STICHTING MATHEMATISCH CENTRUM

2e BOERHAAVESTRAAT 49 AMSTERDAM

Publicatie

108

Complément à un problème de M. Karamata

D. van Dantzig.

COMPLÉMENT À UN PROBLÈME DE M. KARAMATA

D. VAN DANTZIG

Soient $\alpha = \{\alpha_1, \alpha_2, \ldots\}$, $\lambda = \{\lambda_1, \lambda_2, \ldots\}$, $\varrho = \{\varrho_1, \varrho_2, \ldots\}$ des suites de nombres positifs. Supposons la suite ϱ non-décroissante et $\varrho_1 > 1$.

Disons qu'une suite $x = \{x_1, x_2, \ldots\}$ de nombres réels appartient à la classe $D(\alpha)$ si (et seulement si) pour chaque entier $n \geq 1$

$$|x_{n+1}-x_n|\leq \alpha_n,$$

et à la classe $S(\lambda)$ si (et seulement si) pour chaque entier $n \geq 1$

$$|\sum_{k=1}^{n} \lambda_k x_k| \leq 1.$$

Soit d'ailleurs $L(\varrho)$ la classe de toutes les suites x, telles qu'il existe une suite croissante $\{n_1, n_2, \ldots\}$ d'entiers positifs ayant les deux propriétés

$$\lim_{k\to\infty} x_{n_k} = 0,$$

(4) $n_{k+1} \le \varrho_k n_k$ pour chaque entier $k \ge 1$.

Posons

(5)
$$b \stackrel{\text{def}}{=} \lim \sup \alpha_n, l \stackrel{\text{def}}{=} \lim \inf n\lambda_n, r \stackrel{\text{def}}{=} \lim \varrho_n.$$

On démontre facilement le

Théorème. Pour chaque suite x, satisfaisant à (1) et (2) avec b=0 et l>0 et chaque suite non-décroissante ϱ avec $r=\infty$ il existe une suite $\{n_k\}$ telle que (3) et (4) sont satisfaites.

Donc, si D est la réunion de toutes les $D(\alpha)$ avec b = 0, S la réunion de toutes les $S(\lambda)$ avec l > 0 et L' l'intersection de toutes les $L(\varrho)$ avec $r = \infty$, le théorème exprime la relation

$$(6) D \cap S \subset L'.$$

D'autre part nous avons démontré dans une note récente 1), en

¹) D. van Dantzig, Sur un problème de M. Karamata, Nieuw Archief voor Wiskunde (3) 3, 1955, 89—92.

nous restreignant au cas où $\alpha_n = \lambda_n = n^{-1}$ pour chaque n, et où tous les ϱ_n sont égaux, donc $= r \ (< \infty)$, qu'il existe des suites x appartenant à D(I) et à S(I) (en dénotant pour simplicité la suite de nombres $= n^{-1}$ par I) mais à aucune $L(\varrho)$ avec $\varrho_n = r < \infty$. Il s'ensuit qu'elle n'appartient à aucune $L(\varrho)$ avec $r < \infty$, tandis qu'il est trivial que pour $\alpha_n = \lambda_n = n^{-1}$ on a b = 0 et l > 0.

Donc, si L est la réunion de toutes les $L(\varrho)$ avec $r < \infty$, il existe des $x \in D(I) \cap S(I) \subset D \cap S$, n'appartenant pas à L, de même que

$$D \cap S \cap (L' - L) \neq 0.$$

Démonstration du théorème. Soit M < N et supposons d'abord que $x_M, x_{M+1}, \ldots, x_{N-1}$ ont tous la même signe. Alors

$$2 \geq |\Sigma_M^{N-1} \lambda_n x_n| = \sum_M^{N-1} \lambda_n |x_n| \geq \min_{M \leq n < N} |x_n| \cdot \min_{M \leq n} n \lambda_n \cdot \ln \frac{N}{M}.$$

Donc pour un $\varepsilon > 0$ arbitraire $(\varepsilon < l)$: si x_M, \ldots, x_{N-1} ont tous la même signe, on a

(6)
$$\min_{M \le n < N} |x_n| \le \frac{2}{(l - \varepsilon) \ln \frac{N}{M}},$$

dès que M est suffisamment grand.

D'autre part, si pour un $h(M \le h < N)$ $x_h x_{h+1} \le 0$, (1) entraîne

(7)
$$\min_{M \le n < N} |x_n| \le |x_h| \le \alpha_h.$$

Puisque (1) reste valide lorsqu'on remplace les α_n par une suite majorisante, p.e. par $\alpha'_n \stackrel{\text{def}}{=} \max_{\nu \geq n} \alpha_{\nu}$, ce qui n'infirme en rien la validité de b = 0, on peut supposer sans restriction que la suite $\{\alpha_1, \alpha_2, \ldots\}$ est monotone, donc $\alpha_h \leq \alpha_M$. On a alors en tout cas pour $M \geq M(\varepsilon)$:

(8)
$$\min_{M \le n < N} |x_n| \le \max \left\{ \alpha_M, \frac{2}{(l-\varepsilon) \left(\ln M^{-1} N\right)} \right\}.$$

Soit maintenant $N_1 \stackrel{\text{def}}{=} 1$, $N_{k+1} \stackrel{\text{def}}{=} [N_k \sqrt{\varrho_{k-1}}]$. On aura, à cause de $r = \infty$ pour chaque k suffisamment grand, $N_{k+1} > N_k$ et $\frac{N_{k+1}}{N_k} \ge \sqrt{\varrho_{k-1}} - \frac{1}{N_k}$. Donc $\lim N_k = \infty$ et $\lim \frac{N_{k+1}}{N_k} = \infty$, donc aussi $\lim \ln \frac{N_{k+1}}{N_k} = \infty$. Appliquons (8) avec $M = N_k$, $N = N_{k+1}$,

et soit n_k un n réalisant le minimum dans le membre gauche de (8).

Alors

$$|x_{n_k}| \leq \max\left\{\alpha_{N_k}, \frac{2}{(l-\varepsilon)\ln(N_{k+1}/N_k)}\right\},$$

de même que (3) est valide. (Remarquons qu'au lieu de lim inf $k\lambda_k > 0$ il aurait suffi de supposer $\sum_{N_k+1}^{N_{k+1}} \lambda_n \to \infty$ dés que $\frac{N_{k+1}}{N_k} \to \infty$, ou aussi lim lim inf $\sum_{N}^{mN} \lambda_k = \infty$).

 $m \rightarrow \infty$ $N \rightarrow \infty$ D'autre part

$$\frac{n_{k+1}}{n_k} \leq \frac{N_{k+2}}{N_k} \leq \sqrt{\varrho_{k-1}\varrho_k} \leq \varrho_k,$$

de sorte que (4) vaut aussi, ce qui complète la démonstration. (Received 7 March 1956).