& L g

KONINKLIJKE NEDERLANDSE AKADEMIE
VAN WETENSCHAPPEN

A rank-invariant method of linear and polynomial
regression analysis

III

BY

H. THEIL

Reprinted from Proceedings Vol. LIII, No. 9, 1950

Reprinted from Indagationes Mathematicae, Vol. XII, Fasc. 5, 1950

1950
N.V. NOORD-HOLLANDSCHE UITGEVERS MAATSCHAPPIJ
(NORTH-HOLLAND PUBLISHING COMPANY)
AMSTERDAM

~ SP§

L\
A

§

&



£



A RANK-INVARIANT METHOD OF LINEAR AND POLYNOMIAL
REGRESSION ANALYSIS. TIT?)

BY

H. THEIL

(Communicated by Prof. D. vaxn Dantzie at the meeting of Sept. 30, 1950)

3. CONFIDENCE REGIONS FOR THE PARAMETERS OF POLYNOMIAL
REGRESSION EQUATIONS

The probability set

3. 0. The probability set I" underlying the probability statements of
this section is the n(» 4 2)-dimensional Cartesian space R,,,, with
coordinates )

Upgse o os Yoo o oy Uptse ooy Uppy Viye o oy Upy Wiy o oy Wipe

Every random variable mentioned is supposed to be defined on this
probability set.

We suppose = (v + 2) random -variables wuy, v;,, w; (A=1,..., »;
i=1,...,n) to have a simultaneous probability distribution on I.
Furthermore we consider ny parameters &;; and N parameters a, , for

all sets of non-negative integers py,..., p, satisfying

0= i Py = h.
i“

Now we put 2)

(19) 0; =3 ap, .y, 805 EF

1) . 7 = 0+ w, i=1,. ,n
(12) X5 = Eu+ Uy, A=1,...,»
13) Yi =Nt Vi

So, for any set of values of the (N + ny) parameters g, _,, &, the
variables x,; and y; have a simultaneous distribution on I', and are there-
fore random variables.

The parameters &, (¢ = 1,..., n) are interpreted as values assumed
by the variable &,. The equation (10) is the polynomial regression equation.
The random variables w; are called “‘the true deviations” from the poly-

1) This paper is the third of a series of papers, the first of which appeared in
these Proceedings, 53, 386 —392 (1950); the second appeared in these Proceedings,
53, 521—525 (1950).

?) 2 in equation (10) denotes summation over all sets p,,..., p,.
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468 (1398)

nomial of degree k; the random variables u,; and v; are called “the errors
of observation” of the ‘“‘true’” values &, and %, respectively. 2)

Conditions; approximation

3.1. In order to give confidence regions for the parameters a, _,
we consider the following conditions:

Condition I: All n (v+ 2)-uples (uy, v;, w;) are stochastically indepen-
dent.

Condition Ila: 1. Each of the errors u, vanishes outside a finite
interval ‘UMI < G e

. For each ¢ £ j we have |&y—&y| > gu + g4y

Condition IIb: 1. Each of the errors u,; vanishes outside a finite
interval |uy| < gs. -
2. For each ¢ £ 4, for each set py,..., p, and for an
real hy; such that |hy| < g we have ‘

sgn § T1 (ut Pa— T B+ kﬁ)”1§=sgn Me-1 si’%% .

Condition I11: For all fixed values of the constants g, the n random
variables vz 0 Uy + V; + w; = z, have continuous distribution functions,
a=1

which are symmetrical with the median med (z).

Finally we mention that the solution will be given subject to the
following

Approximation: For any positive s the quantities

! -
uf, uy,, ulv, uiw,; A A=1,..v;i=1,...,n)

are neglected. ¢)

Confidence regions
3.2. We consider the case v = 1, so that equation (10) can be written as

h

61;: Z a,,f’,-’.

=0
Let us arrange the n observed points (x;, ;) according to increasing

values of z:
By < e < By

%) It is clear that the random variables ¥; and w; cannot be separated in one
sample of observations; if, however, the experiment is repeated for the same “true”
values &, #; (e.g. if — when the relation between income and consumption is
‘investigated — for the same families and the same period the amounts of their
incomes and outlays are repeatedly calculated), then the errors v; can be mitigated
by averaging, whereas the deviations w,; cannot.

4) 'The approximation implies that the errors u,; are sufficiently small. This
restriction is not very serious, because, unless the number of points » is very large,
large v lues of u,; will cause the confidence region for the parameters of the poly-
nomial to be so large as to render the method useless.

4
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We leave 0,1,... or h points out of consideration until the remaining
number »’ is such that »'/(2 + 1) is an integer, and write n, = »'[(h + 1).
(It seems advisable with respect to the power of the method to omit the
points with rank =, + 1, 2n, + 1,... and [ or An, + 1). From now on we
write n for the remaining number »’, so that (A + 1) n, = n.

We define the following quantities:

. . Yi— Ynp+i
A(Z,nh"[‘%):;:'__—xh:_
? nh 2

A, my A1) — A (1 + ¢, 2m, - 4)

A9 (6, v, + 1, 2ny + 7) =
X Xong,+4

A® (3, ny 4 4, ..., hny, + 4) =
ARGy 4, Bl 1y £) — AP (4, 20,4 6., By 1)

Ky Ky +4

We arré,nge the observed quantities A™ (s,..., hn, + ) according to
increaging magnitude:
AP < ...< AP,
in which
AP = AP (G,,..., hny + i),

3.3. Then we have the following theorem:

Theorem 6: Under conditions I, 1Ia, and III the interval (4%, 4%_, )
is a confidence interval for a, to the approximate level of significance
21 (ny—ry, + 1, 7). 5)

In order to prove this theorem we shall use the following Lemma.
Define for all non-negative integers s and for all positive integers ¢ and %

s — & Sle—1mp+ i
Ploptinstomtimgti = 2,000 2 Titeun Lo tmprs *
8 Ne—Dinp+i
8’20. z 8,-= 8
Then we have

3 3
Pi ..... (c—l)'nh+i""Pnh+i....,mh+i

.....

Ei—Tenpti
Proof of the lemma: We have

8 8 —
P‘i.....( G*I)ﬂh’l"i —Pﬂh+ i.....c’ﬂh-‘l‘i -

snh+i o) 0y +4 8; 8;

= PO X ooz tem pta $~7‘ i .

z Z g4 (c—l)'nh+i ( (] cnh+z):
8 He—Dinp+i

5} In the first and second part of this paper the arguments of the incomplete
Beta-function must be reversed.
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in which X's;=s. It follows that

s 8
P ..... (e—~Dnp+i Pnh+'i.....cnh+i

Li— xc’nh+i
— Iy +i S(e—Lynp+i (%1 8;—2
- Z .. Z xnh}-b(-i o x(c Dy ’_';_z (xt + g c"lh+‘b+ + wcuh+z) —

% He-1npti

Proof of Theorem 6: The relation between x; and y; is given by

B
Yi= 2 a, —u)P + v+ w;

=0
]
A Zo% x—u (o4 20, &4 o4 hay E7Y) - v+ Wy,
o5 .
in which we neglected (in accordance with the Approximation) uf for
s > 1. Putting z; = g; u; + v; + w,, in which
— Q= a1+ 2(12 Ei + <ot hah 5";-1’

we get

h
Yz ~ zoap x‘tp + z;.
p=

Now we have according to the lemma:

X% x2 B gh
KKy 44 Xy —Knpri . L Ty g
A (i, my+10) ~ o+ 0oy +.to
Xy — XKy 44 Xi—Kppvs X Xpp4i
z'nh+z

=a1+a2P%.nh~hi+ +ah 'th+'l,+ Xi—X, +i
pti

AP (6,419,215 1) ~ ey + oy P%,nh+i.2nh+i +ota Pi,;h+i,2ﬂh+i+

z,— z'nh+i Zyy i Zong+4

Xi—Xppri  Xnpri— Xony g

Ky Xong+4
AW (3, 1+ 4, ..o, Py 4+ 1,) o+ Z;,
in which Z; is a random variable depending on
b NS TN SN A

Z; can be written as a fraction, the denominator being a product of terms
(Xemyti— Xomy44) (6, ¢" = 0,..., b; ¢ 7 ¢'); according to condition Ila this
denominator has a definite sign. The numerator consists of a sum of terms

(zcnh+ i Zomy+ B ;l;[m(x empti ™ Xemy ¢ i)
.

6
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But to our order of approximation this is equal to
(zcnh+i - zc'nh+i) H (Ec"nh+'i - Ec’"nh-k i),
¢”.¢”

so that the numerator can be written as
h
2. ToZony+s With 3 7,=0.
¢=0 ]

It follows from condition III that this quantity has zero median. From
this and from the above-mentioned property of the denominator it follows
that

PLA® (5, ..., k4 0) < oy | ap] =P [AP (3, ..., by +3) > oy | @] = %
From this and from condition I the theorem immediately follows.

Additional remarks

3.5. If @, is known, a confidence interval for q,_, can be found.
Consider the equation

=1
B
Yi— o X; & % a, X} + z;,

which shows that the problem is reduced to the case of a polynomial of
degree (h—1). So, if a confidence interval for o, is given, a confidence
region for a; and ¢,_, can be found. This can be generalized to an (& + 1)-
dimensional confidence region for the parameters a,...,, in a way
analogous to the one described in 2. 2. and 2. 3.

3.6. If»> 1, an N-dimensional confidence region for the parameters

a can be found in the following way:

'Dy... Dy
1. Given the other parameters, a confidence region for the parameters

Upo..0 (Pr=0,..., h) in the N-dimensional parameter space can be con-

structed, the level of significance being & (cf. 3. 5.).

2. In the same way one can proceed with. the parameters

Qop,...00 + +» %00...9, (p). =1,..., h)a

the levels of significance being e,,..., s,.

3. Finally the parameters a, 1.5 which have at least two indices
% # 0. We suppose that (apart from the conditions I and IIT) condition
116 is valid, which is a more stringent condition than condition Ila.
Consider the equation

RiEYi_Zapl...p,xﬁ---xp?Napi. lxl x +zw

Vi

in which X' denotes summation over all sets p,,..., 7, except the set
Pi,. .., pt. We can then state regarding the quantities
R.—R.
5= P p: ;1 el
X1, .x?—x1 . x*

1% i 17 77" Ty

7
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that
P[Sy <y gt| o p1]=P[S;> oy s | a1 ,1l=1%,

so that in a well-known way confidence regions for each of the parameters
a5l 41 can be found with levels of significance

Eyg1s eoe s EN—(—1)v—1-

The common part of the N—(%—1)»-—1 regions is a confidence region for
the ‘“‘true parameter point” in the N-dimensional parameter space, the
level of significance being

N—(h—1)v—1

= 8-
g=1

4. CONFIDENCE REGIONS FOR THE PARAMETERS OF SYSTEMS OF
REGRESSION EQUATIONS.

4. 0. Inrecent years considerable work has been done on the subject of
systems of regression equations (see e.g. T. HaaveLmo (1943, 1944),
T. KoormaNs (1945, 1950), R. BexTzErL and H. Worp (1946), M. A.
GrrsuICK and T. Haavermo (1947)). In this section we shall give a brief
investigation into the application of the methods considered on this
subject.

The probability set

4.1. OQur probability set I" will be the n(r + 27)-dimensional Cartesian
space R, ,.,, with coordinates

gy evn s Upns oee s Upgy wen s Upy
Vigy eens Vigsoee s Ugpy een s Ungy
Wigy eaes Wins oon s Wyyy eee s Wipe

We suppose 7 (v + 27) random variables uy, v, w, (G=1,...,%;
A=1,...,7;%¢t=1,...,7) to have a simultaneous probability distri-
bution on I'. Furthermore we consider ny + mt parameters &;;, a; (¢ = 1,...
veanyf=1,...,m; A=1,...,v; £=1,..., 7). Finally we consider the
following equations

(14) Fo s wev s Nais Exis oo iy Oy oon s Og) = W i=1,...,n
(15) Xp=Ex+ Uy A=1,.

(16) Vi = Ni + Viir Ht=1,..;7
The equations (14) are supposed to have a unique solution for 7,,; (x =
=1,...,7;¢=1,...,n) on every element of I', exeept possibly on a set

of elements with zero probability.

The equations (14) are called the “stochastic regression equations”.
The parameters &;; (¢ = 1,..., n) are interpreted as the values which the
variable &; assumes (4= 1,...,»). The random variables w, are called

8
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the “true deviations™ in the stochastic regression equations. Finally, the
random variables u,, and v,; are called the “‘errors of observation” of the
“true” values &, and %,; respectively.

The problem is again, to determine confidence regions for the para-
meters ag.

Confidence regions
4.2, We reduce the equations (14), (15) and (18) to the forms

Vo == G (Xpgyeens Xygy Upioeuns Uy Vagonens Vg, Wagoon, W,
Oy1reeer Camyees Ogyzenes Ogm)e (x=1,...,7)

Consider e.g. the case
ftE-Ht(Eli:---a‘fvi)"l'”glﬂtnnmb (t= 1:---,7:)

in which f,, are real numbers and H, are polynomials of degree k in the
&’s. Suppose that the errors u,; are sufficiently small in order that terms
containing uy; uy,; (A, ' = 1,.. ., v) can be neglected (cf. the Approxzimation
of section 3. 1.); then we have

Ht(xli:“'yxwi) +”glﬁk¢yw%zti) (t= 19-",‘[)
in which z,; are linear functions of uy, v,,, wy; (A= 1,...,9v;%,¢t=1,..., 7).
The random variables (zy, ...,2z;) (¢ = 1,...,n) have a simultaneous

probability distribution, while the » z-uples (zy;,. . ., z,;) are supposed to
be stochastically independent. So we have

L B
(17) Yui & gZ:],-Fw {—Ht (xli: sy xﬂi) +zti}’
in which
ﬂ.ll .. /3.11
B-|
R

and B, is the cofactor of the element f,,.

Then the problem is reduced to the case considered in section 3. Call N
the number of parameters of a polynomial of degree h. Then, in a way and
under conditions which are analogous to those stated in section 3, a con-
fidence region for TV parameters of the equations (17) can be given. But
the original equations contain 7(N + 7—1) parameters. This means that,
if 7(z—1) parameters of the original equations are given, a confidence
region for the remaining vV parameters can be constructed. If the level
of significance of the confidence regions for the parameters of the equations
(17) are g% = 1,..., ), this level of the confidence region for the =V

parameters of the original equations is < i Exe
1

9
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4.3. We shall now elaborate a simple example, which is due to T.
Haavermo (1944), p. 99 seq. Suppose we have the following equations:

N1i— B Yo = Wi

byt My — ang = Wy

L= 51,; f= 1,...,’";
Y= M+ Vi
Yoi = Tgi,
in which o« and —p are positive.
We obtain:
af oW, —Pwy

Y= a—-ﬁ xl'i,+ a__ﬂ +V1,;

a Wy, — Wy,
;= 2+
Yei a—p a—p

-Suppose that the complete or the incomplete method gives two con-
fidence intervals

ap
aléa_‘ﬂéaz

a

=b
a—B=
with levels of significance ¢, and &, respectively. Then we obtain two con-
fidence regions in the a, f-plane, bounded by hyperbolas and by straight
lines respectively. The probability that the common part contains the
“true” point (a, f) is = 1 — g — &. (See fig. 2).

b,

lIA

On multicollinearity

4. 4. As a final application we consider the following case. The follow-
ing equations are given (cf. section 2. 0.):

0; = ap + oy &1+ 0 &y

N =0; +w; fi=1,...,n
Xz=&n+ uy fa=12
Yi =% +V;.
Hence
. Yi= @ + 03 X354 0 Xp; 4 2Z;
with

Z,=V;+ W; — 0 Uy; — 0 Up;.

Suppose that the observed values z;;, Z; (¢ = 1,..., n) are such that the
following condition is satisfied:
For each pair 4 (i,7=1,...,n) the quotient

BT (; 2 )
Logs— Lay

has the same sign.

10
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Fig. 2

This condition implies that, apart from the above-mentioned linear
relation between x,;, x,; and y;, we have an additional monotonic relation
between the observed values z,; and z,; (if this relation also is — approx-
imately — linear, we have a case of “multicollinearity’).

We now have the following

Theorem 7. Under the above-mentioned condition the regions 4; and
A, (cf. section 2. 2.) are identical, and their common part 4 is unbounded.

11
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Proof. If the condition is satisfied the arrangement of the observed
points (zy;, %y, ¥;) according to increasing values of #; is the same as (or
just the reverse of) the arrangement according to increasing values of z,.
Moreover (cf. section 2. 2.) the quantities K™ (4j) and K@ (¢j) which are
estimates of a,, given a,, and of «,, given o, respectively are represented
by the same set of straight lines in the ¢, a,-plane:

(15— 215) K (37) + (02— 25) 0a =¥ —Y;
(B—®y5) @+ (@i —p5) K2 (4§) = y;— ;-
As the slopes of these straight lines —(z;; — ,;)/(%s; — ;) have the

same sign, the regions A4, and 4, are identical, from which the theorem
follows.

If the incomplete method instead of the complete method is used, the
same theorem holds with respect to the regions 4, and A4;, whereas the
condition that all quantities (x,; — #y;)/(%:; — %;) have the same sign is
weakened to the condition that all quantities (%, — %, 15)/ (%25 — %5, 44)
have the same sign (1 = 1,..., ny).

5. PROBLEMS OF PREDICTION

The probability set

5.0. For the probability set and the random variables defined on it
we refer to section 4. 1. We assume, however, that all errors uy, v,; are
identically equal to zero (A=1,...,v; 2= 1,...,7; 9= 1,...,n).

Conditions

5.1. We impose the following conditions:

Condition I: All n t-uples (wy;,..., w,;) are distributed independently
of each other.

Condition IIIa: All n v-uples (wy,. .., w,;) have the same continuous
simultaneous distribution function.

Apart from these conditions we shall use the additional conditions, which
are necessary for the determination of a confidence region for the para-
meters of the regression equations.

The problem
5. 2. Suppose that the following » points are observed:

(§1i: sen gy évi: 7717',3 ey nzi)'
Suppose further that the following » parameters are given:

El.'n+1-, ety Sy,mtle

These parameters are interpreted as the &-coordinates of an (n+ 1)-th point,
which is not observed. The problem is to determine a confidence region
for the #-coordinates of this point, i.e. for

"71,'»+1’ A nv,n +1*

12
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Confidence regions
5.3. Consider again the case (cf. section 4. 2.):

ftEHt(sliw":éyi)+t§:1ﬁbcnm'3 (t=1,..,7)

so that we have
T B -
Wi =t§1'§b"{_ﬂt (Eli: seny Evi) + wti}' ("'—: 1"-" T; 1= 1,-", n)

Putting ¢ = n + 1 we can wribte

Non+1= Gu (Sl,n-i—l’ seey 5v,n+1a ﬂ) + kx (wl.ﬂ—l-l’ sees "v‘:.n+11 .B)’
in which

L B
gx (El.n+1’ seey ‘Ev,n+1’ ﬂ) == ——tz:l _Bg Ht (51,n+17 see Eﬂ.n+1)

I B
P (Wy gy eens Wonar, )= tzl _B‘_" wy

and in which § is the “true parameter point”; § may be considered as a
vector, the components of which are 8,(¢, » = 1,..., ) and all parameters
determining the polynomials H,(t=1,..., 7).

Suppose B is known. Then we can arrange the n quantities A, (w,;,..., w, f)
according to increasing magnitude:

by <...< by, (x=1,...,7)
in which
km‘= hx (wli,d seey w-rii) ﬂ)‘

We have the following

Theorem 8: Under conditions I and IIIs a confidence interval for
Nw.n+1 18 given by

(gn (Sl,n-l-l: ey Syntls /3) + hnu [ (51,n+1’ LA RN S8t /3) + hx,n—s+1)

if § is the known ‘““‘true parameter point’’; the level of significance is
2s (n + 1)71,

In order to prove this theorem, we shall use the following lemma (see
W. R. Trompson (1936)): '

Lemma: If a random sample of size » is drawn from a universe with
continuous distribution function; if the sample values are arranged in
ascending order; if an (n + 1)-th draw from the same universe is to be
effected ; then the probability that the stochastic interval bounded by the
s-th and the (n — s + 1)-th of these values will contain the (» + 1)-th is
equal to 1 — 2s/(n + 1).

Proof of Theorem 8: As g, (&.n41s- - -5 &.n+1, B) 18 €x hypothesi a known
quantity, the problem is to determine a confidence interval for

13
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he(Wy ni1se o> Wiy, B). But n sample values A, (wy;,. .., Wy, f) from the
same universe (cf. condition IIla) are obtained; hence the lemma is suf-
ficient in order to show the validity of the theorem.

5. 4. QGenerally, however, f§ is unknown, and we can only calculate a
confidence region R for 8. Let now 8 vary through R, and denote by J,
the interval bounded by the lowest of all lower limits of the interval
considered in Theorem 8 and by the highest of all upper limits (x=1,. .., 7).
If the level of significance of R is ¢, the following theorem immediately
follows:

Theorem 9:

; 27s
P[nl.‘n+1E.’la--""t.n+lelﬂﬁER] -‘Z (1——8) (1— )'

n+41

Fig. 3. n=14 s=2

14
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The linear case in two variables
5. 5. TFor the linear case of two variables

N=do+ o &+ W,

a simple graphical representation can be given. Suppose that af is the
“true” q; after arranging the sample values

w; (of) = n—ap—ay &
in order we find two straight lines:
8y n=109 + ai & + w, (a*)
and S,: n=0ag+ of & + w,_,., (0*).

?
¢

e

Fig. 4. n=11 s=2

15
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The probability that the region bounded above by S; and below by 8, will
contain an (r + 1)-th sample point D is, under the condition that of = q,,
equal to 1 — 2s/(n + 1). (See fig. 3).

Suppose that the confidence interval for o, is (a,, 6;). When of varies
through this interval the lines 8, and 8, revolve around the observed points
(&:> n;) with ranks s and (» — s + 1) respectively with respect to increasing
values of w. As long as the observed points having these properties remain
the same, §; and S, revolve around one point; but as soon as variation
of af causes another point to have this property, the revolution takes
place around this point. The figures 4 and 5 elucidate the fact that some-
times the region is bounded by the straight lines S; and 8, for a* = a, and
a; only, whereas it is sometimes necessary to consider values between a, and
a; as well.

Fig. 5. n=15 s=2

16
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6. CONCLUDING REMARKS

6.0. The methods of determining confidence regions which may be
derived from this kind of analysis have not been exhaustively treated.
In order to elucidate this statement we shall give a confidence interval
for a in the stochastic regression equation

m=A&E+w;, (=1,...,n)
in which all &; are positive, and in which
P [-A Ni é O]= 0

holds for ¢ =1,...,n. &,..., & are known, 4 and « are unknown para-
meters, and w;,. .., w, are random variables, which are supposed (1) to
be distributed stochastically independent, (2) to have continuous sym-
metrical distribution functions with zero median.

We arrange the observed points (&;, 5;) according to increasing magni-
tude of & and define

d. — 198 [T, i| —log | ;]
¢ log &, .;—log §;

, E=1,...,m)
in which n; = } = (if n is odd the point (£, y,11), 7 w+1) is neglected). After
arranging the observed quantities d; according to increasing magnitude:

Aoy < o <dy,
we have the following

Theorem 10. Under conditions (1) and (2) the interval (d,,,, dy,_, +1))
is a confidence interval for a to the level of significance 21, (n;— r, + 1, ).

Proof. We have

nn1+i—wn1+i: En,-H‘ N
N — W; &

ﬂn‘+r—(%> Ni= Wy, 13— (572.:1') W,

It follows from condition (2), that

En +4 “

K2

wn,+i"“'('_£1_ > w;
T

has a continuous distribution function with zero median. Hence:

Snl i ¢
p 71m+i“‘( §+) 7,<0|=

=P [IOg /O IOg m<a log Enl+z IOg E)] ==

log 7, —log 1; log Ny, +:— log u;
— P N1t 3 P 1t 4 4
lOg Enrl"b IOg 5 <e :l ]-Og Em-i—z 10g E

or:

>a _%7

17
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if ,. .., n, are positive; if they are negative we have to replace 7; and
Np+i Py — 1; and — 7, ,; respectively. From this and from condition
(1) the theorem follows.

The theorem shows that this method of determining a confidence inter-
val for a is identical with the incomplete method for o in the linear equation

log ;=log A -+ alog &, 4 w;
(which can be written as
n=A4& 3w2) )
if wy,..., w, satisfy the same conditions (1) and (2).

6.1. Finally we mention that it is possible to find estimates instead
of confidence intervals. Consider e.g. the statistics A(¢j); each of these
(2) statistics has the property that its sampling median is equal to o, (cf.
section 1. 3.). Hence one can use the sample median of the observed
quantities A(¢#j) as an estimate of a,.

It is a pleasure to acknowledge my indebtedness to Professor Dr D.
vAN Dawtzie for his stimulating interest and to Mr J. HEMELRIIK for his
valuable and constructive criticism.
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