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0, Summary 

On Hemelrijk's 

results concerning approximations 

to the hypergeometric distribution 

by W. Molenaa.r 

An empirical stuczy of 2x2 tables with grand total N ::._ 35 has led 

HEMELRIJK (1967) to a footrule for the choice between the normal and 

the x2 approximation to the hypergeometric tail probabilities. For 

tails of less than ,07, x2 was found to be generally better when the 

sUlll of the two smaller marginals n+r exceeds ;N, and worse otherwise. 

The present note offers an explanation for this phenomenon. It will 

be shown that little accuracy is lost by using x2 throughout. Moreover, 

a square-root type normal approximation will be presented which is 

usually superior to both classical approximations (normal and x2 ). For 

derivations not given here the reader is referred to a recent monograph 

(MOLENAAR, 1970, section IV.2). 

1. Introduction 

The hypergeometric distribution function*) 

a 
( 1. 1 ) P~::... a] = I 

j=O 

is connected with the 2x2 table 

n 

( 1. 2) 

a 

.£ m = N-n 

r s = N-r N 

*) . . . Random variables will be denoted by underlined symbols, 
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It is no restriction to assume that O .:_ a < n .:_ r .:_ ~N ( the table 

can be re-ordered such that n and r become the two smallest marginals, 

the distributions of J?., ..£, d are determined by that of §:., and P fu .:_ ~ = 1 ) . 

We introduce the notation 
X 

~(x) = (2n)-~ j exp(-~t2 )dt; 

( 1. 3) 

u = 

Then the classical normal approximation is P ~ .:_ ~ ~ ~( u), and it is 

not difficult to see that the classical x2 approximation is equivalent 

to P°[§, .:_ ~ ~ ~(x), with a trivial exception for values of a which 

are very close toµ, 

2. Asymptotic expansions 

For any given integers a, r, n, N satisfying O .:_a< n .:_ r .:_ ~N, 

there exists a unique exaat no~maZ deviate~= ,(a,n,r,N) defined by 

~(~)=PG!:..:_ aj. Explicit solution of~ from this transcendental 

equation is not possible, However, under the R.ssumptions 

( 2. 1) N ➔ 00 , µ ➔ 00 , , ➔ 00 , ~ bounded 

-1 an asymptotic expansion for~ in powers of, can be given (MOLENAAR, 

1970). Inversion of this expansion leads to 

X = ~ + T1 +TX+ o(,-2), 

u = ~ + T1 +Tu+ o(,-2 ), 

T1 = ,-1(m-n)(s-r)N-2(~2-1)/6, 
(2.2) 

-2 3( -2 -2 6 -4) T =, {~ -1-2mnN -2 rsN +2 mnrsN + 
X 

( 4 -2 4 -2 4 -4) + ~ -2+1 mnN +1 rsN -7 mnrsN }/72, 

Tu= T - ~ ~N- 1 = T - ,-2 ~rnnrsN-4/2. 
X X 
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3, Comparison of normal and x2 

Following HEMELRIJK (1967), we shall suppose that J~J > 1,5, i,e, 

the tail probability min(PU!: ::_ aj, P~ .::_ a+1]) is less than ,07, It 

follows that T1 > 0, whereas T < T < 0 for~> 1,5 and 0 < T < T 
- u X X u 

for~< -1,5, Let, be fixed, and large enough to make the 

o(,-2 ) terms in the expansions of x and u negligibly small, We consider 

two cases, 

(i) Let (m-n)(s-r) be so large that T1 > JT I > IT I, The normal 
u X 

approximation is now better than x2 for~> 1,5 (righthand tails): 

the negative contribution of T gi~es more compensation for the u 
positive error present in T1 (although not enough), and 

x-~ > u-~ > 0, For~< -1,5 (lefthand tails), however, T adds 
X 

less to the error present in T1 than does Tu' and now x2 is more 

accurate, 

As the difference between x and u is 0(,-2 ), whereas the errors 

x-~ and u-~ are both 0(,- 1), the difference between the approxima

tions becomes negligible for large values of,, This follows also 

from ( 1. 3), where the "variances" -/ and a2 are asymptotically 

equivalent for N ➔ 00 , 

(ii) Let (m-n)(s-r) be so small that jT I > IT J > T1. Now x2 is better 
u X 

in both tails (giving less overcompensation for~> 1,5, and adding 

less to the error present in T1 for~< -1.5), The difference between 

the two approximations becomes more important if s-r approacnes zero 

(we recall that n.:. r.:. ~N, and thus m-n > s-r ::._ o). In the 

extreme case r =~,we have T1 = 0; then it is the leading term 

of the expansion of the error which is smaller for x-~ than for 

u-~. 

In HEMELRIJK's (1967) investigation for 10::.., N 2-, 35, situation (i) 
is nearly always found when n+r ::.., ~N and Ji'; I > 1. 5. However, the 

distribution is then so skew that small left hand tails simply do not 

exist: with only two exceptions for N = 34 and N = 35, even P ~ = qJ 
corresponds to a value i'; > -1. 5, 
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Therefore the normal approximation is indeed better than x2 for 

1,1 > 1,5, n+r ::_ ~N and N ::_ 35, because 1,1 > 1.5 then means,> 1,5, 

On the other hand, situation (ii) will prevail when n+r > ~N and 

10 ::_ N ::_ 35, and x2 is then indeed more accUTate. 

The general situation, illustrated by some numerical examples 

1.n 'lab le 1 , is roughly as follows : 

for r ~ s, x2 is much better than normal; 

for r <<sand left hand tails, both are very bad, but x2 1.s slightly 

better; 

for r <<sand right hand tails, both are rather bad, but x2 1.s slightly 

worse. 

The boundary between r ~sand r << s depends in an intricate way on 

the values of a, n and N: for small N (small,), situation (ii) may 

be found e.g. when rN- 1 = ,25, whereas for large N (large,) a case 
-1 4 . 0 with e.g. rN =. should be considered as skew, not as symmetric, 

In agreement with a remark by ORD ( 1968) , the a.symptoti c and 

numerical results indicate that little is lost by using the x2 

approximation throughout, Compared to the normal it is easier, 

frequently much better, and hardly ever much worse, 

4. A new approximation 

Square root type normal approximations to the binomial and Poisson 

distribution function were proposed by FREEMAN & TUKEY (1950), Their 

asymptotic error is generally minus one half of the corresponding 

error for the classical normal approximations. 

For the hypergeometric distribution function P ~ ::_ ~, one 

finds in MOLENAAR (1970) a derivation of the approximations 

( 4. 1 ) 
1 1 1 1 1 

~(2{N-1}- 2 {(a+1) 2 (N-n-r+a+1) 2 - (n-a) 2 (r-a) 2 }) 

and 

(4.2) 
1 1 1 1 1 

g,(2N- 2 {(a+a) 2 (N-n-r+a+a) 2-(n-a-a) 2 (r-a-a) 2 }), 
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which share this property of inverting and halving the asymptotic 

error of the classical ones, Numerical evaluation of (4.1) is easy; 

it is designed to be especially accurate for tails between .01 and ,05, 

One could use (4,2) when more accuracy is desired for values of 

P~.:._a] between ,05 and ,95, For the doubly symmetric case n = r = ~N, 

formula (4.2) becomes identical to ~(x), 

Exo.mple: evaluation of P~ .:._ 1 i] in the 2x2 table ~~ ~t Here 

N = 11+39+43+68 = 161, and approximation (4,1) becomes 
1 1 1 

~(2(161-1) 2{(12x69) 2 - (39x43) 2 }) = ~(-1,9252) = ,0271, The exact 

probability is ,0269; the classical approximations lead to ~(u) = .. 0286 

and ~(x) = .0290 respectively. 

In this example the absolute error of approximation (4,1) is roughly 

one tenth of the absolute error of the classical approximations. The 

difference in accuracy is not always so spectacular, but one finds in 

most cases that the square root type (4.1) and (4,2) are indeed superior 

to the classical normal and x2 approximations. Table 1 shows that the 

1 : 2 ratio of the asymptotic errors is hardly detectable in the numerical 

values, A really good agreement between numerical results and asymptotic 

properties can only be found for large values of the para.meter ·r. 
-1 We expand in powers of T ,and e.g. n = r = 20, N = 200 means T = 1.3, 

or n = r = 50, N = 100 means T = 2.5. In such cases terms of higher 

asymptotic order cannot be neglected, 

When cumulative Poisson or binomial tables are available, hyper

geometric tails can also be evaluated by means of a suitable Poisson 

or binomial approximation. Especially accurate, a~ WISE (1954) and 

MOLENA.IIB (1970), is the binomial approximation of n experiments with a 

success probability p chosen dependent on a, n, rand N, such as 

(4.3) p = (2r-a)(2N-n+1)- 1 + n(2nrN- 1-2a-1)(2N-n+1)- 1/3, 

5, Numerical examples 

Table 1 presents some numerical values of the relative tail error 

for some normal approximations, 
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TABLE 1. Event _§!: .:_ a or _§!: ~ a+1, exact hypergeometric probability and 
relative tail error in per cent. for some normal approximations, 
Example: P ~<6] = . 1085 for n = 20, r = 20, N = 200; approximation ( 4. 1), 
with relative tail error +38,16 per cent,, gives 1,3816x,1085 = , 1399, 

Event proba- normal chi-squared square root type 
bility 4> ( u) 4> ( X) ( 4. 1 ) (4,2) 

n = 20 r = 20 N = 200 

a < 0 . 1085 +10.45 +9,91 +38, 16 -1 , 01 
a < 1 ,3782 -8, 10 -8. 19 +17, 30 +3,83 
a > 3 ,3213 +8. 17 +8,06 -12,90 -1, 96 
a > 4 . 1222 -1 ,93 -2,41 -9. 17 +4,75 
a > 5 ,0345 -27,50 -28.32 +3,17 +21, 39 
a > 6 .0073 -58,42 -59,29 +28.99 +54,41 
a > 7 ,0012 -82.06 -82.65 +79.03 +117 0 66 

n = 20 r = 80 N = 200 

a < 2 .0024 +70,40 +67. 1 O -1. 47 -17,45 
~ < 4 ,0425 +9.34 +8.38 +5 .80 -1. 74 
a < 6 .2377 -,79 -1 ,02 +4,02 +,85 
a > 9 .4005 +1. 17 + 1 . 11 -2.03 -,40 
a > 11 • 1152 - . 12 -.62 -.66 +1, 26 -- .0160 -3, 58 -4.89 +4,57 +6,07 a > 13 

n = 50 r = 50 N = 200 

a < 6 .0092 +29,77 +27.87 -.68 -9, 15 
a < 8 .0625 +5,86 +5,09 +3,96 -1, 56 
a < 10 .2276 -,75 -1. 00 +3,99 +,65 
a > 13 • 4936 +1. 29 +1, 29 -2.46 -,60 
a > 15 .2234 + 1 • 13 +,87 -3, 14 -,21 
a > 17 .0678 -2,34 -3.05 -1. 93 +2,26 
a > 19 ,0134 -10,33 -11 . 64 +2.67 +8,46 - -
n = 100 r = 100 N = 200 

a < 39 ,0014 +5,76 +3,24 +,76 +3.24 
a< 41 ,0080 +3,00 +1. 32 -,34 +1. 32 
a -z 43 ,0329 +1. 44 +,40 -.62 +,40 
a< 45 . 1015 +,61 +.05 -,50 +,05 
a< 41 .2398 +,21 -,02 -,25 -.02 
i ~ 49 .4438 +.03 -,01 -.04 -.01 

n = 5 r = 8 N = 20 

a < 0 . 0511 +20.68 +11.43 +6,38 - , 16 
a < 1 ,3065 -,90 -2,42 -t-2,83 +,66 
a > 3 ,2962 +2,55 +,98 -3,59 -,23 
a > 4 ,0578 +6,67 -1. 50 -3,75 +4,79 
a > 5 .0036 +41.39 +16,39 +15,98 +32,46 
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