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In the literature, various types of parallel methods for integrating nonstiff initial-value problems for first-order ordinazy 
differential equation have been proposed. The greater part of them are based on an implicit multistage method in which 
the implicit relations are solved by the predictor-corrector (or fixed point iteration) method. In the predictor-corrector 
approach the computation of the components of the stage vector iterate can be distributed over s processors, where s is 
the number of implicit stages of the corrector method. However, the fact that after each iteration the processors have 
to exchange their just computed results is often mentioned as a drawback., because it implies frequent communication 
between the processors. Particularly on distributed memory computers, such a fine grain parallelism is not attractive. 

An alternative approach is based on implicit multistage methods which are such that the implicit stages are already 
parallel, so that they can be solved independently of each other. This means that only after completion of a step, the 
processors need to exchange their results. The purpose of this paper is the design of a class of parallel methods for solving 
nonstif! IVPs. We shall construct explicit methods of order k + 1 with k parallel stages where each stage equation is of 
Adams-Bashforth type and implicit methods of order k + 2 with k parallel stages which are of Adams-Moulton type. The 
abscissae in both families of methods are proved to be the Lobatto points, so that the Adams-Bashforth type method can 
be used as a predictor for the Adams-Moulton-type corrector. @ 1999 Elsevier Science B.V. All rights reserved. 
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1. Introduction 

We consider parallel methods for nonstiff initial-value problems (IVPs) for the first-order ordinary 
differential equation (ODE) 

dy 
dt =f(y), y, fE'Rd, t";?;to. (1.1) 

In the literature, various types of parallel methods for integrating such IVPs have been proposed. The 
greater part of them are based on an implicit method, usually a classical Runge-Kutta (RK) method 
or a multistep RK. method, in which the implicit relations are solved by the predictor-corrector 
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(or fixed point iteration) method. Within each iteration, the predictor-corrector approach is highly 
parallel. The parallel aspects of the predictor-corrector approach using RK-type correctors were 
analysed in e.g. Lie [15], N0fsett and Simonsen [18], Jackson and Nocsett [14], van der Houwen 
and Sommeijer [11], Burrage [3], and in Burrage and Suhartanto [5]. More general correctors for 
parallel computation were constructed in e.g. Miranker and Liniger [17], Chu and Hamilton [8], Birta 
and Osman Abou-Rabia [2]. The correctors in these last three papers are based on block methods, in 
which the blocks consist of solution values corresponding with equally spaced abscissae. Extensions 
to nonequidistant abscissae were studied in [12, 13, 21]. An extensive survey of parallel predictor
corrector methods can be found in the text book of Burrage [ 4]. 

In all parallel approaches indicated above, the computation of the components of the stage vector 
iterate can be distributed over s processors, where s is the number of implicit stages of the corrector 
method. However, the fact that after each iteration the processors have to exchange their just com
puted results is often mentioned as a drawback, because it implies frequent communication between 
the processors. Particularly on distributed memory computers, such a fine grain parallelism is not 
attractive. 

An alternative approach is based on implicit multistage methods which are such that the implicit 
stages are already parallel, so that they can be solved independently of each other. This means that 
only after completion of a full integration step, the processors need to exchange their results. An 
example of an implicit method with only parallel stages is an RK. method with a diagonal Butcher 
matrix. Unfortunately, such methods have a low order of accuracy. Higher orders can be obtained 
in the class of General Linear Methods (GLMs) of Butcher (see [6]). GLMs with parallel stages 
have been constructed in [20, 7]. As an example, consider the method [20] 

1 
Yn+21/IO =Yn + 660 h[541/(Yn+ll/lO) + 483/(Yn) + 462/(Yn+21/IO)], 

I 
Yn+l =Yn + 660 h[-1000/(Yn+ll/IO) + 230/(yn) + 1430/(Yn+d], 

(1.2) 

where Yn+zi;10 and Yn+I provide a 2nd-order and a 3rd-order approximation to y(tn+21;10) and y(tn+1 ), 
respectively. Evidently, the two associated implicit relations can be solved concurrently. Hence, 
effectively the method behaves as a one-implicit-stage method, provided that two processors are 
available. However, the methods of [20] and [7] are meant for stiff IVPs and great care was taken 
to make them A-stable. For a given number of stages, this of course limits the order of accuracy. 

The purpose of this paper is the design of a class of parallel GLMs for solving nonstiff IVPs. 
Since the stability region is allowed to be finite, we can derive methods such that for a given 
munber of stages, the orders of accuracy are greater than those of the A-stable methods derived in 
[20] and [7]. In fact, we shall construct explicit GLMs of order k + 1 with k parallel stages where 
each stage equation is of Adarns-Bashforth type and implicit GLMs of order k + 2 with k parallel 
stages which are of Adams-Moulton type. The abscissae in both families of GLMs are proved to 
be the Lobatto points, so that the Adams-Bashforth type GLM can be used as a predictor for the 
Adams-Moulton-type corrector. 

Our numerical experiments reveal that by virtue of the quite accurate Adams-Bashforth-type 
predictor, usually only one and at most two corrections are needed (see Section 4 ). Due to this 
low number of corrections, the most efficient strategy turns out to perform the same number of 
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corrections for all stage values. Hence, when implemented on a parallel computer system, there is 
a perfect load balancing, so that with respect to a sequential implementation of these methods, the 
speed-up factor is about k, i.e. the number of stages of the predictor-corrector pair. 

2. General linear methods 

In 1966 Butcher proposed the general linear method 

Yn+1 = (R ®I)Y,, + h(S ®l)F(Y,,) + h(T ®l)F( Y..+i). n = 1,2, .... (2.1) 

Here R, S and T denote k x k matrices, ® the Kronecker product, h is the stepsize tn+1 - tn, and 
each of the k components Yn+l,i of the kd-dimensional solution vector Y..+ 1 represents a numerical 
approximation to y( t,, + aih ), to hy' ( tn + a;h) or "to any other quantity which enables us to construct 
and describe useful methods" (see Butcher [6, p. 339]). The vector a:= (ai) is called the abscissa 
vector, the quantities Y,, the stage vectors and their components y,,; the stage values. Furthermore, 
for any vector Yn=(yn;),F(Y,,) contains the right-hand-side values (f(Yni)). 

The GLM (2.1) is completely determined by the arrays { R, S, T} and the starting vector Y1 . This 
starting vector should be computed by some one-step starting method (in the experiments reported in 
Section 4, we used the 8th-order Runge-Kutta method of Dormand-Prince ). Thus, given the arrays 
{Yi.R,S, T}, (2.1) completely defines the sequence of vectors Y2, Y3, Y4, •••• 

In this paper, we shall assume that ak = 1 and that all components of Y..+ 1 represent numerical 
approximations to solution values y( tn + aih ). Furthermore, we restrict our considerations to the case 
where T is a diagonal matrix with nonnegative diagonal entries bi. Such GLMs will be referred to as 
GLMs with parallel stages. It should be remarked that more general GLMs like the so-called DIMSIM 
methods of Butcher employ stage values that are not only solution values, but also derivative values 
of various orders. By choosing T diagonal, the stages in such methods become parallel. This is a 
subject of investigation in the group of Butcher in Auckland. 

2.1. Solution of the implicit relations 

If the matrix T has one or more nonzero diagonal entries c5i, then Yn+l,i has to be obtained by 
solving an (uncoupled) implicit relation of the form 

y - b;hf (y) = Vni• (2.2) 

where vni is the corresponding d-dimensional vector component of Vn := (R ®I) Y,, + h(S ®I )F( Y,, ). 
Note that Eq. (2.2) can be solved concurrently. The convenional way of solving Eq; (2.2) in nonstiff 
situations is a fixed point iteration (briefly FP iteration) process of the form 

(2.3) 

where y<0> represents an initial stage value iterate. These initial iterates can be generated by the GLM 
(2.1) with T = 0 and with the same abscissa vector as the underlying implicit GLM. A sufficient 
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condition for the convergence of the process (2.3) is 

1 
h< o;!lof/oyll. (2.4) 

Thus, in the construction of GLMs with parallel stages, we should choose b; sufficiently small. 

2.2. Consistency 

Consistency is defined by substitution of the exact solution into the GLM and by requiring that 
the residue vanishes as h tends to zero. The rate by which the residue tends to zero determines the 
order of consistency. We shall call the GLM (and the stage vector Y..+d consistent of order p if 
the residue upon substitution of the exact solution values y(tn + a1h) into Eq. (2.1) is of order hP+1• 

This leads to a set of order conditions to be satisfied by the matrices R, S and T. In addition, in 
order to have convergence, the GLM should satisfy the necessary condition of zero-stability, that 
is, the matrix R should have its eigenvalues on the unit disk and the eigenvalues of modulus one 
should have multiplicity not greater than 1. 

From the consistency definition given above, the order conditions follow immediately. Let for any 
function g, the vector g( a) be defined by (g( a;)). Then, on substitution of the exact solution into 
Eq. (2.1) and requiring the Taylor series expansion of the residue to be of order p + I in h yields 

(R + hS)exp(hh) - (I - hT) exp( ah) =O(hp+i ), b :=a - e, (2.5) 

where e denotes a vector with unit entries. In the construction of GLMs, we shall start with a given 
zero-stable matrix R and a diagonal matrix T. The matrix S is then determined by imposing the 
order conditions. From Eq. (2.5) it easily follows that we obtain order of consistency p = k (also 
called the stage order) if 

Re=e, Sb1- 1 =~(ai-Rb1)-Ta1- 1 , j=l, ... ,k (2.6) 
J 

Let us introduce the k x k matrices ~ and Wr: 

l7x := (x, ... ,xk), Wx :=(e,2x,3x2, ... ,kxk-l ). (2.7) 

The consistency conditions (2.6) can now be expressed as 

Re =e, SW,,= Va - RV,, - TW,,. (2.8) 

Given an abscissa vector a with distinct abscissae, a zero-stable matrix R satisfying the condition 
Re= e and a matrix T, we obtain a family of GLMs with stage order k by defining 

(2.9) 

In the case of the predictor formula needed in the FP iteration process, we set T = 0, so that the S 
is completely defined as soon as a is prescribed. In the next section, we try to choose the abscissa 
vector a and the matrix T such that the step point order of the corrector, i.e. the order of the 
step point value Yn+l,k> is greater than k under the constraint that the diagonal entries of T are 
nonnegative and sufficiently small. 
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3. Construction of GLMs with parallel stages 

If the GLM (2.1) is consistent of order k, then its error constants are given by the components 
of the vector 

C(k) := l (Rbk+ 1 + (k + 1 )(Sbk + Tak) - ak+1) 
(k + 1)! . 

(3.1) 

Hence, given a,R and T, and defining S by (2.9), this error vector can be written as 

1 
C(k) := (k + l)! (Tp(k) - q(k)), (3.2) 

where the vectors p( k) and q( k) are defined by 

p(k) := (k + 1 )(ak - W,, w,,- 1 bk), q(k) := ak+I - Rbk+t - (k + l)((Va - RVt,)W,,- 1 bk). (3.3) 

The stage order can be raised to k + 1 by setting C(k) = 0, that is, Tp(k) = q(k ). Observing that b; 
may be chosen arbitrary whenever p;(k) and q;(k) both vanish, we have the following theorem: 

Theorem 1. Let p(k) and q(k) be defined by Eq. (3.3) where the matrix R is a given zero
stable matrix, and let the abscissae vector a be such that if an entry of p(k) vanishes, then the 
corresponding entry of q(k) also vanishes. Then all stage values in the GLM (2.1) have order of 
consistency k + 1 if the matrices S and T are defined by 

(3.4) 

3.1. Parallel Adams-Moulton and Adams-Bashforth methods 

Let us choose the zero-stable matrix R = eei, where ek is the kth unit vector. Then, each stage 
value Yn+i,k is defined by Yn,k and the last k evaluations of f. Such stage equations are very similar 
to the classical Adams-Moulton formula, and therefore we shall call the special family of GLMs 
with R = eeI and T diagonal, parallel Adams-Moulton methods, or briefly PAM methods. 

For PAM methods, the quantities p and q defined in Eq. (3.3) are given by 

(3.5) 

A second consequence of the choice R = ee[ is that we can obtain step point order k + 2 if the last 
component of the second error vector 

C(k + 1) ·= l (Rbk+2 + (k + 2)(Sbk+i + Tak+ 1) - ak~z) 
. (k + 2)! 

vanishes. In order to derive a simple expression for this condition, we consider the last equation in 
system (2.1 ), viz. 

(3.6) 
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and we compare this equation with the continuous analogue satisfied by the solution of (1.1), i.e. 

(3.7) 

Thus, h(e[S ®l)F( Un)+ hfhf(un+i.k) may be considered as an interpolatory quadrature formula 
for the integral term in Eq. (3.7) using the k quadrature points {tn;,i= l, ... ,k} and the additional 
point tn+l,k with tj;:=tj-J +a;h. Assuming thatf(y(t)) is sufficiently differentiable, such quadrature 
formulas possess a quadrature error of the form (see e.g. [l, p. 886]) 

l J.ln+I 
~+I:= (k + l)! i. qk+1(t)gk+1(t)dt, 

k dk+IJ(y(O(t))) 
qk+1(t):=(t-tn+1,k)IJ(t-tm), Kk+1(t):= dtk+I ' 

i=-1 

where O(t) assumes values in the interval (tn,tn+d- Defining the polynomial Bk and the integral lp(q) 

k 1 

BJc(X) := gcx - bj), lp(q) := 1 xPBq(x)dx, (3.8) 

and substituting tn+l,k = tn + h, tn; = tn + bih, where b; :=a; - 1, we can write 

(k + 1 )! !?Jc+1 = hk+z 1' (x - 1 )Bk(x )gk+I (tn + xh) dx = hk+2([l1 (k) - lo(k )]gk+I Ctn) 

+ h[J2(k) - Ji (k)]g' k+l(tn) + !h2[J3(k} - f2(k)]g 11k+l(tn) + ... ). (3.9} 

Hence, the step point order of the method can be raised by one if J0(k) =11(k). Imposing this 
superconvergence condition yields a ( k - 2 )-parameter family of PAM methods with step point order 
p = k + 2 (we recall that bk= 0). For k =2, we find bk-I= b1 = !, so that the abscissae a1 = ~-

For k ~ 3 we shall exploit the additional degrees of freedom by choosing b such that the predictor 
formula to be used to start the FP iteration process (see Section 2.1) becomes also superconvergent. 
Let us define the predictor by the GLM (2.1) with 

(3.10) 

where the abscissa vector is the same as in the PAM corrector. The method {(2.1), (3.9)} will be 
called a parallel Adams-Bashforth method and is denoted by PAB. Proceeding as above, we find 
for the approximation error the relation 

k!(b = hk+1 fo1 Bk(x)g(t,. + xh)dx = hk+l(lo(k)gk(t,.) + hl1(k)g~(t,.) 
+ ~h2lz(k)g~(tn) + · · · ). 

Thus, we have the result: 

(3.11) 

Lemma 2. The P AB and PAM methods, respectively, have step point order k + I and k + 2 if the 
abscissae vector is such that / 0(k)=l1(k)=0. 
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It is easily verified that for k = 3 these conditions are satisfied by 

6+/6 6-v'6 
bi= 10 ' b2= 10 ' b1=0. (3.12) 

If k ~ 4, then we have a (k - 3 )-parameter family of solutions. The following theorem is straight
forwardly verified. 

Lemma 3. Let k ~ 4 and let the shifted abscissae b; be chosen symmetrically in the interval [O, I]. 
Then, lo(k) = /1 (k) = 0 for k odd and lo(k) - 211(k)=0 for k even. 

From this theorem, we immediately conclude that for k odd the Lobatto points in the interval [0, I] 
generate PAB and PAM methods with step point order k + 1 and k + 2, respectively. We will 
show that this is also true if k is even, or equivalently, /0(k} also vanish in the case of an even 
number of Lobatto points in the interval [0,1]. These Lobatto points are given by b1 =1, bk= 0, 
and by b1 = z;, i = 2, ... , k - 1, where z1 is the (i - 1 )st zero of the derivative of the shifted Legendre 
polynomial .El-1(2x-l) (see e.g. [l, p. 888]). Hence, Bt(x)=cx(x-1~_ 1 (2x-l), where c is some 
constant. Transformation to the interval [-I, 1 ], integration by parts and observing that Pi (y) = y 
yields 

10(k)=c [1 x(x- l)P~_ 1 (2x - l}dx= - ~ / 1 
yPk-1(y)dy= - 4: / 1 P1(Y)PA:-1(y)dy lo 4 -1 -I 

which does vanish fork~ 3. 

Theorem 4. Let k ;;;:i: 4 and let the abscissae b; be defined by the Lobatto points in the interval 
[O, I]. Then, the step point order of the PAB methods is k + 1 and of the PAM methods k +2 

In computing the matrices S and T corresponding to the Lobatto points, it turned out that for 
4 ~ k ~ 8, the last component of both vectors p(k) and q(k) are of quite small magnitude (less than 
10- 18 ), so that the value of ~k is more or less free (cf. (3.2)). In our experiments, we have chosen 
b.t = 0.15 for 4 ~ k ~ 8. 

The Lobatto-based PAM methods are only useful if the size of the entries of S, T, and of the 
vector of error constants 

E(k) := (C1(k +I), C2(k +I), ... , Ck-1(k + 1 ), Ck(k + 2)). (3.13) 

is acceptably small. Table 1 lists the abscissa vector a, the diagonal entries of T, llE(k)!l00 and 
llSll 00 for 2 ~ k ~ 8 (left part). In all cases, the value of Ell(k)lloo is quite acceptable. However, 
the value of llSl\ 00 rapidly increases with k and becomes inconveniently large fork ;;;:i: 7. Therefore, 
it is of interest to construct PAM methods in which the abscissae are chosen such that !IE(k)lloo is 
minimized under the constraint that llSll 00 is small. 

For that purpose, we first derive the general solution to the superconvergence condition of 
Lemma 2 by expressing the abscissae bk-i and b1<.-i explicitly in terms of the other abscissae. 
Let <F:=bk-2 +bk-I and 1r:=bTc-2b«-1· Then lp(k) can be written as 

Jp(k) = /p+3(k - 3) - lp+2(k - 3 )<; + lp+I (k - 3 )1t, 
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Table 1 
P AB and PAM methods 

Lobatto points Abscissae obtained by minimization 

k a qp-l =(b;) llE(k)lloo llSl!oo a• qp- 1 =(bi) llE(k)lioo /ISlloo 

2 3/2 0.38 0.093 1.1 
l 0.17 

3 (16 - ../6)/10 0.18 0.047 2.2 

(16 + ../6)/10 0.33 
1 0 

4 2 0.27 0.013 7.1 

(15 + v's)/10 0.21 

05 - VS)/10 0.10 
l 0.15 

5 2 0.23 2.810-3 28 2 0.23 3.0L0-3 27 
I .8273268354 0.20 l. 808994654 0.20 
1.5 0.14 1.463543856 0.13 
3 - a2 0.06 1.148203456 0.05 
l 0.15 0.15 

6 2 0.20 5.010-4 118 2 0.20 5.310-4 ll5 
1.8825276620 0.18 1.885275365 0.18 
1.6426157582 0.14 1.630711359 0.14 
3 - a2 0.04 1.083979860 0.03 
3- a3 0.09 1.320847699 0.09 
I 0.15 l 0.15 

7 2 0.17 8. l 10-5 522 2 0.10 8.61Q-S 502 
1.9151119481 0.16 I .922202399 0.17 
I.7344243967 0.14 1.731517951 0.14 

1.5 0.10 1.472403452 0.10 
3- a2 0.03 1.062674121 0.03 
3 - a3 0.07 1.226601360 0.06 
1 0.15 1 0.15 

8 2 0.16 l.2 10-s 2386 2 0.15 l.110- 5 4094 
1.9358700743 0.15 1.898303060 0.14 
1.7958500907 0.13 1.801012442 0.13 
1.6046496090 0.11 1.636888160 0.11 
3 - a2 O.Q2 1.028569475 0.00 
3 - a3 0.05 1.243500553 0.06 
3-a4 0.08 1.528856627 0.10 
I 0.15 0.15 

so that the superconvergence condition leads to a linear system for a= bk_2 + bk-i and n = bk_2bk-I · 
Hence, solving this linear system for a and 11:, the shifted abscissae bk_2 and bk-I are the solu
tions of the equation b2 - ab + n = 0, provided that this equation has real zeros. Thus, we 
have: 
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Table 2a 
PAM stability boundaries, Lobatto points a in Table l 

k 2 3 4 5 6 7 8 

Prea1 2.39 1.36 0.88 0.96 0.46 0.36 0.17 
Pimas 0.12 1.14 0.23 0.84 0.44 0.35 0.17 

Table 2b 
PAM stability boundaries, Abscissae a* in Table 1 

k 5 6 7 8 

/3rr:a1 0.92 0.41 0.31 0.15 
/3iinag 0.81 0.40 0.30 0.15 

Theorem 5. Let k ~ 4 and let a and 11: be de.fined by 

I2(k - 3)a -/1(k - 3)n=h(k- 3), J3(k- 3)<J -I2(k-3)11:=f4(k - 3). (3.14) 

Then, the P AB and PAM methods, respectively, have step point order k + 1 and k + 2 if a2 > 4n 
and if bk-2 and bk-1 satisfy the equation b2 - ab + n = 0. 

Next, we restricted the entries of T to the interval [O, 0.5] and minimized the quantity 

jE(k)iloo + c(l!Slloo - k), (3.15) 

where c = 0 if llSll 00 <k and c = 1 otherwise. In this way, we computed for 4 ~ k ~ 8 the abscissa 
vector a*, the matrices T, llE(k)i1 00 and llSll=- It turned out that for k=4, we again obtained the 
Lobatto points. For 5 ~ k ~ 8, we found the results as listed in Table 1 (right part). These :figures 
show that for 5 ~ k ~ 7 the values of llE(k)i1 00 and llSll 00 are close to those obtained for the Lobatto 
points. Only fork= 8, llE(k)ll 00 is slightly reduced, however at the cost of a larger value of l\Sll00 • 

3.2. Stability 

The linear stability region § of Eq. (2.1) is defined by the set of points in the complex z-plane 
where 

M(z) := (/ - zT)-1(R + zS) (3.16) 

has its eigenvalues within the unit circle. Process (2.1) will be called linearly stable if the eigenvalues 
of the matrix hof/oy are in §. The maximal length of the negative interval (-/Jrcai,O) and the 
imaginary interval (0, ifJimag) which is contained in § is called the real and imaginary stability 
boundary, respectively. Approximate values to these boundaries are listed in the Tables 2a and 2b, 
respectively, for the PAM methods with the Lobatto abscissae and with the abscissae obtained by 
minimization (see Table 1 ). These boundaries are quite acceptable, except for the imaginary stability 
boundaries of the 2-stage and 4-stage PAM methods. However, if we look at the intersection of the 
region§* defined by the points z where M(z) has eigenvalues of modulus less than say 1.001, then 
we obtain P!ag ~ 0.75 for k = 2 and P!as ~ 0.78 for k = 4. 
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4. Numerical experiments 

In this section we illustrate the performance of a few of the parallel GLMs constructed in the 
previous sections. In order to clearly see the algorithmic effects, we used a fixed stepsize strategy. 
The implicit relations were solved by FP iteration (see Section 2) with a fixed number of iterations 
for all stages. The tables of results list the total number of sequential righthand sides needed to 
produce a given number of correct digits LI at the end point, that is, the maximal absolute end point 
error is written as 10-.1 (negative values are indicated by - ). 

We tested the k-stage PAM methods with step point order p=k+2 for k=6,7,8 with Lobatto 
abscissae. The starting values were obtained by the 8th-order Runge-Kutta method of Dormand
Prince [9] and the predictor needed to start the FP iteration method (2.3) was defined by the PAB 
method (3.10) with the same Lobatto abscissae. The resulting predictor-corrector method is denoted 
by PABM. We distinguish the P(Ecr mode and the P(Ecr- 1E mode of the PABM method. On 
k processors, these modes require m right-hand sides per step that have to be computed sequentially. 

We selected the following well-known test problems (cf. [10, p. 174]), viz. the Fehlberg problem: 

y; = 2ty1log(max{y2,10-3 } ), Y1(0) = 1, 

y~ = - 2ty2 log(max{yi, 10-3} ), Y2(0) = e, 

the Euler problem JACB [10, p. 236]: 

Y1(0)=0, 

Y~ = - Y1Y3, Y2(0)= 1, 0 ~ t ~ 20, 

y~= -O.Sly1y2, y3(0)=1, 

and the Orbit problem TWOB [10, p. 236]: 

y~ = y3, y,(0)= 1 - s, 

0 ~ t ~ 5, 

I -y, 
Y3 = (YT + YD3/2' y3(0) = 0, 0 ~ t ~ 20. 

1 
s=2· 

4.1. Comparison of the PE, PEC, PECE and PECEC modes 

(4.1) 

(4.2) 

(4.3) 

First we want to know in what mode the PABMs are most efficient. We tested the PE, PEC, 
PECE and PECEC modes. The PABMs with 6, 7 and 8 stages were run on a lot of examples (not 
only the three test problems given above) and in most cases the PEC mode turned out to be the 
most efficient mode. A typical performance is given in the Tables 3a and 3b for the Fehlberg and 
Euler problems. 
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Table 3a 
Number of sequential right-hand-side evaluations for the Fehlberg problem ( 4.1) 

Method Ll=5 .1=6 A=7 A=8 A=9 .d=lO 

PAB(PE) 222 
PABM(PEC) 218 
PABM(PECE) 270 
PABM(PECEC) 273 

Table 3b 

274 
267 
349 
349 

338 
317 
445 
447 

431 
382 
569 
563 

622 
585 
697 
699 

873 
809 
847 
867 

Number of sequential right-hand-side evaluations for the Euler problem (4.2) 

Method Ll=5 L1=6 LI =7 LI =8 LI =9 LI= 10 

PAB(PE} 96 123 158 210 281 374 
PABM(PEC) 88 111 141 180 232 302 
PABM(PECE) 103 135 173 221 283 363 
PABM(PECEC) 105 137 177 223 283 363 

4.2. Comparison with other methods 

The P AMs in PEC mode were compared with a few methods from the literature, viz. 

DOPRI 
ABM 
ABR 

Dormand-Prince method of order 8 using 13 stages 
Adams Moulton of order 8, 9 and 10 using AB predictors of order 7, 8 and 9 
Adams-Bashforth-Radau methods of order 8 and 9 constructed in [13] and [21] 

The ABR methods are also parallel predictor-corrector methods in which the predictor and the 
corrector are again of the form Eq. (2.1) but based on Radau abscissae. The corrector uses a 
nondiagonal matrix T and the FP iteration process is applied dynamically. 

The Tables 4a-4c list the results produced by DOPRI, ABM, ABR and P ABM. The ABR results 
of order 8 and 9 for the Euler and Fehlberg problem were taken from [13, 21], respectively (these 
papers do not contain results for the Orbit problem.). The ABM and PABM methods were applied in 
their most effective modes, viz. the PECEC and the PEC mode, respectively. Furthermore, we listed 
the "speed-down" factors of all methods with respect to the PABM(PEC) method with step point 
order p = 10 and the effective step point order of accuracy defined by Petr:= (.d2 - Ll1) log10(h1h2 1 ), 

where (hi. .d 1 ) and (h 2, .1 2 ) correspond with the results of highest and lowest accuracy, respectively. 

5. Conclusions 

Because of their simple structure, the P ABM methods constructed in this paper are easily im
plemented on a parallel computer system. If k processors are available, then P ABM methods with 
step point order up to p = k + 2 can be implemented. The results presented above show that in 
terms of right-hand side evaluations, the speed-up factor of the lOth-order PABM(PEC) method, 
with respect to the Runge-Kutta and Adams methods DOPRI and ABM (which do not have any 
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Table 4a 
Number of sequential right-hand-side evaluations for the Fehlberg problem ( 4.1) 

Method p L1=5 L1""'6 L1=7 L1=8 .1 =9 .1=10 Petr Speed-down 

DOPRI 8 688 934 1244 1608 2085 2690 8.4 3.7-5.9 
ABM(PECEC) 8 548 677 810 1044 1536 2161 8.4 3.0-4.7 
ABR 8 240 335 430 532 689 846 9.1 1.3-1.9 
PABM(PEC) 8 218 267 317 382 585 809 8.8 1.2-1.8 
ABM(PECEC) 9 497 653 853 1110 1437 1850 8.8 2.7-4.0 
ABR 9 256 361 466 571 677 9.5 1.1-1.5 
PABM(PEC) 9 188 223 276 351 445 558 10.6 1.0--1.2 
ABM(PECEC) 10 468 570 719 916 1139 1383 10.6 2.6-3.0 
PABM(PEC) 10 184 223 267 318 380 456 12.7 

Table 4b 
Number of sequential right-hand-side evaluations for the Euler problem (4.2) 

Method p L1=5 Ll =6 A=7 A=8 Ll=9 L1=10 Petr Speed-down 

DOPRI 8 379 505 685 901 1189 1567 8.1 5.3-8.5 
ABM(PECEC) 8 221 266 379 575 798 1085 7.2 3.1-5.9 
ABR 8 160 192 223 293 379 506 10.0 2.2-2.7 
PABM(PEC) 8 88 111 141 180 232 302 9.3 1.2-1.6 
ABM(PECEC) 9 198 278 394 514 658 834 8.0 2.6-4.5 
ABR 9 117 169 221 273 325 9.0 1.4-1.8 
PABM(PEC) 9 76 95 119 148 184 233 10.3 Ll-1.3 
ABM(PECEC) 10 203 266 338 404 501 689 9.4 2.8-3.7 
PABM(PEC) 10 72 84 101 121 149 185 12.2 l 

Table 4c 
Number of sequential right-hand-side evaluations for the Orbit problem ( 4.3) 

Method p ..1=5 ..1=6 ..1=7 ..1=8 ..1=9 Lf= 10 Pelf Speed-down 

DOPRI 8 1418 1834 2367 3030 3862 4862 9.3 5.1-5.5 
ABM(PECEC) 8 1014 1380 2293 3172 4304 5794 6.6 3.7-6.5 
PABM(PEC) 8 409 570 738 945 1207 1554 8.6 l.5-l.7 
ABM(PECEC) 9 1144 1548 2014 2586 3291 4188 8.9 4.1-4.7 
PABM(PEC) 9 332 386 510 715 946 1227 8.8 l.2-1.4 
ABM(PECEC) 10 1046 1314 1585 1783 2365 3590 9.3 3.8-4.0 
PABM(PEC) 10 276 336 477 604 741 892 9.8 

scope for parallelism), ranges from 3.7 until 8.5. By virtue of the diagonal structure of the matrix 
T in (2.1 ), implying that only after completion of a full integration step the processors need to 
communicate with each other, the actual speed-up factors are expected to be close to the speed-up 
factors in terms of right-hand sides. 



165 

Refereoces: 

M. Abramowitz, I.A. Handbook of Mathemancal FuncnOll!l, Ikwtt, New york, 1964 
[2} LG B1rta, A.R Osman,. Parallel methodi; for ll>de'1, IEEE Tr.ims .. Comput C36 299-231 

K. BW'lilge, Pamllei methods with im Adams type CSMR Report, '-'"""""""' 
Lmven>i'IV. 1990. 

[4] K. Burrage, PiUallel and Metho& for Difiercr!t111l Eq~'l!ls, Cl&rend.oo Press, Oxford, 1995. 
K. H. Sul:wrtan~. P1m1i.llel iterated n'llethooll ~ ~'In inethod~ of Rldiu type, Adv 
1.-v•<nJ<11 .. Math. 7 { 1997) 37-:57. 
lC Butcher, The Numerical of I>tffu-enti11.I iimd Gmernl L!llem' Me~, 
Wiley, New York, 1987. 

[7] P. Chrutier, Pan.llehsm in the numerical solution of itutial value for ODE::; and DA.Ea. Thesis, Universite 
de Rennes I, France, 1993. 

[8] M.T. Chu, H.. Hamilton, Paml!el solution ofODE's by multi-block methods, SIAM J. &i. Stmust. Comput. 3 (191!!7) 
342-353. 

{91 J.R Dorm.and, P.J. Pnm::e, A fundy of embedded methods, l Compu:t Appl. Math. 6, (19801 19··26. 
[HJ] E. Hairer, S P. N01'Sett, G. Wll.llner, Solving Ordu:wy Di.fferential Equail-OnS, V'l>I. L Noosttff problems, Springer, 

Berlm, 198?. 
[l l] P.J. van der H-0uwen, B.P. Sommeijer, Parallel iteration of high-order R.unge-Kutta methods with Step&izl::: control, 

J. Ccmput. AppL Math. 29 ( 1990) 111-12 7. 
P.J. van der Houwen, B.P. Sommeijer, Block Runge-Kutta methods oo parallel computers, ZAMM 72 (1991) 3-18. 

[13j P.J. van der Hoowen, B.P. &>mmcijer, J.tB. Swart, Pamlld predj,ctor-com.:ctor methods, J. Comput Appl. Math. 
66 (1996) 53-71. 

[14] K.R. Jackson, S.P. Nm-sett, The potential for in Runge-Kutta methods. Pan I RK formulas in standard 
form, SIAM J. Numer. Anal. 32 (1995} 49-82. 

[ 15] l. Lie, Some aspects of parallel Runge-Kutta methods, Report No. 3 /87, Divis.ion Numerical Mathematics, Univen1ity 
of Trondheim, 1987. 

[16] E. Messina, JJ.B. de Swart, W.A. van der Veen, Parallel itemtive hnear solven. for multi.step Runge-Kum methods., 
J. Comput. Appl. Math. 85 {1997} 145-167. 

[17] W.L Mir:mker, W. Liniger, Parallel methods for the numerical integration of ordinary differential equations, Math. 
Comp. 21 (1967) 303-320. 

[l8J S.P. N«sett, H.H. Simonsen, Aspects of parallel Runge-Kuna methods, in: A. Bellen, CW. Gear, E. Russo (Eds.), 
Numerical Methods for Ordinary Differential Equations, Proceedings L 'Aquila 1987, Lecture Notes in Ma.thematics 
1386, Springer, Berlin (!989) l03-H7 

[19] B. Ore!, Parallel Runge-Ku& methods with real eigenvalues, Appl. Nmner. Math. ll ( l 993) 241-250. 
[20} B.P. Sommeijer, W. Couzy, P.J. van der Houwen, A-stable parallel block methods for ooiil'llll'Y and integro-differential 

equations.. Appl. Numa. Math. 9 (1992) 267-281. 
[21] J.J.B. de Sv.-art, Efficient parallel predictor--corroctor methods, Appl. Numer. Math. 18 (1996) 387-396. 


