
STICHTING 

2e BOERHAA VESTRAAT 49 
AMSTERDAM 

SD 35r 
•• u: nt •1:ua:r-:a ii s• I L t Y _ 

""f .. • . oe.L1a.v1.or o:f Ba.,;,res 'estir;'lB,tes • 

?, r::- ( 1 C Uc' 11 ) "?"'I - 7 .,;/,; "-t• , ,:' •·' ~·· tr r JI A•• 

• 

'"' . 19 
.,,,,':) 

. O..J 

."\ \ / ('.I 5 I"'~ 
') " ' f ... ,, 0· o· ,. ,., ..... ~ j-- . . • 
•, ~ ~ ' 

• 



Reprinted from TIIE ANNALS OF MATHEMATICAL STATISTICS 

Vol. 35, No. 2, June, 1964 
Printed in U.S. A. 

ASYMPTOTIC BEHAVIOR OF BAYES' ESTI 
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0. Summary. This paper extends some of the results obtained by Freedman 
[2]. In Section 1 a class of prior distributions on the space of all substochastic 
distributions on the positive integers is given, such that along almost all sample 
sequences the corresponding posterior distributions of the expectations of all 
bounded functions on the positive integers are asymptotically normal. Section 
2 shows that most of Freedman's results carry over to the case of distributions 
on the closed unit interval. 

1. The discrete case. Let (n, <l) be a measurable space and let { X.,., , n ~ 1} be 
a sequence of measurable functions on it. As parameter space we use the space 
L of all substochastic distributions }.. on the positive integers with the usual 
weak star topology and we put A { A e L I __ :._1 X ( i) 1} , the dense subset 
of all proper probability distributions. We assume that there corresponds to 
each Xe A a probability PA on Ct, under which {Xn, n > 1} is a sequence of in­
dependent identically distributed random variables with common distribution 
X. The symbol 1r will always denote an element of A and will serve as the ''true'' 
value of the unknown parameter X. 

Let £ denote the Borel a--field in L, and let µ be a probability on .£. The 
topological carrier C(µ,) of µ is defined to be the smallest compact set of µ­

measure 1. 
The measure µ will serve as prior distribution. The resulting posterior dis­

tribution given {X1 (w), · · · , Xn(w)} will be denoted by µn,w, and is defined by 

(1.1) JLn,OJ(B) B j=l 
n 

X(Xi(w)) µ (d>..) 
L i=l 

for B t £ and nonvanishing denominator. Clearly, if defined, µ,,,,,w is a prob­
ability on £ and µn,(JJ << µ. If 1r e C(µ), then the P 11'-probability is one that 
µn,w is defined and 1r << 1r:,w, whe1"e ,r:,w is the Bayes' estimate for 1r given 
{X1(w), · · · , Xn(w)}, defined by 

( 1.2) 7r~,Cl)(i) 
L 
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The following defi11itio11 is a ref 01"111ulation of Freed111an's Defj.nition 2. 
DEFINITION 1.1. A p,~obability µ on £ is tailfree if and only if the1·e r:x,ists a1i 

·integer N > 0 and a sequence { Ok , k > I} of independent r·andon1, var,iables r>n 
sor,ie p1·obability space independent of (L, £, µ), such that O < 0k < l Jo·," all k > I, 
and such that the conditional dist1·ibution under µ of { ( 1 - "'-- f =l X ( i) )-1A ( N + k), 
k > 1} given .__f=1 X(i) on the set {A I "--"f=1 X(i) < l} coincides a.s. [µ] with the 
dist1~ibution of { 0k !:i ( 1 - 0i), l~ > 1}. 

Freedman's Theorem 7 implies that u11der certain regularity c~onditio11s 011 
the tailf ree prior distribution µ the posterior distribution given { X 1 ( w), · · • , 
Xn(w)} of any finite linear combination of the form n½ ___,~1 ai(A( i) - 1r: ,w( i)) 
converges a.s. [P 1r] to the normal distribution with zero mean and variance 

,___,, f-1 a~1r ( i) - { __ f-1 ai1r ( i) } 2 as n > oo • The following theorem specifies a 
class of tailfree prior distributions for which the same conclusion holds for ir1-
finite linear combinations with bounded coefficients. 

THEOREM 1.1. Let 1r GA, and suppose that µ is a tailfree prior distribut-ion with 
N = 0 and such that for every k > 1, Ok has a beta distribution with parameters 
rk and Sk , where 

(i) 0 < rk < R < oo, (k > 1); 
(ii) 0~< Bk< rk+1 + Sk+1, (k > 1); 

(iii) ___,,;=l Tk/ ( 1·k + Bk) = 00 . 

Let { ai , i > l} be a sequence of real nunibers with llall = supilail < oo. Then the 
posterior distribution of n ½ ...._ r-1 ai ( X ( i) - 1r: . w ( i) ) given { X 1 ( w), · · · , ~¥ n ( w)} 
converges a.s. [P 1r] to the nor·mal distribution with zero mean and var·iance 

'......,/~1 a;1r( i) - { --~1 ai1r( i)} 2 as n ,, oo. 

Before proving the theorem we collect in the following lemma a few well­
known f·acts concerning beta distributions, which we will use \vithout further 
con1ment. 

LEMMA 1.1. Suppose that, for eve1··y n > l, Y n is a rando1ri variable with a beta 
distribution with parameters Pn and qn . Then 

EYn Var Yn 

If 

= l < co, 

then £ ( n ½ ( Y n - E Y n) ) > N ( 0, l'Y ( 1 - 'Y) ) as n > co . 

PROOF OF THEOREM 1.1. Since L:=1 E0i = oo by (iii), we have 

00 00 

E = 0, 
i==l i=l 

and hence ~1 (1 - 0i) = 0 a.s. Consequently, µ(A) 
C(µ) = L, Formula (1.1) defi.nesµ,n,wa.s. {Pw] foralln > 
a.s. [P 1r], it follows that 

( 1.3) 1 a.s. [P 1r ]. 

1. Since obviously 
1, and, since µn,w << µ, 
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lfor every n > I, wen, let { 0n,w(i), i > 1} be a sequence of independent 
random variables on a suitable probability space, such that, for every i > 1, 
On,w(i) has a beta distribution with paran1eters r·i + ni(w) and Si + mi(w), 
where 

n n 

( 1.4) ni = 1ni = _ l[xJ>iJ. 
J·=l 

Let 
i-1 

( 1.5) Pn,w(i) 0n,w(k) ), (n, i > I, wt:O). 

Then the posterior distribution of {A(i), i > l} given {X1(w), · · · , Xn(w)} 
coincides a.s. [P1r] with the distribution of {Pn,w(i), i > 1}. 

We now compute, for fixed n > 1 and we Q, the means, variances and co­
variances of the random variables {Pn,w(i), i > 1}, using (1.5), the independence 
of the random variables { 0n,w(i), i > 1}, and Len1ma 1.1. We have 

ri + ni(w) i-I sk + mk(w) 
1A1 + s1 + n k=l r·k+i + 8k+1 + 1nk( w) ' 

(1.6) (i > 1). 

Putting 

( 7) '' ( *) 1. 1f"n ,(I) i 
1·i + ni(w) i-I Sk + rrik(w) + 1 

1~1 + 81 + n + 1 k=l rk+l + Sk+l + mk(w) + 1' 

we obtain 

( ,; > 1), 
+ ( ) 1rn,w i 1fn ,w t , v 

1·i ni w 

F}pn,w( i) Pn ,Cl> ( J.) '' ( . ) ' ( . ) ( . . > 1 ) 1rn,w 1, 11"n,w J , J > 1., == , 

and hence by straightforward calculation, 

( 1. 8) Var Pn. w ( i) = tn. w ( i) + Un, w ( i) , 

( 1.9) 

where 

Covar(pn,w( i), Prt,w(j)) = V,i,w( i, j) + Wn,w( i, j), 

Uri ,w ( i) 
1~1 + s1 + n + 1 , ( •) ,, ( ') ( 1 = + + 1f"-,i,w i 1f"n,w 1., 

14 1 s1 n 
- Pn,w( i) ), 

Wn,w(i, j) }'1 + 81 + n + 1 // ( ·) I ( ') ( 1 _ 
1·1 s1 n 

(i > 1), 

(J' > i > 1 ), 

(i > 1), 

(i > 1), 

(j > i > 1), 

(J
0 > i > 1), 
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with 
i-1 

k=l 
(i > 1). 

Keeping i > 1 fixed and letting n tend to infinity, we have, by the strong la\v 
of large numbers. 

• 1r:,w(i) > 1r(i) a.s. lP,r] 

and, if 1r( i) = 0, 

since the san1e is true for ( r i + ni( w)) / ( r1 + s1 + n), while the product on the 
right side of (1.6) is bounded by 1 and converges to 1 a.s. [P1r] if 1r(i) > 0. A 
similar argument shows that, for i > 1, 1r:.w(i) > 1r(i) a.s. [P1r] and, if r(i) = 0, 
n½1r~ ,w( i) · ➔ 0 a.s. [P 1r] as n > oo .. This i1nplies that, for· every J. > i > 1, 

( 1.10) 

and 

(1.11) 

ntn , <,J ( i) > 1r ( i ) ( 1 - ,r ( i) ) a. s. [ P 1r] 

nvn,w ( i, j) >- - 1r( i) 1r(j) a.s. [Pr] 

as n ➔ oo. Moreover, for j > i > 1, 

(1.12) 

and 

(1.13) 

nun,w( i) > 0 a.s. [P 1r] 

nwn,w( i, j) > 0 a.s. [P 1r] 

as n > oo, since either -~i 1r(k) 0 so that 
n1r!,w(i)7r~,"'(j) tend to zero a.s. [P1r] while O < (1 
.__,;=i 1r(k) > 0, in which case 

0 < n(l - Pn,w(i)) 

Hence, by 

i-1 

k-=1 Sk + mk w + 1 rk+l + Sk+I + 1nk w 

(1.8) through (1.13), for all i > 1, 
• 

1, • t • 
'l, 

n,,,-: ,w( i)1r: ,w( i) and 
Pn,"'(i)) < 1, or 

2 

( 1.14) Var 1/2 n ak ,,,-( k) a.s. [P -ir] 
k=l 

asn ➔ oo. 

Since Ila/I < 00 , 

00 

Var 

(1.15) 
k=l 

co Z-1 

+2 
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for all n > 1, w En, where both infinite sums on the right converge absolutely. 
Comparing (1.7) with (1.6), we see that 1r:,c.,(i) is the Bayes' estimate for 
7r(i) given {X1(w), · · · , Xn(w)} resulting from the prior distribution we obtain 
f ron1 µ, on replacjng sk by sk + 1 ( k > 1). Hence 

< 1 
' 

(n > l,wcn). 

Hence, by (i) a11d (ii), for i > 1, 
00 00 

(1.16) 
n L ltn,u,(k) I < ( 1 + R/n) = 1r: ,Cd(k) 

k=l k=i+l 

• 
1, 00 

< (1 + R/n)(l -

as n > oo , and 
00 l-1 oo Z-1 

n L lvn,w(k, l)I < ,__, -- 1r!,w(k)1r:.w(l) 
(l.l7 ) l=i+l k=l l=i+l k=l 

00 00 

as n > oo. In view of ( 1.3), substitution of ak l(k > 1) in (1.15) gives 
co oo l-1 

0 a.s. [P1r] 

for all n > 1. Si11ce Un,"'(k) > 0 and Wn,Cd(k, l) > 0 for all n > I, l > k > 1, 
we 0, it follows from (1.10), (1.11), (1.16) and (1.17) that 

( 1.18) 

and 

(1.19) 

00 

n __ Un,w(k) > 0 a.s. [P1r] 
k=l 

00 l-1 

n __ .- Wn,w(k, l) .. > 0 a.s. [Pr] 

as n > oo. Hence (1.15) through (1.19) imply 
00 

limi➔«> limn➔OO Var n ½ ;.... ak Pn ,c., ( k) - 0 a.s. [Pr]. 
k=i+l 

Thus, by an obvious modification of Slutsky's theorem (cf. Cramer [1], Section 
20.6), our assertion will follow if we can show that, for all i > 1, 

• 
i 

• 
'l, • 

'l, 2 

- 1r: ,(A)(k)) 

a.s. [P -rr] as n ➔ co. In fact it suffices to show this for all i > 1 such that 
00 

_... 1r(k) > 0, 
k=i 
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since the preceding computations imply that 

- 1r:,w(k)) = 0 a.s. [P 1r] 

if ~;=i 1r(k) = 0. For i = 1, (1.20) follows from Lemma 1.1. Now suppose 
that ( 1.20) holds for some i such that -~i+1 1r ( k) > 0. Then, by ( 1.5), 

i+l 

n½ ~ ak(Pn,w(k) - 1r: ,w( k)) - E0n ,w ( i + 1) 
k=l 

• • 
1, i 

which, by the induction hypothesis, has the same limiting distribution, if any, as 
00 

- Eon ,W ( i + I ) ) 1r(k) 

• 

½ i ai+l tr ( i + 1 ) + n _ ak - --00---­
- 1r: ,w(k) ). 

k=l 
7r ( j) 

The two tern1s in this last expression are independent and, by Lemma 1.1 and 
the induction hypothesis, a.s. [P 11"] asymptotically normal. Hence the sum of 
these terms is a.s. [P 1r] asymptotically normal, and it is a matter of straightfor­
ward calculation to show that the limiting variance is given by ( 1.20) with i 
replaced by i + 1. Thus the proof is complete. 

It is of some interest to note that Condition (iii), which was used to insure 
that µ,(A) = 1, is in fact equivalent to this. 

One might expect the conclusion of Theorem 1.1 to hold for a much wider 
class of prior distributions than the one described in the theorem. However, the 
method of the proof given here breaks down even in the comparatively simple 
case where the 0i have a common distribution with a positive twice continuously 
differentiable density on [O, 1]. 

2. The continuous case. We now turn to the case where the observable 
random variables take their values in the closed unit interval I. Thus {Xn, 
n > 1} is a sequence of measurable functions on (fl, ct) to I, A is the space of 
all probabilities on I, and we assume that there corresponds to each Xe A a 
probability P>.. on a, under which {Xn, n > 1} is a sequence of independent 
identically distributed random variables with common distribution A. As usual, 
we use the weak star topology in A, which in this case coincides with the topology 
of complete convergence. Since A is compact in this topology, we will have no 
need to consider any strictly substochastic measures on I. The Borel u-field in 
A will be denoted by £. 

LEMMA 2 .. 1. Let D be any countable dense subset of I. Then the sets 

N(X, d, E) {X' e A I X[O, d) - E < x'[O, d) < x'[O, d] < X[O, d] + e} 
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with X c. 1\., d £ D and e > 0, form a subbase for the topology in A, and cC coincides 
with the a-field cCD induced in A by the functions X > A[O, d] ( d e D). 

PROOF. The first assertion follows fron1 the definition of complete convergence. 
To prove the second assertion we 11ote that N(X, d, e) c £D for all A e A, de D, 
E > 0, so that £n :J £ (cf. Halmos [3], Theorem 51.C). On the other hand, 
the functions A > X[O, d] (de D) are easily seen to be upper semicontinuous 
and r1e11ce £~n1easurable. Thus £ ::J oCn . 

Let µ be a probability on £ and let C (µ) be its topological carrier, defined 
as befo1"e. Again, µ, will serve as prior distribution, but here the definition 
of the resulting posterior distribution given {X1 (w), · · · Xn(w)} is much more 
delicate than in the discrete case. We denote the product measurable space 
(A X n, £ X Ct) by (fi, ii), and we define a probability P,,, on it by 

(2.1) (Ac a, Be£). 
B 

We sl1all assu1ne that a coincides with the a-field induced in fl by {Xn, n > l}. 
Tl1en the 1"ight side of (2.1) is defined since the integrand is £-measurable. 

For any w = (X, w) c fi and any function~ on n, we write 
-Xc:; = A, ~(w) ~(w), 

and, for any class e of subsets of A or n, 
~ e= { C X n I C £ e} or { A. x C I C c e} 

respectively. 
DEFINITION 2.1. A function µn,w(B) on en X £) to I is a posterior distribution, 

given { X 1 ( w) , · · · , X n ( w) } , if and only 1f 
(i) for every w C n, the function µn,w(.): B ~) µ,,,.,w(B) on .,e is a probability, 
(ii) for· every B c £, the function µn,• (B): W > µ,n,w(B) on n is { X1 , • • · , Xn}­

measu1·able, 
(iii) for eve1~y Be£, 

LEMMA 2.2. There always exists a posterior distribution given { X1 ( w), • • • , 
Xn(w)}. 

PROOF. By Definition 2.1 the existence of such a posterior dist1·ibution is 
equivale11t to the existence of a mixed conditional distribution relative to Pp. 
of X given { X1 , · · · , Xn}, which is guaranteed, since by Lem1na 2.1 the o--field 
£ is induced by a countable family of random variables on the probability space 
(!i, a, Pµ) (cf. Loeve [4], 27.2.A). 

Altl1ough the preceding lemn1a asserts the existence, it by no means asserts 
unique11ess of posterior distributions. Usually there ,vill be many different poste­
rior distributions, and, for each n > I the statistician will have to select a par­
ticular one. 

We shall use the following 11otation. an denotes the CT-field induced in n by 
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{ X 1 , • • • , X n}. __,,n is the set of all per1nutations of the integers { 1, • · · , n}, 
and Sn is the a-field of all symmetric sets in Ctn , i.e., a set A C n is in <ln if 
and only if A = [ ( X 1 , • • · , X n) e S] for some Borel set S in the closed ri-dir11en­
sional unit cube, and A E Sn if and only if in addition aA = A for all er E __,n , 

where o-[(X1, · · · , Xn) CS] = [(XO'(l), ... , Xa(n)) ES]. 
LEMMA 2.3. There always exists a posterior distribution µn,w given {X1(w), · · · , 

Xn(w)} which is invariant under all permutations of {X1, · · · , Xn}. 
PROOF. Let B e £, and let g be a bounded Borel function on the n-din1ensional 

closed unit cube. Then we have, indicating expectations relative to Pp. by Eµ., 
and setting B = B X n, 

E µ. ( / iJg ( X 1 , · · · , X n ) ) = E µ. { f BEµ. ( g ( X l , · · · , X n) I £ ) } 

(1/n!)Eµ.(l iJ __ g(Xa(l) , · · · , Xo-(n))) 
ue ~n 

,_. ~ 
__, g(Xu(l) , · · · , XO"rn)) 

Hence 

for all B c £. Consequently, the argument used in the proof of Lemma 2.2 shows 
the existence of a posterior distribution µn,w given {X1(w), · · · , Xn(w)} such 
that, for every Be£, the function µn,-(B) :w > µn,w(B) is Sn-measurable. 

Next we single out a class of prior distributions which have a special structure, 
similar to that of the tailf ree prior distributions in the discrete case. First a few 
auxiliary definitions and conventions. 

DEFINITION 2.2. A tree of partitions is a sequence { T 11 , s > O} of finite partitions 
of I in nonempty disjoint intervals, such that 

(i) To = { /}, 
(ii) Ts+1 is a refine1nent of Ts(s > O), 
(iii) maxJeTs IJI > 0 as s ► oo, where IJ[ denotes the length of the interval J. 
If { Ts , s > O} is a tree of partitions, we define Ts,J' = { J c Ts I J C J'} 

(s > 1, J' e Ts-1), and we denote the a--field induced in A. by the functions 
A . ) ~ ( J) ( J E T 8)' by ~8 ( s > 1). 

DEFINITION 2.3. A probability µ on £ is tailfree if and only if there exists a tree 
of partitions {Ta, s > O} and a family of nonnegative random variables { 0s,J, s > I, 
Jc Ts} on some probability space independent of (A, £, µ), such that 

(i) - JeTaJ' fls,J = 1, (s > 1, J' C Ts-1), 
I 

(ii) thefamilies {fls,J, J e Ts}, (s > 1) are independent, 
(iii) for every s > 1, the distribution of { A( J), J e Ts} under µ, coincides with 

the distribution of {p8,J' J e T8}' where Ps,J :=1 8r,Jr ' with Jr C Tr ' Jr :J J 
for 1 < r < s. 
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Just as i11 the discrete case (cf. Freedman [2], Section 6), it is possible to give 
an alter11ative definition of a description nature, using the notation 

n 

,__, l[XjeJ] (w) 
i=1 

for J c I, we 0, n > I. 

DEFINITION 2.4. A probabilityµ, on £ is tailfree if and only if there exists a tree 
of partitions {Ta, s > O} and, for every n > l, a posterior distribution µn,w(B) 
given { X 1 ( w) , · · · , X n ( w)} , such that, for every s > 1, B e ~s , µn. w ( B) depends 
on w t n only through { n.1 , J e Ts}. 

THEOREM 2.1. Definitions 2.3 and 2.4 are equivalent. 
PROOF. Let µ be tailfree according to Definition 2.3. For s > 1, we write 

x= (XJ, J e TB) XJ > 0, J e Ts ; ;._ X; = 1 ' 
JeT 8 

i.e., Cs is the simplex in which the random vector {Ps,J, J e Ts} takes its values. 
Taking C to be a Borel set in Ca, we have then, for every nonnegative integer 1· 

and alls > I, 

(2.2) 
Pµ.( (~(J), J e Ts) e C I fiJ 1 ' J' e Ts+r) 

f>((X.(J), J e T11) e CI fiJ, J e Ts) a.s. [Pµ] 

and hence, since Sn is the er-field induced in O by { nJ , J e U ==.1Ta}, by letting 
r > oo, we obtain 

But this implies thatµ is tailfree according to Definition 2.4, by virtue of Lemma 
2.3 and the argument used in the proof of Lemma 2.2. 

Now letµ, be tailfree according to Definition 2.4. Then (2.3) and hence also 
( 2.2) holds for all s > 1, 1· > 0 and all Borel sets C in C 8 • Thus, taking r = 1 
and putting c' = [(A(J), JC. Ts) e C], we have for all ye Ce+l' z E Ca such 
that ZJ = :..- J 1 eTa+1,J YJ" , ( J e Ta), 

nyJ, , J' c. Ts+1l.Pµ[nJ = nzJ' J C Ta] 

P"[x e C; nJ = nzJ, J e Ts]Pµ.[nJ, = nyJ, , J' e Ts+1l-

Hence 

C , J' T 
£ 8+1 

A ( J' ) nyJ 
1 µ ( dA) A ( J) nzJ µ ( dA) 

A J'tT 8 +1 C' JeT 8 A JeT 8 

provided the denominator on the right side does not vanish. If it does vanish, 
then 

0 a.s. [µ]. 

Therefore the conditional expectation relative to µ, of · J'eTa+i >..( J') nyJ, given 
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J8 is a.s. [µ] proportional to JeT, X ( J) nzJ. But this is exactly Definition 2.3, 
restated in terms of moments. 

Ifµ, is a tailfree prior distribution, then (2.3) and Lemma 2.3 assert that there 
exists a posterio1· distribution µn,"' satisfying 

( 2. 4 ) µrt . w ( B ) 
B Jc TB A JeT 8 

for s > I, B e J8, provided the denominator does not vanish. In the discrete 
case, for any 1r e A, ( 1.1) actually defined µn,w(B) for all B e £ a.s. [Pr], pro­
vided 1r e C(µ). Here the requirement that 1r e C(µ) is not sufficient to insure 
that (2.4) determines µn,,.,, on £ a.s. [Pr]. If, for any X e A, s > 1, A.8 denotes the 
probability on Ts defined by As( J) = X( J) ( J e Ts), and if ms is the distribu­
tion of "-sunderµ, so that ms(C) = µ(C') for any Borel set C in Cs, then, for 
any s > 1, the right side of (2.4) is well defined a.s. [P,r] if 1r8 t C(ms), the 
topological carrier of ms in Cs . Hence, if 7ra e C(ms) for all s > 1, then (2.4) 
defines µn,w(B) a.s. [Pr] for Be u;=l 3s, and hence it determines µn,c,,(B) a.s. 
lP,r] for Be £. From now on, we shall always assume that this is the case, and 
we shall refer to µn,w determined by (2.4) as ''the'' posterior distribution given 
{X1(w), · · · , Xn(w)}. 

In order to give a definition of consistency similar to Freedman's definition 
for the discrete case, we introduce the weak star topology in the space of all 
probability n1.easures on £, so that a sequence {µn, n > 1} of such measures 
converges to a probability µo on £ a11d only if 

f(X)µn(dX) > j(X)µo(dX) 
A A 

as n > oo, simultaneously for all continuous functions f on A. 
DEFINITION 2.5. Ifµ is a probability on £ and 1r e A, the pair (1r, µ.) is said to 

be consistent if and only if, as n > oo, a.s. [P 1r], µn,w · ➔ o,,,., the probability on .£ 
which has all its mass concentrated at 7r. 

THEOREM 2.2. Let 7r e A and let µ. be a tailfree prior distribution, such that 1r11 e 
C(me) for alls > 1. Then (1r, µ) is consistent. 

PROOF. We have to show that as n > co a.s. [P1r], 

(2.5) f(J\) ~.w (dX) > f( 1r), 
A 

simultaneously for all continuous functions f on A. For any i > 0, the function 
• 

</,,;,(X) = r xiJ\(dx) is continuous on A by the very definition of the topology 
in A. Since the family of functions {<Pi, i > O} separates the points of A and con­
tains the constant function <t>o = 1, the algebra generated by these functions is 
dense in the sense of the uniform norm in the space of all continuous functions 
on A. Thus it suffices to prove that a.s. [P 1r] 

K K 

(2.6) 

as n · > oo , for all finite K and all nonnegative integers i1 , · • · , ix . 
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For any fixed K < co, i 1 , • • • , iK > 0, and any e > 0, there exists an so > 0, 
such that 

K K 

(2.7) 
k=l JeT 8 

uniformly for s > s0 , X c A, XJ c: J ( J e Te). For any s > 1, µn,w restricted 
to 38 rnay be regarded as the posterior distribution of As given {nJ(w), J e Ts} 
resulting from the prior distribution ms on the Borel sets of Cs . Thus, applying 
Freedman's results for the finite discrete case (cf. [2], Theorem 1), we obtain, 
since 7rs e C(ma), that a.s. [P1r] 

K 

(2.8) x;kx(J) 
• 

µn ,oo ( dX) > ;......, xjk1r ( J) 
k=l JeT 8 

as n > CL). Together with (2.7) this gives: for every K < co and all i1 , 
iK > 0, and for any e > 0 

K K 

(2.9) c/>ik ( 7r) < 2e a.s. [P 1r ], 

k=l 

• • • 

' 

and hence (2.6) follows if we let e l O along a countable sequence, si11ce the 
set of K-tuples of nonnegative integers with K finite is countable. 

The crucial point of the preceding proof is of course the fact that we can apply 
Freedman's results for the finite discrete case to µn,CIJ restricted to 08 • This actu­
ally makes it possible to carry over all of Freedman's results. Thus, under the 
assumptions of Theorem 2.2 and suitable regularity conditions on ms , the poste­
rior distribution of {n½(X(J) - n-1nJ(w)), J e T 8 } is a.s. [P1r] asymptotically 
normal, and 

n½(1r:,w(J) 

for all Jc Ts as n > oo, ,vhere 

- nJ(w)/n) > 0 a.s. [P71"] 

1r: ,W ( J) A(J) µn,w(dX), 
A 

is the usual Bayes' estimate for 1r( J). 
In view of the r·esults of Section 1 one might conjecture that also the posterior 

distribution of 1g(x)X(dx) is a.s. [P71"] asymptotically normal if g is a11y con­
tinuous function on I and if µ belongs to some special class of tailfree prior dis­
tributions. This however remains an open question. 

The author wishes to express his gratitude to Professor D. Blackwell and 
Professor D. A. Freedman for their interest and many helpful and challenging 
discussions. 
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