic process on a set T of elements t. If T is finite or enumerable the result II may be applied. In the latter case, taking for T the set of positive integers, we get for each $t \in T$ $\chi(t) = \varphi(t, u_1, \dots, u_k)$, the u_k being all H(o, i) and stochastically independent.

Assume now, for an arbitrary T, that a topology is defined in T, that T. $\stackrel{\text{def}}{=} \{t_1, t_2, \dots\}$ is everywhere dense in T, and that

the process is everywhere continuous spro. We again have for every $t_k \in T_o$ a representation of the form (6) for $\underline{X}(\underline{t}_k)$. For any $t \in T$ there is a subsequence $\underline{t}_{\nu_1}, \underline{t}_{\nu_2}, \cdots$ converging towards \underline{t} , and (7) $\underline{X}(\underline{t}) = \underline{X}(\underline{t}_{\nu_1}) + \sum_{\substack{n=1\\ n=1}}^{\infty} (\underline{X}(\underline{t}_{\nu_{n+1}}) - \underline{X}(\underline{t}_{\nu_n}))$ spro, so that for every $\underline{t} \in T$ a representation of the form

(8)
$$\underline{x}(t) = \varphi(t, \underline{u}, \underline{u}, \cdots)$$

exists, the function φ being measurable with respect to the \neg_n , but not necessarily so with respect to t. A similar result holds if the condition of absolute continuity is replaced by an other one, admitting a representation spro of $\chi(t)$ as a function of the $\chi(t_{\varphi})$.

In the most general case measure theoretic difficulties of the customary type arise. If, however, $\chi(t)$ for every $t \in T$ has a conditional probability distribution, given $\chi(t_i), \chi(t_i), \ldots$, I again can be applied, so that $\chi(t)$ for $t \in T_- T_0$ can be expressed by means of the $\mu(t_n) (= \mu_n)$ and new independent $H(t_0, t)$ variables $\mu(t)$. It seems therefore worthwhile to try to find out, under exactly which conditions a representation of the form

(9)
$$\underline{X}(\underline{t}) = \varphi(\underline{t}, \underline{u}(\underline{s}))$$

exists, where s runs through a set $S \subset T$ and u(s) are H(o, i) for all $s \in S$, and independent in the sense that for any function F(s) on S such that o < F(s) < i and F(s) = i except for at most at a countable number of elements $s_i, s_i, \cdots \in S$,

$$P\{o \leq \underline{u}(s) \leq F(s)\} = \prod_{i=1}^{\infty} F(s_i).$$