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ASYMPTOTIC BEHAVIOR OF BAYES’ ESTIMATES!
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0. Summary. This paper extends some of the results obtained by Freedman
[2]. In Section 1 a class of prior distributions on the space of all substochastic
distributions on the positive integers is given, such that along almost all sample
sequences the corresponding posterior distributions of the expectations of all
bounded functions on the positive integers are asymptotically normal. Section
2 shows that most of Freedman’s results carry over to the case of distributions
on the closed unit interval.

1. The discrete case. Let (2, @) be a measurable space and let { X,.,n = 1} be
a, sequence of measurable functions on 1t. As parameter space we use the space
L of all substochastic distributions A on the positive integers with the usual
weak star topology and we put A = {AeL| D _71A(7{) = 1}, the dense subset
of all proper probability distributions. We assume that there corresponds to
each X ¢ A a probability Py on @&, under which {X,,n = 1} is a sequence of in-
dependent identically distributed random wvariables with common distribution
A. The symbol = will always denote an element of A and will serve as the “true”
value of the unknown parameter A.

Let £ denote the Borel ¢-field in L, and let x be a probability on £. The
topological carrier C(u) of u is defined to be the smallest compact set of u-
measure 1.

The measure u will serve as prior distribution. The resulting posterior dis-
tribution given { X;(w), -+, Xn(w)} will be denoted by ua,., and is defined by

(1.1) tno(B) = JB*{QK(XJ'(“?)};L (mdx)

[ AT M) fu (@)

for B ¢ £ and nonvanishing denominator. Clearly, if defined, w.,. 18 a prob-
ability on £ and ppo < p. If meC(u), then the P.-probability is one that

U, o 18 defined and 7 < T, Where e o 1S the Bayes’ estimate for = given
(X1(w), -+, Xa(w)}, defined by

(1.2) rho(i) = f (1) o (AN, (i = 1).
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The following definition is a reformulation of Freedman’s Definition 2.

DEerFINITION 1.1. A probability u on £ s tailfree if and only if there cxists an
integer N = 0 and a sequence {6, , k = 1} of independent random variables on
some probability space independent of (L, £, u), such thatQ < 6, < 1 forallk = 1,
and such that the conditional distribution under u of {(1 — D i1 AN2)) 'NMN + k),
k= 1} given D i, )\(z) on the set {N| D i1 AN(2) < 1} coincides a.s. [u] with the
distribution of {6,] izt (1 — 6:), k = 1}.

Freedman’s Theorem 7 implies that under certain regularity conditions on
the tailfree prior distribution u the posterior distribution given {X 1(w)
X,.(w)} of any finite linear combination of the form n*>» X, a;(A (1) — ., &,(z))
con.verges a.s. [P,] to the normal distribution with zero mean and variance

Maiaim(z) — (D i am()} as n — . The following theorem specifies a
class of tailfree prior distributions for which the same conclusion holds for in-
finite linear combinations with bounded coefficients.

THEOREM 1.1. Let w € A, and suppose that p s a tarlfree prior distribution with
N = 0 and such that for every k = 1, 6, has a beta distribution with parameters
r. and S , where

(1) 0O <rm=R< o, (k=z1);
(1) 0 < 8 £ 7o + 8k+1, (k= 1);

(11) ka e/ (Te + Sz) =
Let {a; ,© = 1} be a sequence of ’)‘“BCLZ numbers wzth |la|| = sup:ja| < . T}wn the
postertor dzstmbutzon of n*D raai(ZN3z) — mh o(2)) gwen { Xi(w), - Xplw)l
ccmverges a.8. [Pyl to the mormal distribution with zero mean a.nd Variance
D raaim(d) — {D riam(i)Pasn — «.

Before proving the theorem we collect in the following lemma a few well-
known tfacts concerning beta distributions, which we will use without further
comment.

LemMmA 1.1. Suppose that, for every n = 1, Y, 28 a random variable with a beta
distribution with parameters p, and q, . Then

EY. = pa/(pn + @n), Var Y, = puqn/(pn + Qn)g(pn + g + 1).

A TIA

Lf
limn-—a—w pﬂ/(pn + Qn) =Y a‘nd 1imﬂ-+w n/(pﬂ + Qn) — l < Co:'

then £(n*(Y, — EY,)) — N(O, ly(1 — v)) asn — .
ProoFr or TaroreM 1.1. Since D 7, Ef; = « by (1), we have

EI] (1 — ;) = H(l—-Ee)

and hence []7—i (1 — 6;) = 0 a.s. Consequently, u(A) = 1. Since obviously
C(u) = L, Formula (1.1) defines u,,, &.8. [P,] foralln = 1, and, since u, ., << u
a.s. [P.], 1t follows that

(1.3) uno(A) =1 a.s. [Pl
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Forevery n = 1, weQ, let {0, .(7), © = 1} be a sequence of independent
random variables on a suitable probability space, such that, for every + = 1,

0...(1) has a beta distribution with parameters r; + ni(w) and s; + m.(w),
where

(1.4) Z I[X =1] , my; = Z [1x ;>4 -
7=1 J =1
Let
1 —1
(15) pn,w(i) — Bn,w(i)n (1 — Qn,m(}ﬁ)), (n,'L = 1, C.OEQ).
k=1

Then the posterior distribution of {A(z), 7 = 1} given {Xi(w), -, Xau(w)]
coincides a.s. [P,] with the distribution of {p, (%), 7 = 1}.
We now compute, for fixed n = 1 and w ¢ @, the means, variances and co-

variances of the random variables {p,...(7), 7 = 1}, using (1.5), the independence
of the random wvariables {8, .(7), 7 = 1}, and Lemma 1.1. We have

. ! : ;T m(w) s Sk + ’mk(w) :

1.6 (1) = T e > 1).
( ) " (Z) "M+ S1iT+ N !;Il 71c+1 + Sk+1 T ’mk.(w) (Z o )
Putting

i+ niw) 1 s+ mu(e) + 1 o
. n W — = 1 )
(17) W (Z) ?1+81+’R+1kI--Il7'k+1+8k+1+mk(w)+1 (Z )
we obtain
EPn,w(i)g L _{::_Zf(?z)(w_;_ L :z,w(7’>7r (7') ('7/ = 1):
Epn,w(i)pn,w(j) — anw(z)wn,m(]); (.7 > 1 ; 1);
and hence by straightforward calculation,
(18) Var pn,w(i) — tn,w(i) -+ un,w(i), (’Z = 1),
(1.9) Covar(p,«(?), on.w(])) = Vn,wl2, J) —+ Wn,o(?, 7)), (3 >121),
where
. rno— 7+ s+ n — ni(w) - o
oo MTn, & —_— 1 )
tn,w(2) T s ) T @) (2) 7m0 (2), © )
uno()) = PR D0l @D = (D), (i = 1),
LN """_1_* >
zgn,m(z,j) — :}‘;1 + 51 + nwn m(z)ﬂ'n m(]) (.7 > 1 1)
Wi, ) = LTS TR Lo e (DA = pan(®), (G >5Z 1),

?1+81+'?’b
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with
dne. Pe+1 T Sk Sk
(7)) = 1 — Tkt 1 R ) > 1),
b (Z) ;-—--Il ( («S'k, -+ mk(w) -+ 1)(?"k+1 + Sgp1 + mk(w)) ’ (Z o 1)

Keeping = = 1 fixed and letting » tend to infinity, we have, by the strong law
of large numbers.

Tn.o(t) — 7(3) as. |P,]
and, if #(z) = O,
nir, o(i) -0 a.s. [P,]

since the same 1s true for (r; + ni(w))/(r1 + s1 + n), while the product on the
right side of (1.6) 1s bounded by 1 and converges to 1 a.s. [P,] if #(z) > 0. A
similar argument shows that, for7 = 1, m, ,(¢) — 7(2) a.s. [P,] and, if w(z) = O,

b

n%qrf;,w(i) — 0 a.s. [P,] as n — oo. This implies that, for every j > 7 = 1,
(1.10) Nln,w(2) = 7(2)(1 — (7)) a.s. [P,]

and

(1.11) MWn,o(2,J) = —w(2)m(j) as. [P

as n — o, Moreover, forj > 7 = 1,

(1.12) NUn,o(2) — 0 a.s. [P,]

and

(1.13) NWn,o(2,7) — 0 as. [Pg]

as m — oo, since either ) r; w(k) = 0 so that nﬂ-;,w(i)wz,m(i) and

Nn,w(1)Tn,o(j) tend to zero a.s. [P,] while 0 < (1 — p,.(7)) < 1, or
Z??mi w(k) > 0, in which case

7—1

Z n(?“k+1 + k1 — Sk) -
=1 (Sx + Mi(w) + 1)(Tet1 + Spr1 + Mi(w))

Hence, by (1.8) through (1.13), for all z = 1,

(1.14) Var (nm ; a pn,w(k)> — Z ar m(k) — {Z a 7r(/f<:)}2 a.s. [P,]

k==1 k=1

1A

— 0 as. [P,

as n — oo,
Since |ja||] < oo,

Var (i o pn,m)) = 3 (b o) + )

k=1

(1.15)

o0 [—1

+ 2 Z Z aj; al(vﬂ,m(ka Z) + wn.ﬁw(]i:) Z>)

=2 =1
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for all n = 1, w £ Q, where both infinite sums on the right converge absolutely.
Comparing (1.7) with (1.6), we see that =, (z) is the Bayes’ estimate for

m(2) given { X (w), - -, X,.(w)} resulting from the prior distribution we obtain
from p on replacing sy by s + 1(k = 1). Hence

> mn o(k) = 1, (n =1, we Q).

k=1

Hence, by (1) and (ii), forz = 1,

23l o) £ (14 B/n) 3 ahuk)

(1.16) — )
< (14 R/n)(1 — ?_; T w(k)) __\,-kzlw(k) a.s. [P.]
- O -
as n — o, and
o0 [I—1 o0 I—1 . ,
no2s 2 ek, D] = 20 20w w(k) ()
l=1t4+1 k=1 =141 k=l

(1.17) " 0
< Y mno() = > x(k) as. [P.]

l=141 k==1-41
as n — o, In view of (1.3), substitution of ax = 1(k = 1) in (1.15) gives

S (too(k) + tno(k)) + 25 3 (0 olh, 1) + wa (k. 1)) = 0 a5 [P]

for all n = 1. Since u,,.(k) = 0 and w,,(k,1) 2 O0foralln = 1,1 >k = 1,
w € Q, 1t follows from (1.10), (1.11), (1.16) and (1.17) that

(1.18) 'RZ Un,w(k) =0 as. [Py]
k=1
and
o [—1
(1.19) n; k}: Wn o(k, 1) — 0 a.s. [P,]
=2 k==l

as n — oo. Hence (1.15) through (1.19) imply

Q0

IIm;se M, Var (n* Z 1, pn,m(k)> =0 a.s. [P,

k=11

Thus, by an obvious modification of Slutsky’s theorem (cf. Cramér [1], Section
20.6), our assertion will follow if we can show that, for all 2 = 1,

(1.20) & (nii ai(pn o(k) — W;,w(k))) — N (O, i ar, (k) “{i amr(k)}z)

k=1 k=1 k=1

a.s. [P.] as n — oo. In fact it suffices to show this for all 2 = 1 such that

f\:' (k) > 0,
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since the preceding computations imply that

lim,.« Var (fn%Z ar(on (k) — w;,m(k))> =0 as. [P,

k=1

if > pim(k) = 0. For 7 = 1, (1.20) follows from Lemma 1.1. Now suppose
that (1.20) holds for some ¢ such that > _r.i1 (k) > 0. Then, by (1.5),

11

n%z ajg(pn,m(k> — T:z,w(k)) = Q41 n%(an,w(?’ -+ 1) — Ean,m(i + 1))

k=1

. (1 — i Pn,m(k)) "I"'nlé i (ak — Qg1 Ean,m(i + 1))(Pn,w(k) T T;,m(k))a

which, by the induction hypothesis, has the same limiting distribution, if any, as

a'i—;-l n%(an,m(i "l_ 1) o Eﬁn,w(z + 1)) i T(l{))

k=141

L ; ap— Gt DN k) — xho(B)).
" 2 ()

j=1-+1

The two terms in this last expression are independent and, by Lemma 1.1 and
the induction hypothesis, a.s. [P.] asymptotically normal. Hence the sum of
these terms 1s a.s. [P,] asymptotically normal, and i1t 1s a matter of straightior-
ward calculation to show that the limiting variance 1s given by (1.20) with
replaced by ¢z 4+ 1. Thus the proot 1s complete.

It is of some interest to note that Condition (i111), which was used to insure
that u(A) = 1, is in fact equivalent to this.

One might expect the conclusion of Theorem 1.1 to hold for a much wider
class of prior distributions than the one described in the theorem. However, the
method of the proof given here breaks down even in the comparatively simple
case where the 6; have a common distribution with a positive twice continuously

differentiable density on [0, 1].

2. The continuous case. We now turn to the case where the observable
random variables take their values in the closed unit interval 7. Thus {X,,
n = 1} is a sequence of measurable functions on (2, @) to I, A 1s the space of
all probabilities on I, and we assume that there corresponds to each A ¢ A a
probability P, on @, under which {X,, n = 1} is a sequence of independent
identically distributed random variables with common distribution A\. As usual,
we use the weak star topology in A, which in this case coincides with the topology
of complete convergence. Since A is compact in this topology, we will have no
need to consider any strictly substochastic measures on /. The Borel o-field in
A will be denoted by £.

LEMMmA 2.1. Let D be any countable dense subset of I. Then the sets

N\ d,e) ={NeA|N0,d) —e=\[0,d) < \[0,d] < A0, d] + ¢
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with A € A, d e D and € > 0, form a subbase for the topology in A, and £ coincides
with the o-field £p induced in A by the functions A — MO, d] (d e D).

Proor. The first assertion follows from the definition of complete convergence.
To prove the second assertion we note that N(\, d, €) ¢ £p for all \ ¢ A, d e D,
e > 0, so that £, D £ (cef. Halmos [3], Theorem 51.C). On the other hand,
the functions X — A0, d] (d ¢ D) are easily seen to be upper semicontinuous
and hence £-measurable. Thus £ D £, .

Let u be a probability on £ and let C(u) be its topological carrier, defined
as betore. Again, u will serve as prior distribution, but here the definition
of the resulting posterior distribution given {X;(w), -+ X.(w)} is much more

delicate than in the discrste case. We denote the product measurable space
(A X Q, & X @) by (2 @), and we define a probability P, on it by

(2.1) PJAB X A) = f Py(A)u(d)), (Ae@ Bee)

We shall assume that @ coincides with the o-field induced in Q by { X, n = 1}.
‘Then the right side of (2.1) is defined since the integrand is £-measurable.
Forany @ = (), ) ¢ @ and any function £ on Q, we write

iﬁ = A, §(&3) — g(“’):
and, for any class € of subsets of A or Q,

C={CXQ|Cee} or {AXC|Ce¢e)

respectively.

DEFINITION 2.1. A function p,,.(B) on (@ X £) to I is a posterior distribution
gwen { X1(w), -+, Xa(w)}, if and only <f

(1) for every w & Q, the function pn o(-): B — p,o(B) on £ is a probability,

(11) for every B & £, the function pn,.(B): @ — pn,o(B) on Qis {X;, - -, Xn}-
measurable,

(111) for every B ¢ £,

pn,(B) = P(B X Q|X;,---,X,) as. [Pl

LemMmA 2.2. There always exists a posterior distribution giwen {Xi(w), - --
Xa(w)i.

Proor. By Definition 2.1 the existence of such a posterior distribution is
equivalent to the existence of a mixed conditional distribution relative to P,
of X given {X,, ---, X,}, which is guaranteed, since by Lemma 2.1 the o-field
£ is induced by a countable family of random variables on the probability space
(Q, @, P,) (cf. Logve [4], 27.2.A).

Although the preceding lemma asserts the existence, it by no means asserts
uniqueness of posterior distributions. Usually there will be many different poste-
rior distributions, and, for each n = 1 the statistician will have to select a par-
ticular one.

We shall use the following notation. @, denotes the o-field induced in Q by

]
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(X,, -, Xa}. 2_n is the set of all permutations of the integers {1, --- , n},
and §, is the o-field of all symmetric sets in @, , 1.e., a set A C Q 1s In @, if
and only if A = [(X:1, -+, X») € S] for some Borel set S in the closed n-dimen-
sional unit cube, and A ¢ 8, if and only if in addition ¢4 = A4 forall s ¢ D, ,
where G[(Xl y T T Xn) & S] — [(XO'(I) y T T Xﬁr(’n)) & S]
LeMMA 2.3. There always exists a posterior distribution u,,. gwen {Xi(w), - -,
X.(w)} which is tnvariant under all permutations of {X., - -+, Xa}.

Proor. Let B € £, and let ¢ be a bounded Borel function on the n-dimensional
closed unit cube. Then we have, indicating expectations relative to P, by Ele :

and setting B = B X €,
E,;(Iﬁg(jzl y Ty fn)) = Eu{lﬁ ~A(Q(-}?I y T T jzn) l ;é)}
= (1/n)E {12 Eu(g( Xy, -+, Xow) | £) }

CE2Xn

(1/%1)5'#([};2 g()?a'(l) y T —Yafn)))

CE 2Zin

(1/n)E{ Pu(B |84) 22 9( Koy, -+ 5 Xom) |

CE2Zn

En{pu(g | g‘n)g(-}?l y o, Xa)f.

|

|

Hence
Pp(é’l é’n) H(B ; n)  as. [P,

for all B ¢ £. Consequently, the argument used 1n the proof of Lemma 2.2 shows
the existence of a posterior distribution u, ., given {X;(w), -+, X,(w)} such

that, for every B ¢ £, the function u, .(B):w — un o(B) 18 §,-measurable.
Next we single out a class of prior distributions which have a special structure,

similar to that of the tailfree prior distributions in the discrete case. First a few
auxiliary definitions and conventions.

DErFINITION 2.2. A tree of partitions 1s a sequence {T, , s = 0} of fintte partitzons
of I in nonemply disjoint intervals, such that

(11) Tsi1 28 a refinement of Te(s = 0),

(1i1) maxy.r, |J| — 0 as s — oo, where |J| denotes the length of the interval J.

If {T,, s = 0} 1s a tree of partltlons we define Ty, = {J e T, | J = J'}
(s =1, J e T,—,), and we denote the os-field induced in A by the functions
AN—=>XNJ)(J eTy), by 3:(s 2 1).

DerFiNITION 2.3. A probability u on £ s tatlfree if and only if there exists a tree
of partitions { T, , s = 0} and a family of nonnegative random vartables {05 ;,s = 1,
J & T} on some probability space mdependent of (A, £, u), such that

(1) ZJ#:TSJ 6:,0 = 1, (S = 1, J € Te),

(11) the families {0,.; , J & Ts}, (s = 1) are independent,

(111) for every s = 1, the distributzon of {N(J), J € T} under u, coincides with
the distribution of {ps.s , J € Ts}, where ps.; = [lic1 6,5, , with J, e T, , J, D J
Jorl = r £ s.
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Just as in the discrete case (cf. Freedman [2], Section 6), it is possible to give
an alternative definition of a description nature, using the notation

nrlw) = Z Iix;enn(w) forJ C I, wel, n = 1.
F==1
DErFINITION 2.4. A probability u on £ 1s tatlfree if and only if there exists a tree
of partitions {Tﬂr , s = 0} and, for every n = 1, a posterior distribution pn .(B)
gwen {X1(w), -+, Xa(w)}, such that, for every s = 1, B € 3, , un.o(B) depends
on we Q only through in;, J e T,}.
THEOREM 2.1. Definitions 2.3 and 2.4 are equivalent.
Proor. Let u be tailiree according to Definition 2.3. For s = 1, we write
C, = {xm (xs, J eT) |z, =20, JeTs; D ;= 1},
JeT ¢
1.e., C, 1s the simplex in which the random vector {p,.;, J ¢ T} takes its values.

Taking C to be a Borel set 1n (', , we have then, for every nonnegative integer »
and all s = 1,

PN, JeT) eCldy,J ¢T,)
= P((N(J),JeT,)eCl#,,JeT,) as. [P,

and hence, since §, is the o-field induced in @ by {7, , J ¢ U7}, by letting
r — oo, we obtain

(23) Pu((NJ),JeT,) eCl|8) = P((NJ),JeT,)eC |y, JeT,).

But this implies that u 1s tailfree according to Definition 2.4, by virtue of Lemma,
2.3 and the argument used in the proof of Lemma 2.2.

Now let n be tailfree according to Definition 2.4. Then (2.3) and hence also
(2.2) holds for all s = 1, » = 0 and all Borel sets C in C, . Thus, taking r =
and putting C’ [()\(J), J eT,) e(C], we have for all y £ Cy41, z ¢ C, such
that z, = ZJ"?T3+1.J yr, (J eT,),

P“[X & C; Nyr = ny, , J, E Ts_;.l]pp[ﬁj — N2y, J & TB]
= PN e C; A, = ney, J e TPJA, = nys ., J € Teial.

(2.2)

Hence

fc 1L AID™ ) uan)

IL A b w@ny [T w@n /[ (T A0 un

provided the denominator on the right side does not vanish. If it does vanish,

then
H AT =TI AI)™ =0 as. [ul

Therefore the conditional expectation relative to p of [],er,,, N(J)™' given
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3, is a.s. [u] proportional to ] .r, N(J) ™. But this is exactly Definition 2.3,
restated in terms of moments.

If u is a tailfree prior distribution, then (2.3) and Lemma 2.3 assert that there
exists a posterior distribution u,,. satisfying

(24) pn.o(B) = [ 1T A)™ ) w(dn) /fA T A()™ ) w(an)

JETS JETS

for s = 1, B ¢ 3,, provided the denominator does not vanish. In the discrete
case, for any « € A, (1.1) actually defined u,,.(B) for all B ¢ £ a.s. [P,], pro-
vided 7= € C(u). Here the requirement that = ¢ C(u) is not sufficient to insure
that (2.4) determines u,,, on £ a.s. [P.]. If, forany X ¢ A, s = 1, A\, denotes the
probability on 7', defined by N\ (J) = N(J) (J ¢ T,), and if m, is the distribu-
tion of A\, under u, so that m,(C) = p(C") for any Borel set C in C, , then, for
any s = 1, the right side of (2.4) 1s well defined a.s. [P,] if =, € C(m,), the
topological carrier of m, in C;. Hence, if m, € C(m,) for all s = 1, then (2.4)
defines un o(B) a.s. [P,] for B ¢ U5 3., and hence it determines u, .(B) a.s.
|P.] for B ¢ £. From now on, we shall always assume that this i1s the case, and
we shall refer to u,,. determined by (2.4) as ‘“the” posterior distribution given
{ X1(w), - -, Xa(w)}.

In order to give a definition of consistency similar to Freedman’s definition
for the discrete case, we introduce the weak star topology in the space of all
probability measures on £, so that a sequence {u,, n = 1} of such measures
converges to a probability u, on £ and only if

fA O n(dN) — [ FO) ()

as n — oo, simultaneously for all continuous functions f on A.

DEFINITION 2.5. If p 18 a probability on £ and w & A, the pair (w, u) s said to
be consistent if and only if, as n — «©, a.8. [Px], tn,o — 8-, the probability on £
whach has all 1ts mass concentrated at .

THEOREM 2.2. Let m € A and let u be a tailfree prior distribution, such that =, &
C(m,) for all s = 1. Then (w, n) 28 consistent.

Proor. We have to show that as n — o« a.s. [P,],

(2.5) [ FOObn(@N) — i),

simultaneously for all continuous functions f on A. For any 7 = 0, the function
¢:(N\) = |r2'N\(dx) is continuous on A by the very definition of the topology
In A. Since the family of functions {¢;, ¢ = 0} separates the points of A and con-
tains the constant function ¢, = 1, the algebra generated by these functions is
dense in the sense of the uniform norm in the space of all continuous funections

on A. Thus 1t suffices to prove that a.s. [P,]
K K
(2:6) [ 41T 600 b o) =TT ()

as n — oo, for all finite K and all nonnegative integers 7; , - - - , 7x .
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Forany fixed K < «,%;, ---,1x = 0, and any ¢ > 0, there exists an s, = 0,
such that .
K K *
(2.7) gI‘:III ¢i(N) — kI__Il {;;, A (T) §| <

uniformly for s = s¢, Ne A, 2z, J (JeT,). For any s = 1, un,. restricted
to 3, may be regarded as the posterior distribution of A, given {n;(w), J &€ T}
resulting from the prior distribution m, on the Borel sets of C, . Thus, applying
Freedman’s results for the finite discrete case (ef. [2], Theorem 1), we obtain,
since w, € C(m,), that a.s. [ Py]

(2.8) fA Lj[j {ZK ;N (J) }] o (AN ) —-—»in {Z xitr(J) }

as n — oo, Together with (2.7) this gives: for every K < « and all z,, -- -,
g = 0, and forany e > 0

(29)  lim supu |[ {II mm} u(dn) =TT g0, ()

k==1

IA

2¢ a.s. [Pxl,

and hence (2.6) follows if we let ¢ | 0 along a countable sequence, since the
set of K-tuples of nonnegative integers with K finite 1s countable.

The crucial point of the preceding proof is of course the fact that we can apply
Freedman’s results for the finite discrete case to u, . restricted to 3, . This actu-
ally makes 1t possible to carry over all of Freedman’s results. Thus, under the
assumptions of Theorem 2.2 and suitable regularity conditions on m, , the poste-
rior distribution of {n'(A(J) — n 7 'ny(w)), J & T} is a.s. [P,] asymptotically
normal, and

N (1m o(J) — ny(w)/n) — 0 as. [P,]

forall J ¢ T, as n — o, where
mrald) = [ AT uldh), (J & T.)
A

1s the usual Bayes’ estimate for = (J).

In view of the results of Section 1 one might conjecture that also the posterior
distribution of [;g(z)A(dz) is a.s. [P.] asymptotically normal if g 1S any con-
tinuous function on I and if u belongs to some special class of tailfree prior dis-
tributions. This however remains an open question.

The author wishes to express his gratitude to Professor D. Blackwell and

Professor D. A. Freedman for their interest and many helpful and challenging
discussions.
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