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A RANK-INVARIANT METHOD OF LINEAR AND POLYNOMIAL 
REGRESSION ANALYSIS. III 1) 

BY 

H. THEIL 

(Communicated by Prof. D. VAN DANTZIG at the meeting of Sept. 30, 1950) 

3. CONFIDENCE REGIONS FOR THE PARA.METERS OF POLYNOMIAL 
REGRESSION EQUATIONS 

The probability set 

3. 0. The probability set I' underlying the probability statements of 
thls section is the n(v + 2)-dimensional Cartesian space R,,,cv+ 2> with 
coordinates 

U:!1, ••• , U1n, ••• , Uvi, ••• , u.,,,, Vi, ••• , V,,,, W1, ••• , W,.. 

Every random variable mentioned is supposed to be defined on this 
probability set. 

We suppose n (v + 2) random variables u;,,, v,, w, (.:t = 1, ... , v; 
i = l, ... , n) to have a simultaneous probability distribution on I'. 
Furthermore we consider nv parameters g M- and N parameters <¼, .. ,Pv for 

all sets of non-negative integers p1, ... , p,, satisfying 

Now we put 2) 

(10) 

{11) 

(12) 

(13) 

0,. = 1 <¼, ... 113:1 ... g:; 
'I/,= 0.+ w. 

X;,.= gAi+ UM, 

Y, = 11,+ v,. 

~i=l, .. ,n 
(A=l, ... ,v 

So, for any set of values of the (N + nv) parameters a11,. .... Pv' gu, the 
variables X;,1 and y, have a simultaneous distribution on I', and are there­
fore random variables. 

The parameters gJ.i (i = 1, ... , n) are interpreted as values assumed 
by the variable g;,. The equation (10) is the polynomial regression equation. 
The random variables w, are called "the true deviations" from the poly-

1 ) This paper is the third of a series of papers, the first of which appeared in 
these Proceedings, 53, 386-392 (1950); the second appeared in these Proceedings, 
53, 521-525 (1950). 

2 ) ~ in equation (10) denotes summation over all sets p1, ••• , Pv• 
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nom.ial of degree h; the random variables U;.;, and v,. are called "the errors 
of observation" of the "true" values ;;.;, and 11,;; respectively. 3) 

Oonditions; approximation 

3. 1. In order to give confidence regions for the parameters aP1o---,P 

we consider the following conditions: 

Oondition I: All n (v+ 2)-uples (uM, v,, w,) are stochastically indepen­
dent. 

Oondition Ila: 1. Each of the errors u;., vanishes outside a finite 
interval !u1.,I < g;.;,. 

2. For each i =j:= j we have !;;.,.-;;.;! > g;.;, + Y;.;• 
Oondition llb: 1. Each of the errors u;.,;; vanishes outside a finite 

interval !uul <g;.,. 
2. For each i =j:= j, for each set p1, ••• , Pv and for any 

real h;.;, such that lh;.;,I < g;.,;; we have 

sgn ht (;;.i+ h;.,;;}'1J.-11 (;M+ h;.;r~ = sgn ~11 ;!t-g ;!t( 
Oondition 111: For all fixed values of the constants(?;.,;; the n random 

" variables L (?;.,;; u;.,. +vi+ w,. = Zi, have continuous distribution functions, 
J.-1 

which are symmetrical with the median med (z). 
Finally we mention that the solution will be given subject to the 

following 
Approximation: For any positive s the quantities 

(il,A.1= l, ... v; i= l, ... ,n) 

are neglected. 4) 

Oonfidence regions 

3. 2. We consider the case v = 1, so that equation (10) can be written as 

Let us arrange the n observed points (x,., y,.) according to increasing 
values of x: 

X1 < ... < Xn. 

3) It is clear that the random variables v,. and W,;; cannot be separated in one 
sample of observations; if, however, the experiment is repeated for the same "true" 
values ~;.;,, 17,;; (e.g. if - when the relation between income and consumption is 
investigated - for the same families and the same period the amounts of their 
incomes and outlays are repeatedly calculated), then the errors v,. can be mitigated 
by averaging, whereas the deviations w, cannot. 

4) The approximation implies that the errors uJ.i are sufficiently small. This 
restriction is not very serious, because, unless the number of points n is very large, 
large v , lues of u ;., will cause the confidence region for the parameters of the poly­
nomial to be so large as to render the method useless. 

4 
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We leave 0, 1, ... or h points out of consideration until the remaining 
number n' is such that n'/(h + 1) is an integer, and write nh = n'/(h + 1). 
(It seems advisable with respect to the power of the method to omit the 
points with rank nh + 1, 2nh + 1, ... and / or hnh + 1). From now on we 
write n for the remaining number n', so that (h + l) nh = n. 

We define the following quantities : 

Lf<h> (i, nh + i, ... , hnh + i) = 

Lf(h-l>(i,nh +i, ... ,li=i nh+ i)-Lf(h-l) (nh +i, 2nh+ i, ... ,hnh+i) 
-

W th b d t ·t· A(h) (. h ') din t e arrange e o serve quan 1 1es LJ i, ••. , nh + i accor g o 
increasing magnitude: 

A(h) < < A(h) 
LJ1 ••• Linh' 

in which 
A(h) A(h)(' h + ') LJi = LJ ii,•••, nh '/,i • 

3. 3. Then we have the following theorem: 

Theorem 6: Under conditions I, IIa, and III the interval (Lf~, Lf~~-•1,+i) 

is a confidence interval for a1, to the approximate level of significance 
211(nh-rh + 1, rh). 5) 

In order to prove this theorem we shall use the following Lemma. 
Define for all non-negative integers sand for all positive integers c and i 

Then we have 
p~ ( l""+--P•+· +· ••···• c- "'h • nh i. ... ,cnh • _ ps-1 

X -X . - i, ... ,cnh+i• 
• cn1,+• 

Proof of the lemma: We have 

p~ < i> +--P• +· +· = ,..... c- n1, • nh ••·· .• cn1, • 

- ';;:' ';;:' "nh+i 8(c-l)n +i ( 8i 8i ) 
- L., •• • L., x.,,h+i ••• X<c-l)n 11H x,. -Xcn1,+i ' 

8i 8<c-l)n1,+i h 

5) In the first and second part of this paper the arguments of the incomplete 
Beta-function must be reversed. 
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in which E 87 = 8. It follows that 

p~ < ii +--P• +' +· ,..... c- n-h i- nh ..... . ,cnn, , 
-

Proof of Theorem 6: The relation between x, and y, is given by 

h 

y,= Lav (x,.-u,.):P+ v,.+ w,. 
:1)=0 

h 

F::J _I av xf-u, (a1 + 2a2 ~. + ... + hah ~t-1
) + v, + W;,, 

:P=O 

in which we neglected (in accordance with the Approximation) uf for 
8 > 1. Putting z, = (!i u,. + v, + w,, in which 

we get 
h 

y, F::J _I av xf + z,.. 
p=O 

Now we have according to the lemma: 

z,. - Z,.h+;, Z,.h+;, - Zznh +i 

+X,-Xnh+i X,..h+;,-Xznh+i 

x,-Xzn,.+i 

LJ<h> (i, nh + i, ... , hnh + i) F::J a,.+ Z,, 

in which Z;, is a random variable depending on 

Z, can be written as a fraction, the denominator being a product of term! 
(xcn,.H-xc'nh+i) (c, c' = 0, ... , h; c -=I= c'); according to condition Ila this 
denominator has a definite sign. The numerator consists of a sum of terms 

6 
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But to our order of approximation this is equal to 

(zcmhH-Zc'nhH) II (;c"nhH-·;cmnh+i), 
c11.c'" 

so that the numerator can be written as 

471 

It follows from condition III that this quantity has zero median. From 
this and from the above-mentioned property of the denominator it follows 
that 

P [ A<hl ( i, ... , hnh + i) < ah I ah] = P [ A<hl ( i, ... , hnh + i) > ah I ah] = ½­
From this and from condition I the theorem immediately follows. 

Additional remarks 

3. 5. If ah is known, a confidence interval for ah-l can be found. 
Consider the equation 

h-1 
y,-ahx~ ~ L apxf + z,, 

0 

which shows that the problem is reduced to the case of a polynomial of 
degree (h-1). So, if a confidence interval for ah is given, a confidence 
region for a,. and ah-i can be found. This can be generalized to an (h + 1)­
dimensional confidence · region for the parameters a0, ••• , ah in a way 
analogous to the one described in 2. 2. and 2. 3. 

3. 6. If v > I, an N-dimensional confidence region for the parameters 
ap, ... p, can be found in the following way: 

I. Given the other parameters, a confidence region for the parameters 
ap

1
o ... o (Pi= 0, ... , h) in the N-dimensional parameter space can be con­

structed, the level of significance being s1 (cf. 3. 5.). 
2. In the same way one can proceed with, the parameters 

aop, ... o,· • ., aoo ... :r>, (p;. = 1, ... , h), 

the 1evels of significance being s2, ••• , s,. 
3. Finally the parameters aP½,--P! which have at least two indices 

P) =I= 0. We suppose that (apart from the conditions I and III) condition 
TTb is valid, which is a more stringent condition than condition Ila. 
Consider the equation 

in which E denotes summation over all sets Pi, ... , p, except the set 
Pi, . .. , p!. We can then state regarding the quantities 
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so that in a well-known way confidence regions for each of. the parameters 
a1>}. •. s,~ can be found with levels of significance 

The common part of the N-(k-l)v-1 regions is a confidence region for 
the "true parameter point" in the N-dimensional parameter space, the 
level of significance being 

N-(h-i)v-i 

< 2 8q• 
q-i 

4. CONFIDENCE REGIONS FOR THE PARAMETERS OF SYSTEMS OF 
REGRESSION EQUATIONS. 

4. 0. In recent years considerable work has been done on the subject of 
systems of regression equations (see e.g. T. HAA.VELMO (1943, 1944), 
T. KOOPMANS (1945, 1950), R. BENTZEL and H. WOLD (1946), M. A. 
GmsmcK and T. HAA.VELMO (1947)). In this section we shall give a brief 
investigation into the application of the methods considered on this 
subject. 

The probability set 

4. 1. Our probability set I' will be the n(v + 2-r)-dimensional Cartesian 
space Rnc•+z,,> with coordinates 

Un, ... ' Uin, ••• ' u,1, ... ' Uvn 

Vn, •• • ' Vin, ••• ' V,,i, ••• ' V,,n 

Wn, ••• ' Win, ••• ' W,,i, ••• ' W,:n• 

We suppose n (v + 2-r) random variables uM, vm, wt• (i = 1, ... , n; 
A = 1, ... , v; x, t = 1, ... , -r) to have a simultaneous probability distri­
bution on I'. Furthermore we consider nv + m-r parameters g,.., ati (i = 1, ... 
. . . , n; j = 1, ... , m; A= 1, ... , v; t,;,, 1, ... , -r). Finally we consider the 
following equations 

(14) 

(15) 

(16) 

ft ('tJH, •· •, 'tJ,,,;, gli, •··, g,., at1, •••,aim)= Wti l ! · _ 1 i- , ... ,n 
xM=g,.,+uM A=l, ... ,v 

Y . = '>7 • + V. X, t = 1, ... , o' "'' ·,~i ui• 

The equations (14) are supposed to have a unique solution for 'Y/u, (x = 
= 1, ... , .- ; i = 1, ... , n) on every element of I', except possibly on a set 
of elements with zero probability. 

The equations (14) are called the "stochastic regression equations". 
The parameters g,." ( i = 1, ... , n) are interpreted as the values which the 
variable g,. assumes (A = 1, ... , v). The random variables wt, are called 

8 
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the "true deviations" in the stochastic regression equations. Finally, the 
random variables uM and v,., are called the "errors of observation" of the 
"true" values ;;.;, and 71,., respectively. 

The problem is again, to determine confidence regions for the para­
meters ati. 

Confidence regions 

4. 2. We reduce the equations (14), (15) and (16) to the forms 

au,·•·, a1m,···, ai1,···, a,:m)- (x= 1, ... , 1:) 

Consider e.g. the case 

(t= 1, ... , 1:) 

in which f31x are real numbers and Ht are polynomials of degree h in the 
;'s. Suppose that the errors u;.;, are sufficiently small in order that terms 
containing U;.;, u;.,, (A, l' = 1, ••. , v) can be neglected (cf. the Approximation 
of section 3. I.); then we have 

,: 

Ht {xH, •··, x.,) + L f31x y,.;, ~ zt,, (t=l, ... ,1:) 
><=1 

in which zt, are linear functions of uJ.,, v,.., wt, (A= 1, ... , v; x, t = 1, ... , 1:). 
The random variables (zli, ... , z",) (i = 1, ... , n) have a simultaneous 
probability distribution, while the n 1:-uples (zi;,, . .. , Z,:;,) are supposed to 
be stochastically independent. So we have 

(17) 

in which 

B= 

{3,:1 • • • /Jn: 
and B1x is the cofactor of the element f31x-

Then the problem is reduced to the case considered in section 3. Call N 
the number of parameters of a polynomial of degree h. Then, in a way and 
under conditions which are analogous to those stated in section 3, a con­
fidence region for 1:N parameters of the equations (17) can be given. But 
the original equations contain 1:(N + 1:-l) parameters. This means that, 
if 1:(1:-l) parameters of the original equations are given, a confidence 
region for the remaining 1:N parameters can be constructed. If the level 
of significance of the confidence regions for the parameters of the equations 
(17) are e,,(x = 1, ... , 1:), this level of the confidence region for the 1:N 

T 

parameters of the original equations is < L e,.. 
1 

9 
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4. 3. We shall now elaborate a simple example, which is due to T. 
lIAAVELMO (1944), p. 99 seq. Suppose we have the following equations: 

1h,;,-/J'Yfa,;,= wli 

a~li + '11H - a'1J2,;, = W2, 

Xli= ~Ii 

Yli= 'llli+ vli 

Y2,= '112,;,, 

in which a and -{J are positive. 
We obtain: 

a wli-w2, 
Y2i=a-{Jxli+ a-{J · 

i= 1, ... , n 

Suppose that the complete or the incomplete method gives two con­
fidence intervals 

with levels of significance 81 and 82 respectively. Then we obtain two con­
fidence regions in the a, {J-plane, bounded by hyperbolas and by straight 
lines respectively. The probability that the common part contains the 
"true" point (a, {J) is > 1 - 81 - 82• (See fig. 2). 

On multicollinearity 

4. 4. As a final application we consider the following case. The follow­
ing equations are given (cf. section 2. 0.): 

Hence 

with 

0, = ae + a1 ~li + <¼ ~2;, 

'lJi = 0;, + W,;, 

XAi= ~ ... + U;.,;, 

Y,;, = 'lJ,;, + vi. 

~ i= 1, ... , n 
I it= 1, 2. 

Suppose that the observed values xli, x2,;, (i = 1, ... , n) are such that the 
following condition is satisfied: 

For ea.ch pair j (i, j = I, ... , n) the quotient 

has the same sign. 

xli-X1i (i =fa i) 
X2,;,-X2i 

10 
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o( 

Fig. 2 

This condition implies that, apart from the above-mentioned linear 
relation between xii, x2i and Yi, we have an additional monotonic relation 
between the observed values Xi. and x2i (if this relation also is - approx­
imately - linear, we have a case of "multicollinearity"). 

We now have the following 

Theorem 7. Under the above-mentioned condition the regions A1 and 
A2 ( cf. section 2. 2.) are identical, and their common part A is unbounded. 

11 
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Proof. If the condition is satisfied the arrangement of the observed 
points (xH, x2i, Yi) according to increasing values of Xi is the same as (or 
just the reverse of) the arrangement according to increasing values of x2• 

Moreover ( cf. section 2. 2.) the quantities K<l> ( ij) and K<2> ( ij) which are 
estimates of a1, given ~. and of a2, given cti, respectively are represented 
by the same set of straight lines in the a1, ~-plane: 

(xu-X1i) xm (ij) + (x2i-X2i) ~=Yi-Yi 

(xi.-X1i) a + (x2,-x2i) K<2
> (ij) = Yi-Yi• 

As the slopes of these straight lines -(xu - x11)/(x2i - x2;) have the 
same sign, the regions A1 and A2 are identica], from which the theorem 
follows. 

If the incomplete method instead of the complete method is used, the 
same theorem holds with respect to the regions A~ and A~, whereas the 
condition that all quantities (xli - xli)/(x2i - ~;) have the same sign is 
weakened to the condition that all quantities (xH - x1.n,H)/(x2, - x2,,.,+i) 
have the same sign (i = 1, ... , n1). 

5. PROBLEMS OF PREDICTION 

The probability set 

5. 0. For the probability set and the random variables defined on it 
we refer to section 4. 1. We assume, however, that all errors uM, vm are 
identically equal to:zero (A= l, ... ,v; "= 1, ... ,-r; i= l, ... ,n). 

Conditions 

5. 1. We impose the following conditions: 
Condition I: All n 1:-uples (wli,· .. , Wzi) are distributed independently 

of each other. 
Condition Illa: All n 1:-uples (wH,· . . , Wzi) have the same continuous 

simultaneous distribution function. 
Apart from these conditions we shall use the additional conditions, which 

are necessary for the determination of a confidence region for the para­
meters of the regression equations. 

The problem 

5. 2. Suppose that the following n points are observed: 

( c;li, .. · , c;,i, 'i'JH, • • • , 'i'J-ri) • 

Suppose further that the following v parameters are given: 

<;1,n+h · · •, ~v.n+l• 

These parameters are interpreted as the ~-coordinates of an ( n + l )-th point, 
which is not observed. The problem is to determine a confidence region 
for the 17-coordinates of this point, i.e. for 

1'/1,n+l> ... , "lv,n+l• 

12 
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Confidence regions 

5. 3. Consider again the case (cf. section 4. 2.): 

477 

(t = 1, ... , i') 

so that we have 

T Btx 
TJ,.i= :Z:-B {-Ht(~u,-••,~ .. ) +we.}. 

t=l 
(u= 1, ... , .-; i= 1, ... , n) 

Putting i = n + 1 we can write 

11><.n+l = g,. (~1.n+1, · • •, ~v.n+l• /3) + h,. (w1,n+l• ,. •, W-r,n+l• /3), 

in which 

T Be.. 
h,. (w1,n+l• ••• , W-,,n+l> /3) = L J3 wt, 

t~l 

and in which {3 is the "true parameter point"; {3 may be considered as a 
vector, the components of which are f31x(t, u = 1, ... , .-) and all parameters 
determining the polynomials He (t = 1, ... , .-). 

Suppose f3 is known. Then we can arrange then quantities h,.( wli, ... , w.,,, /3) 
according to increasing magnitude: 

h><i < ... < h,m, (u= 1, ... , .-} 
in which 

h,.1= h,. (wli·• ... , w., •. , {3). 
1 1 

We have the following 

Theorem 8: Under conditions I and Illa a confidence interval for 
11,._,.+1 is given by 

(g,. (~1.n+l• •••, ~v.n+l• /3) + h,.., g,. (~1.n+1• •·•, ~•.n+l• /3) + h,.,n-s+i) 

if /3 is the known "true parameter point"; t,he level of significance is 
2s (n + 1)-1• 

In order to prove this theorem, we shall use the following lemma (see 
W. R. THOMPSON (1936)): 

Lemma: If a random sample of size n is drawn from a universe with 
continuous distribution function; if the sample values are arranged in 
ascending order; if an (n + 1)-th draw from the same universe is to be 
effected; then the probability that the stochastic interval bounded by the 
s-th and the (n - s + 1)-th of these values will contain the (n + 1)-th is 
equal to 1 - 2s/(n + 1). 

Proof of Theorem 8: As g,. (~i.n+i• ... , ~v ... +i, /3) is ex hypothesi a known 
quantity, the problem is to determine a confidence interval for 

13 
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h,. (w1,,.+1, ... , w-..,n+1, /3). But n sample values h,. (wli, .. . , w.,i, /3) from the 
same universe (cf. condition Illa) are obtained; hence the lemma is suf­
ficient in order to show the validity of the theorem. 

5. 4. Generally, however, f3 is unknown, and we can only calculate a 
confidence region R for /3. Let now /3 vary through R, and denote by J,. 
the interval bounded by the lowest of all lower limits of the interval 
considered in Theorem 8 and by the highest of all upper limits (x = 1, ... , -r). 
If the level of significance of R is e, the following theorem immediately 
follows: 

Theorem 9: 

p [111.n+l E}1, ... '11.-.n+l Ej-,;, /3 ER]> (1-e) (1- n
2~81). 

Fig. 3. n= 14 s= 2 

H 
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The linear case in two variables 

5. 5. For the linear case of two variables 

11.= ao+ a1 ~i + w, 

479 

a simple graphical representation can be given. Suppose that af is the 
"true" a1 ; after arranging the sample values 

wi (af) = 'Y};,-a0-af ~. 

in order we find two straight lines: 

rJ = a0 + af ~ + W 8 (a*) 

'Y} = a0 + af ~ + Wn-s+i (a*). 

Fig. 4. n= 11 a= 2 

15 
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The probability that the region bounded above by 8 1 and below by 82 will 
contain an (n + 1)-th sample point Dis, under the condition that at= <I:i., 
equal to 1 - 2s/(n + 1). (See fig. 3). 

Suppose that the confidence interval for <Ii is (a1, a~). When af varies 
through this interval the lines 81 and 82 revolve around the observed points 
(~i, 11,) with ranks sand (n - s + 1) respectively with respect to increasing 
values of w. As long as the observed points having these properties remain 
the same, 81 and 82 revolve around one point; but as soon as variation 
of af causes another point to have this property, the revolution takes 
place around this point. The figures 4 and 5 elucidate the fact that some­
times the region is bounded by the straight lines 81 and 82 for a* = a1 and 
a~ only, whereas it is sometimes necessary to consider values between a1 and 
a~ as well. 

Fig. 5. n= 15 B= 2 

16 
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6. CONCLUDING REMARKS 

6. 0. The methods of determining confidence regions which may be 
derived from this kind of analysis have not been exhaustively treated. 
In order to elucidate this statement we shall give a confidence interval 
for a in the stochastic regression equation 

(i = 1, ... ,n) 

in which all g,. are positive, and in which 

P[An. < 0]= 0 

holds for i = 1, . .. , n. g1 , ... , gn are known, A and a are unknown para­
meters, and w1, ••• , wn are random variables, which are supposed ( 1) to 
be distributed stochastically independent, (2) to have continuous sym­
metrical distribution functions with zero median. 

We arrange the observed points (g,, 17.) according to increasing magni-
tude of g and define 

d _ Jog lnn,+.1-Iog Ind . 
• - 1 ~ 1 g ' (i = 1, ... , ni) og n,+i- og • 

in which ni = ½ n (if n is odd the point (g, cn+i>• 1/1, cn+i>) is neglected). After 
arranging the observed quantities d. according to increasing magnitude: 

d(l) < ... < den,) 
we have the following 

Theorem 10. Under conditions (1) and (2) the interval (de,,>, dcn,-r,+ll) 
is a confidence interval for a to the level of significance 21 • (n1 - r1 + 1, r1). 

Proof. We have 

'YJn,+i -w,.,+i = (g",+i)a 
n.-w,, gi 

or: 

(
~i+i)a (~+•)a n .. ,+.- T n.=w,,,+;,- T w,.. 

It follows from condition (2), that 

(
gn,+i)a w,,,+,.- T w;, 

has a continuous distribution function with zero median. Hence: 

P [ (
gn,+•)a o] n,,,+i- T n.< = 

= P [log 'YJn,+i -log 'YJ• < a (log g,,,+i -log g,.)] = 

= p [log 'YJn,+i -log 'YJ, < a]= p c~og 'YJn,+i - log 'YJ, >a]=½, 
log g,,,H -log g,. log g,,,+i -log g• • 

17 
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if 11i, . .. , 'l'J,. are positive; if they are negative we have to replace 'l'Ji and 
'l'ln,_H by - 'l'J, and - 'l'J,.

1
H respectively. From this and from condition 

( 1) the theorem follows. 
The theorem shows that this method of determining a confidence inter­

val for a is identical with the incomp\ete method for a in the linear equation 

log 'l'Ji= log A+ a log~.+ w~ 

(which can be written as 

if w~, .. . , w~ satisfy the same conditions (1) and (2). 

6. I. Finally we mention that it is possible to find estimates instead 
of confidence intervals. Consider e.g. the statistics Lf (ij); each of these 
m statistics has the property that its sampling median is equal to a1 ( cf. 
section I. 3.). Hence one can use the sample median of tl}.e observed 
quantities Ll(ij) as an estimate of Ui· 

It is a pleasure to acknowledge my indebtedness to Professor Dr D. 
VAN DANTZIG for his stimulating interest and to Mr J. HEMELRIJK for his 
valuable and constructive criticism. 
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