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I. INTRODUCTION 

F. Wn.coxoN (9) gave a non-parametric solution of the problem of 
two samples of equal sizes. This solution was generalized and studied 
in detail by H. B. MANN and D. R. WHITNEY (2). 

Let Xi, ... ,xm, Yi, . .. , Yn 1) be m + n independent random variables, 
the x, all having the continuous (cumulative) distribution function F(x) 
and the Yi all having the continuous (cumulative) distribution function 
G(x). 

For any set of values E = (Xi, ... ' Xm, Yi, . .. ' Yn) the variables can 
take 2) let U = U (xi, . .. , Xm, y1, ••• , Yn) = U(E) be defined as the number 

1 ) The letter which denotes a variable is printed in bold type when stress is 
laid upon the random character of the variable, i.e. upon the fact the variable 
has a distribution function. 

2) Such a set E is <Jailed a ''sample point"; the set of all sample points E which 
eventually might be obtained is called the "sample space" W. 
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of pairs of integers (i, j) (1 < i < m; l < j < n) with x,> Y;, provided 
x, =j:. y1 for every pair (i, j). Apparently U is zero or a positive integer. 
Then U = U (x1, ••• , Xm, y1, ... , Ytt) = U(f) is a discrete random variable, 
defined on the sample space W everywhere with the exception of a set 
of probability zero consisting of all points E with x, = Y; for any pair 
(i, j) (1 < i < m; l < j < n). 

The statistic U(E) was introduced by H. B. MANN and D. R. WHITNEY 

for testing the hypothesis that G(x) = F(x) holds for all x (shortly: 
G = F) against the alternative that G(x) < F{x) holds for all x (shortly: 
G<F). 

The distribution function of U under the hypothesis G = F has been 
computed by MANN and WHITNEY for m s;; 8, n s;; 8, and by the 
Computing Department of the Mathematical Centre at Amsterdam for 
ms;; 10, n s;; 10. Form--+ oo and n--+ oo the distribution of l(U- ½ mn). 
[ 1fi2 • mn (m + n + 1)]-1 tends to a normal (0,1)-distribution. 

The test, as given by MANN and WHITNEY, consists in rejecting the 
hypothesis G = F on the level of signifiance a if and only if 
P[U < U(E}IG = F] s;: a, where E is the sample point corresponding 
with the empirical data. 

As for the power function of this test, MANN and WHITNEY remarked 
that it presents formidable difficulties. They proved however that their 
test is consistent 3) with respect to the class of alternatives G < F. 

2. THE POWER FUNCTION OF A STATISTICAL TEST IN GENERAL 

2. 1. Critical region. 

A statistical hypothesis H0 is tested (against an alternative hypothesis 
H) by dividing the sample space W into two parts, w and (W -w), 
and applying the rule that H0 is rejected if the sample point E falls in 
w and that H0 is not rejected if E falls in (W -w). w is called the 
"critical region" of the test. (cf. J. NEYMAN and E. S. PEARSON (4) or 
J. NEYMAN (3)). 

2. 2. The concept of power function. 

The power function of a test, a concept introduced by NEYJ.\UN and 
PEARSON (5) (cf. also J. NEYMAN (3)), is the probability a (H)=P[EewlH], 
that the sample point f falls in the critical region w, calculated under 
any admissible hypothesis H. H0 denoting the hypothesis tested (to 
which there may be an infinity of alternatives), the critical region w 
is chosen so that: 

a (H0) = P [f E w I H 0] is equal to a. 

3) A test is called "consistent" according to A. WALD and J. WoLFOWITZ (8), 
if and only if the probability of rejecting the hypothesis tested (here G = F) 
when it is false, tends to 1 as the sample size tends (here: sizes tend) to infinity. 
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Here a is a given positive number, the so-called level of significance. 
Apparently a is the probability that H0 will be rejected (cf. the definition 
of w in 2. 1), when H0 is true. Usually a is chosen small, as will be 
easily understood from I below. 
· Clearly, if among the many possible critical regions one would exist 

for which: 

L P [E E w I H0] = 0 

II. P [f E w I H] = 1 for all H =I=- H~, 

this one would be preferred for testing H0• 

Critical regions for which I and II hold cannot be realized, however, 
as soon as all sample points have a positive probab_ility under l>oth 
H 0 and H. 

·Remark. w depends, of course, on the number of dimensions 
N. of the sample space W. Making this dependence explicit_ by 

• writing. w:N for w, we 13ee that a test is consist~nt ( cf. the note 
, at the end of 1) if and only if: 

lim P [E E wN I H] = 1 for all H =I=- H 0• 
N-+oo 

Hence this asymptotic relation corresponding with II defines 
consistent tests. 

2. 3. The ilse of the power function. 
The power function is instrumental to judge the "goodness" of a 

test and to compare several tests. 
a) A critical region w with P[f E w I H0] > P[E E w I H] for some 

alternative H, leads to the hypothesis H0 being rejected more often 
.under H0 than under this alternative H. A test based on such a critical 
region is called "biased" (cf. NEYMAN and PEARSON (5) or NEYMAN (3)). 
An unbiased test is based on a critical region w with P[E E w I H0] < 
< P[f E w I HJ for all admissible alternatives H. Clearly an unbiased 
test is in general preferable to a biased one. 

{3) When two critical regions, w1 and w2 with P[E E w1 I H0] = 
= P[E E w2 I H0], both give unbiased tests,' w1 is a closer approximation 
to the ideal case as sketched in 2. 2 under II, than w2 if: 

P [E E w1] I HJ > P [E E w2 I H] for all admissible H -=I=- H 0• 

Then the test based on w1 is called uniformly more powerful than the 
test based on w2• 

Remark. H specifies the joint distribution function of the 
N random coordinates of E. So the power function is a function 
defined on a function space in the most general case, when all 
sorts of alternative H's are admitted. The class of admissible 
hypotheses H can be restricted to various degrees. In the most 
simplified case the only difference between the hypotheses H 
consists in the value of one parameter. Denote this parameter 
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byµ and the powerfunction P[E E w Iµ] by aw(µ). Let H0 c,onsist 
in µ = 0 and let µ be variable in an interval containing µ = 0. 
If the first and second derivatives of aw(µ) for µ = 0 exist and 
are denoted by a~(0) and a;,,'(0) respectively, then a necessary 
condition for unbiasedness with respect to the alternatives µ > 0 
is, if a~(0) * 0, that a~(0) > 0 (or, if a~(0) = 0, that a;,,'(0) > 0,_ 
etc.), whereas a necessary condition for unbiasedness with respect 
to the alternatives µ * 0 is, that a~(0) = 0 and, if a;,,'(0) * 0, 
that a;:(o) > 0 (or, if a;,,'(0) ·_ 0, that a~l(0) = 0 and a~l(0) > 0, 
if these derivatives exist, etc.). 

A necessary condition for w1 being more powerful than w2 is, 
with respect to the alternatives µ > 0, that a~

1
(0) > a~.(0), if 

a~
1
{0) * a~.(0) (or, if a~, (0) = a~.(0), that a::, (0) > a:,:, (0), etc.), and 

with respect to the alternatives µ * 0, if a;,,' (0) * a;,,' (0), that 
Tl II 1 3 

aw, (0) > aw,(0) (etc.). 

3. THE POWER FUNCTION OF WILCOXON'S TEST 

3. 1. General remarks. 
Power functions of WILcoxoN's test will be investigated under the 

following general restrictions on the distribution fiinctions F(x) and G(x) 
(cf. 1): · 

a) F(x) and G(x) have continuous derivatives, f(x) and g(x), respec~ 
tively, for all x-values with the exception at most of those bounding 
the infinite intervals (when present) for which /(x) or g(x) are zero. 

b) G(x) = F(x- µ); g(x) = f(x- µ). 
These restrictions will be . assumed valid throughout the rest of the 

paper unless the contrary is mentioned. According to the restriction b 
the hypotheses H specify µ-values, but F is left unspecified. 

The critical regions considered are defined by 1, 2 and 3 respectively: 

1) U < U a with the level of significance a ! 
2) U > mn - U a with the level of significance a with U a < ½ mn. 
3) I U-½mn I> ½-mn- Ua with the level of ·(for Ua cf 3. 2) 

significance 2 a 

The first region, the only one considered by MANN and WHITNEY, 
serves to test the hypothesis µ = 0 against µ > 0 and the second region 
serves to test µ = 0 against µ < 0 ( one-sided sets of alternative hypotheses, 
shortly: "one-sided alternatives"), whereas the third region serves to 
testµ= 0 againstµ* 0 ("two-sided alternatives"). Sometimes mathem
atical difficulties require restrictions on m and n together with restrictions 
on a and on Ua. 

In order to compare the power function of WILcoxoN's test with that 
of STUDENT's test for the difference of two means (under conditions 
'which allow the use of STUDENT'S test), in addition to a) and b) the 
further restriction on the distribution functions involved: 

c) f (x) = vb e-l"'', 

will be imposed in a part of the paper. 
. . 5 
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3. 2. The critical region of Wilcoxon's test. 
I. The critical region defined by U < U a ( U a < ½ mn) consists of all 

sample points . E = (x1, . .. , xm, y1, . .. , y .. ) satisfying the inequality 
U < Ua, where Ua ~s the maximum of all integers U with P[U < U I G.......:. 
=F] <a. 

This critical region, w, is the sum of Ua + 1 disjoint regions wk 

(0 < k < Ua), where wk is the set of all sample points for which U = k. 
Each region wk consists of p:,,_,.(k) disjoint subregions wk,q (q = 1, ... , 
p:,,_ .. (k)) with constant x - y - arrangement 4). For p:,,_ .. (k) MANN and 
WHITNEY gave the recurrence relation 

) 
p:,,,,. (k) = p:,,_1_ .. (k-n) + p:,. __ 1 (k) 

(3. 2, 1) ( , (k) if k 0 I (k) , (k) { 0, if k ::fa 0) 
Pi.i = 0 < ; Pi.o = Po., = 1, if k = o 

It is seen that p:,,_ .. (O) = 1 = p:,,_11(1) if m ::j=. 0, and n ::j=. 0. 
Clearly each subregion wk,q is built up out of m! n! disjoint sub

subregions, the points of which are characterized by a constant permut
ation of their m x-coordinates and their n y-coordinates respectively in 
the constant x - y-arrangement corresponding to wk.«· 

Because of the continuity of the distribution functions of x, and Yi 
the probability of E lying in the boundary of one of the above-mentioned 
regions is zero, so that the boundaries of these regions may be included 
without changing any probability calculated. 

II. The critical region defined by U :2::: m n - U a ( U a < ½ m n) is 
the sum of Ua + 1 disjoint regions wmn-k (0 < k < Ua). The regions 
wmn-k consist of subregions w<mn-k>.« with constant x - y-arrangement, 
which are built up out of sub-subregions of constant permutations, as 
described for the region U < U a• 

a) By the substitutions x. = - x~, (i, i' = 1, ... , m); Yi= - y;, (j, j' = 
= 1, ... , n) a one-to-Qne correspondence is established between the 
points E = (x1, ••• , xm, y1, ~ •• , y .. ) of the space W and the points 
E' = (x~, • .. , x:,,, y~, . .. , y~) of the space W'. Here a pair (i, j) with 
x. < Y; corresponds to a pair (i', j') with x;,, :Sy;,. Hence a point E 
with U(E) = m n - k corresponds to a point E' with U(E') = k (U(E') 
being defined as the number of pairs (i', j') with x~,> y;,), and a region 
wmn-k corresponds to a region w;, while the region in W defined by 
U > m n - Ua corresponds to the region in W' defined by U < U0 • 

Remark 1. It is easily seen that p:,,_ .. (k) = p:,,_ .. (mn-k). 
Remark 2 .. The points E of W have m x-coordinates and 

n y-coordinates. 
The points E' of W' have m x'-coordinates and n y'-coordinates. 
To make this fact explicit one can write W m,n instead of W 

and w:,,,n instead of W'. 

4) By this term is meant, that the same ordered arrangement of x and y 
corresponds to every point E of wk,q• when the coordinates xi (i = 1, ... , m) 
and Yi (f = I, ... , n) of E are arranged in order according to increasing magnitude 
and the suffices of x and y are omitted. 
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{J) A one-to-one correspondence between the points E = (Xi, ... , xm, 
y1, ••. , y,.)J of W m,n and the points E' = (x~, . .. , x~, y~, . .. , y;,.) of W~.m 
is established by the substitutions xi= y;, + µ (i, j' = l, ... , m) and 
Yi= x~, + µ (j, i' = l, ... , n). Now a pair (i, j) with x; < Y; corresponds 
to a pair (i', j') with x~, 'S y1,. By the same argument as under a) it 
is seen that the region of W m,n defined by U > m n - Ua corresponds 
to the region of w,:.,n defined by U < U a• 

Remark 3. Clearly P~.m(k) = p,:.,n(m n- k). Because of 
remark I. it is seen that P~.m (k) = p,:._n (k). 

III. The critical region defined by ] U - ½ m n I > ½ m n - Ua 
(Ua < ½ m n) is the sum of the two disjoint regions defined by U < Ua 
(cf. 3. 2, I) and by U > m n - Ua (cf. 3. 2, II), respectively. 

3. 3. General expressions for the power function of Wilcoxon's test. 

Under the restrictions a) and b) of 3.1 imposed on F(x) and G(x), 
the power function of WILcoxoN's test is given by 

(3. 3, 1) a+(µ)= f .... f g {f (xi) dxi} g {f(y;-µ) dyi} 
U~Ua 

for testing µ = 0 against µ > 0, 

(3. 3, 2a) a_(µ)=f ... f g {f(xi) dxi} J1 {/(yi-µ) dy;} 
Us;;,mn-Ua 

(3. 3, 2b) = f · .. f Di {f (-xi) dxi} [-{ {f (-y1 µ) dyi} 
U~Ua 

(3. 3, 2c) = f ... f g {/ (xi) dxi} t{ {f (Y; + µ) dy;} 
U~Ua 

for testing µ = 0 against µ < 0, 
((3. 3, 2b) follows from (3. 3, 2a) by the substitutions of 3. 2, II, a); 

(3. 3, 2c) from (3. 3, 2a) by 3. 2, II, {J)) and 

(3. 3, 3) a±(µ)= a+(µ)+ a_(µ) 

for testing µ = 0 against µ ;I=. 0. 
When Ua = 0, one finds, denoting in this case a+(µ) by a<~(µ), that 

(3. 3, 4) 

a<f (µ) = m! n! f ... f}] {f (xi) dxi} fJ {t(y,-µ) dyi} 
R 

where R is defined by the inequalities: 

-OO < X1 < X2 < •• • < Xm < Y1 < · • • < Yn < + oo. 
7 
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From (3. 3, 2c) it follows that 

(3. 3, 5a) R •=1 1=1 l a~(µ) = m! n! f ... f fr {/ (xi) dxi} IT {f (Y; +µ) dy;}, 

with R defined by: -oo <x-1 < ... <xn<Y1 < ... <ym<+ 00 

or, by replacing xi by x, - µ and Y; by Y;- µ, that 

(3. 3, 5b} R •= 1 i=l l a~(µ)= mr n! f ... f IT {I (x,-µ) dxi} TI{/ (yJ dy;} 

with R defined as in (3. 3, 5a). 

Remark. Even without the restriction b) of 3. 1, writing 
again g(y) for f(y- µ), the (m + n)-fold integral (3. 3, 4) can 
be reduced to a single one. In fact, writing x for xm, it is seen 
that a~(µ)= 

+oo 

= m! n! ff (x) dx f ... ......... f IT{/ (xi) dxi} f .......... .. f II {g(y;) dy;} 
• •=1 ,-1 

-oo -oo(rei( ••• ("'m-1 (,e o,(11,( ... (11n< +00 

Because of 
b 

f- ........ fg{cp(xi)dxi}=i, [f <p(x)dxr 
a(rei( ••• (o,k(b a 

(cf. (7)) one finds: 

l 
+oo 

a<il (µ) = m J f (x) • Fm-1 (x) · [1-G (x)]" dx = 
-oo 

(3. 3, 6) 
+oo +oo 

= l_JI-G(x)]"·d [Fm(x)] =-J
00

Fm (x)•d [{1-G(x)}"]. 

In the same way it is found from (3. 3, 5b) that 

l 
+oo 

a~(µ)= n J g(x)-G"-1 (x) • [l-F (x)r dx= 
+oo 

(3'. 3, 7) 
+oo +oo 

= J [1-F(x)]m·d [G"(x)]=- J G"(x) •d[(I-F(x)}m] 
-00 -00 

For a<i>(µ) one can write instead of (3. 3, 4): 

This expression will be written more shortly by the use of some 
operators and notations which will be defined in (3. 3, 9, 9a, 9b and 10): 

(3. 3, 9) ) 
+J <p1 (x1) dx1 \

00 

<p2 (x2) dx2 +j ... +f <pp (xp) dxp = 
II "'1 ""' "'P-1 

= [(Jcp1) {Jcp2) ••• (Icpp)](y) = [n (l<p,)] (y). 
8 
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If <pp(x) = f(x) (v = I, ... , k), the following abbreviation is used: 

(3. 3, 9a) [g (I<pp)] (y) = [(If)P] (y). 

If <pp(x) = f(x) for all integers v -=f::. i with I < v < p and <p,(x) = {f(x)}a1, 
then the abbreviation used is: 

(3. 3, 9b) [ ft (Iqip}] (y} = [(Ij)•-1 (If.,)(If)-•] (y) 

Furthermore, the following notations are used: 

(3. 3, IO) 
~f(x-µ)=f-µ ; f(x+µ)=f+µ ; f'(x)=f' 

( f'(x-µ)=f-µ ; f' (x+µ)= f~µ and f" (x)= f". 

With (3. 3, 9, 9a and IO) the expression (3. 3, 8) becomes: 

(3. 3, II) 

(3. 3, Ila) 

a1.>(µ) = m!nl [(If)m(If_µ)n] (-=) 

= m!nl [(If +µ}ffl(If)n] (-=) 

((3. 3, Ila) follows from (3. 3, II) by the substitutions 

x, = x; + µ (I < i < m) and Yi= y; + µ (I < j < n).) 

In a similar way one finds for a+(µ), for any (integer) value of U 
which is < ½ m n: 

(3. 3, 12) 

(3.3,12a) 

(3. 3, 12b) 

Ua [ r ] 
a+(µ)=mln!u~o II{<If}flh(lf-µrh} (-=) 

= ml n!J: [tt {(If +µ)m" (If)nh}].(-=} 

l 
Here m1 > 0 and mh > 0 for h > 0, 

nh > 0 for h < r and nr > 0 ; 
r r r f' 

2 mh = m , 2 nh = n and U = 2 n, 2 mi 
h=l h=l i=l i=i+l 

) 

The summations (over U) in (3. 3, 12) and (3. 3, 12a) 
(3. 3, 12c) are to be extended over all combinations of r, and of 

mh and nh (1 < h < r) which give a value of U < Ua. 

A similar expression follows for a_(µ) by the use of (3. 3, 2c); a±(µ) 
then follows from (3. 3, 3). 

4. SOME PROPERTIES OF THE POWER FUNCTION OF WILCOXON'S 

TEST WHEN ALTERNATIVES ARE ONE-SIDED 

4.1. General theorems. 

4.11. A theorem on the unbiasedness of the test. 

Theorem 1. Under the restrictions a) and b) of 3. 1 the power function 
9 
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a+(.u) given by (3. 3, 1), when a, m and n are constant, is a monotonous 
non-decreasing function of µ. 

Proof. 5) By the substitutions x.= x;,; y ;= y1, + µ (i, i' = 1, ... , m; 
j, j' = 1, ... , n) a one-to-one correspondence is established between the 
points E = (xi, ... , xm, y1, .•• , Yn) of the space W and the points 
E' = (x~, .. . , x:n, y~, .. . , y~) of the space W'. When U = U(E) is defined 
as in 1. and Uµ(E'), for each point E' with x;, -=I: y1, + µ for each pair 
(i', j'), is defined as the number of pairs (i', j') (1 < i' < m; 1 < j' < n) 
with x~, > y1, + µ, then U(E) = Uµ(E') if E and E' are corresponding 
points. 

Hence 

(4.1, 1) a+(µ)= I ...... I n {/ (x.) dx.} fl {f(y i-µ) dy;} 
U(E) ;a. Ua 

(4.1,2) = f ...... f J't {f(x;,)dx;,} ;lt {/(y;,) dy,,}. 
Uµ(E')~Ua 

Now the integrand of (4. 1, 2) is independent ofµ and non-negative 
for every E'. From the definition of Uµ(E') follows that, in a fixed 
point E', Uµ(E') is a monotonous non-increasing function of µ. Hence 
the set of all points with Uµ(E') < Ua cannot decrease when µ increases. 
So a+(µ) is a monotonous non-decreasing function ofµ. 

Corollary. For all distribution functions F and G satisfying a) and b) 
of 3. 1, the critical region U < Ua provides an unbiased test of the 
hypothesis µ = 0 against all alternatives µ > 0 (cf 2. 3, a). 

Remark. The same holds for the critical region U > m n - Ua 
when the alternatives are given by µ < 0. 

4. 12. On the interchangeability of m and n in the power function. 

Theorem 2. Under the restrictions a) and b) of 3.1 the power 
functions a+(µ) as well as a_(µ) given by (3. 3, 1) and by (3. 3, 2) 
respectively, when a is constant, are identical with those obtained when 
m and n are interchanged, provided f(x - c) is an even function of x for 
some c. 

Proof. Without loss of generality one may suppose c = 0. Now 
the expression (3. 3, 2b) is equal to the expression (3. 3, 2c), when f(x) 
is an even function. The proof of this equality given in 3. 2, II, a) and 
3. 2, II, {J), holds good when + µ is replaced by - µ. The theorem can 
also be proved directly from (3. 3, 1) by the substitutions x. = - y1, + µ 
(i, j' = 1, ... , m) and Yi= - x~, + µ (j, i' = 1, ... , n). 

4. 2. Calculation of a~(0) for Wilcoxon's test with specialization f.f) 

the normal distribution. 

5) This proof is due to Mr J. lIEMELRIJK. 

10 
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From the expression (3. 3, 12a) for a+(µ), a~(µ)= da;~µ) is easily 

calculated. 
Defining the operator I-1 by 

(4. 2, 1) I-1 <p(x) = I-1 <p = -<p' (x) = -<p' 

it follows from the definition of the operator I in (3. 3, 9) that 

· (4. 2, 2) I-1 (I<p) = <p. 

Furthermore defining 

(4.2,3) 

and 

(4. 2, 4) 

+oo 
[<p1 (J<p2)](y) = cpi(y) f <p2 (x) dx 

+oo 
[(I<p2) <p1] (y) = f <p2 (x) <p1 (x) dx 

'V 

it is seen that 

(4. 2, 5) 

Hence 

~ [(If~µ) (Icp)](y) = -[f +µ (Icp)](y) +[If+µ) cp](y) = 

( = -[I-1 (If+~) (I<p)] (y) +[(If+µ) I-1 (I<p)] (y). 

m-1 

= - I [If +µ>z I-1 (If +µ>m-ix] (y) + 
(4. 2, 6) l=O 

m-1 + L [(If+µ)l+lI-l(If+µ>m-1-lx](y) = 
!=O 

= -[I-1 (If +µ)mx](y) + [(If +µ)m I-1 x](y). 

Now 

Ua r [k-1 
a~ (µ) = m ! n ! u~o k~l g {(If +µrh (I f)"h} . 

• 0°µ { (If +µ)mk}(If>"\Q
1 

{ (If +µ)mh(If)nh}] (-oo). 

Hence, by means of (4. 2, 6): 

1 

i-m! n! ut kt [[( {(If +µ)mh(If)"h}I-l (If +µrk(If)n\ll+! (If +µ}mh(If)"h}] (-oo) 

a+(µ)= Ua r (k-1 r ] 

+ m!n! ut k~l g {(If +µ)mh(If)"h} (If +µ)mkI-1 (If)nkJXJ<If +µ}mh(If)n11} (-oo). 

If the expression between [ ] begins or ends with I-1 for some k, 
then the corresponding term is to be considered as zero. 

From ( 4. 2, 7) it follows that: 

( 4. 2, 8) a~ (0) = u;o k=l l-m!n! ia ± [(I!)Lk-l(If2)(If}mk+nk-l+Mk](-oo) 

+ m! n! u;: k~ [(I!)½+mk-L(If2) (If)"k-i+Mk] (-oo). 

11 
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k-1 r 
Here Lk = I ( mh + nh) and Mk= I ( mh + nh); for m,., n,., r and I 

h=l h=k+l U 

cf. (3. 3, 12b) and (3. 3, 12c). Those terms in the sums of (4. 2, 8) in 
which the first or the last symbolic power has a negative exponent are 
to be considered as zero. 

The expression (4. 2, 8) for a~(0) will be calculated for f(x) = VI e-1"'' 
2n 

(cf. c) in 3. 1) from the Appendix; cf. (A. 1, 1) and (A. 1, 9). It is seen 
from A. 1, Remark 2, that the calculations will be restricted to 't" < 4, 
i.e. to m + n < 5. Furthermore, only relatively low values of a are 
considered (cf. 2. 2). If Ua = 0 determines an a> 0,15, then only Ua = 0 
is considered, otherwise Ua = 1, too, will be considered. Cases with 
m = lorn= 1 are omitted as being trivial. By means of (5. 2, 8), (A. 1, 1) 
and (A. 1, 9) the following results are obtained: 

(4. 2, 9) 

Ua= 0, a~ (0) = m! n! [(lf)m-1 (If2) (Jf)n-1] (-oo)= 

· m! n! (m+n-1). r(m+;- 1) 

= 22 • ;n;¼<m+n) • V1m-l,2,1n-l 

When Ua , 1, a~ (0) = 
=+min! [(lf)m-2(Jf2) (Jf)n](-oo)+m!n! [(lf)m(Jt2)(Ifr-2

] (-oo)= 
(4.2, 10) 

m!n!,(m+n-1). r(m+;- 1) 

= 22 .;n;l<m+n) • {V1m-2,2,1n+ V1m,2,1n-2} 

From (4. 2, 9) and (4. 2, IO) the following results are obtained by 
means of (A. 3, 2) and (A. 4, 4): 

m n Ua a a~ (0) 

2 

2 3 

2 3 

0 
I 3 I I 
-
6 
~ V1,2•1 = ,c. arc cos -3 = 0,22106 
2nvn nvn 

0 
I 12 3 . j/3 
lo ~ V1,2,11 =-V_arcsm-3 =0,16580 

;n;2 vn 2n ,.. 

I 12 (V + V )-5 2 ,c. 2,1,1,1 1,1,2,1 -
...,. n yn 

1 

= _ 3_ (arc sin VIs- J/3 + arc sin J/3) = ~c. = 0,28209. 
2;,iVn 6 3 2vn 

Remark I. For the values of a cf. MANN and WHITNEY or 3. 2. 
Remark 2. Because of theorem 2 (4. 12) it is not necessary 

to calculate separately the case m = 3, n = 2. 

4. 3. A comparison with a~(0) for Student's test for the difference of 

two means. 

The alternatives to the hypothesis tested (µ = 0} areµ> 0 (therefore 
the notation a+ is used, cf. (3. 3, 1 )). Let Xi, . .. , x , y1 . .. , y,. be 

12 
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m + n = N independent random variables, the "• all having the 
distribution function F(x) and the Yi all having the distribution function 

"' 
F(x - µ) with F(x) = V~n f e-r~ d g, The critical region for testing, 

-00 

according to STUDENT's test, the hypothesis µ= 0 against µ > 0 at the 
level of significance a is given by t > ta. 

Here t is defined by 

t= 1/mn (N-2). y-x ' 
N Vms2+ns2 

. "' . 
where 

- _ _!_ " • - _ _!_ m • 2_ m _-2 Y- L Y;, X- L xi, ms.,- L (xi x) 
n i=l m i=l i=l 

" and n s; = I (y i - y)2, whereas ta is defined by: 
i=l 

r(N-1)-oo _!!=I. 
1 2 J ( x

2 
) 2 a--;::::==•----'~- 1+-- dx - V<N-2)n r(N-2) N-2 . 

2 ta 

tJ can be found from the tables of STUDENT'S distribution. For the values 
of a= 1/6, 1/10 and 1/5 ta has been tabulated in 3 decimal places only, 

N-2 
or not at all. Therefore the quantity rJa = rn was calculated 

N-2+ a 

directly from 

(4. 3, 1) (
N-2 1) 

a= ½I,,a -2- '2 ' 

where I.,(p, q) is the incomplete B-function tabulated by K. PEARSON (6). 

The power function of the critical region t > ta is, analagously to 
P. L. Hsu (1): 

-!!?!!.'µ• oo k 
e 2 N '\1 [ 2mn ]2 

2JJ;. VN-2.r(N;2) . t='o N(N-2) . 

( 4. 3, 2) a+(µ)= 
1c.r(k+N-l) oo Tc-1 -~ 

µ 2 f -( X ) 2 . k? x 2 1+ N-2 dx 
t2 
a 

Hence 

(4. 3, 3) 
, mn N-2 -2- mn -f-N-2 ~ N 2 

a+(O)= ~ · (N-2+~) = 2nN ·'f}a 

13 
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From (4. 3, 3) and (4. 3, 1) the following results are obtained: 

m n a 'I/a a~(0) a~(0)st - a~(0)w, 
2 2 1/6 5/9 0,22163 0,00057 
2 3 1/10 0,527963 0,16765 0,00185 
2 3 1/5 0,758072 0,28845 0,00636 

In order to facilitate the comparison with a~(0) for Wrr.coxoN's test, 
a column is added containing the difference of a~(0) for the test of 
STUDENT and for the test of Wrr.coxoN. It is seen that STUDENT's test 
and Wrr.coxoN's test satisfy a necessary condition that STUDENT'S test 
is more powerful than WILcoxoN's test (a~(0)81 - a~(0)w, > 0, cf. the 
end of the remark in 2. 3), but clearly the difference is very small. 

14 
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5. SOME PROPERTIES OF THE POWER FUNCTION OF WILCOXON'S 
TEST WHEN ALTERNATIVES ARE TWO-SIDED 

5. 1. General theorems when alternatives are two-sided. 

5. l 1. Properties of syninietry of the power function. 

Theorem 3. Under the restrictions a) and b) of 3. l the power 
function a±(µ) given by (3. 3, 3), when a, ni and n are constant, is an even 
function of µ, either when 1) f(x - c) is an even function of x for sonie c, 
or when 2) ni = n (or when both conditions are satisfied, of course). 

Proof. 
1. From (3. 3, 3, l and 2b} one obtains: 

a±(µ)= J ... Jg {/(xi) dxi} }-] {f(yi-µ) dyi} + 
u;;;.ua 

Without loss of generality c may be supposed to be equal to zero. 
15 
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Then /(x) is an even function. Hence: 

a±(µ)= I ... In{/ (xi) dxi}}] {f(yi-µ) dyi} + 
u;a;ua . 

(5. I, I) 

+ f ··· f J1 {/ (xi) dxi}]] {/(Yi+µ) dyi}. 
u;a;ua 

By changing + µ into - µ the first term of the second member of 
(5. I, I) passes into the second one and vice versa. Hence a±(-µ)= 
=a±(+µ), q.e.d. 

2. From (3. 3, 3, I and 2c) one obtains: 

a±(µ)= f ... f g {/(xi) dxi} [{ {f(yi-µ) dyi} + 
u;a;ua 

+ f •·· f J} {/(xi) dxi} g {/(Yi+µ) dyi}• 
· u;a;ua 

When m = n, it follows that: 

a±(µ)= f ... f fli {/ (xi) dxi} i{ {f(yi- µ) dyi} + 
u;a;ua 

(5. I, 2) 

+ f •·· f g {f (xi) dxi} [x {f (Y; + µ) dyi}• 
u;a;ua 

By changing + µ into - µ the first term of the second member of 
(5. I, 2) passes into the second one and vice versa. Hence a± (-µ) = 
=a±(+µ), q.e.d. 

Corollary. If the conditions of theorem 3 are satisfied and a~(O) 
exists, then a~(0) = 0. 

When /(x) is a non-symmetric function and m -:;j=n, then a±(µ), defined 
by (3. 3, 3), need not be an even function ofµ, as follows from theorem 4 

Theorem 4. Under the restrictions a) and b) of 3. I a non-symmetric 
function f(x) and a value of Ua can be given, such that a~(0) exists and 
is ":;/= 0, if m ":;/= n. 

Proof. 
~ 0 for x < 0 l 

Let F(x)=~i-e--a: for x>oj•G(x)=F(x-µ) and Ua=0. 

Then by somewhat laborious calculations it can be proved, using 
(3. 3, 6 and 7), that: · 

) 

m!n! enµ+(I-eµ)"l+ne-mµf(I-x)"l- 1 xmdx if µ<0. 
(m+n)! o ' 

(5. I, 3) a±(µ)= 
m 1n' ,-µ 

(m+~)! e-mµ+(I-e-µr+menµ { (I-xr-1 xndx, if µ>0. 

16 
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Hence 

(5. 1, 4) 
, m!n! 

a± (0) = (m+n)! (n-m) -=f=. 0, q. e. d. 

5. 12 A theorem on possible biasedness of the test when alternatives 
are two-sided. 

As the critical region given by JU - ½ m n I > ½ m n- Ua cannot 
possibly provide an unbiased test for the hypothesis µ = 0 against all 
alternativesµ -=f=. 0, when a~(O) exists and is -=f=. 0, one should, if possible, 
take m = n in the applications of the test. In this way one secures the 
symmetry of the power function. One might hope that unbiasedness 
then would be secured, too. One might think that as general a theorem 
would hold good for two-sided alternatives, as theorem 1 and its corollary 
proved in 4. 1, for onesided alternatives. That this is impossible in such 
a generality, is shown by theorem 5: 

Theorem 5. Under the restrictions a) and b) of 3. 1 for every m and 
n = m an even function f(x) and a value of Ua can be given, such that 
a~(0) exists and is < 0. 

Proof. Let Ua = 0. By (3. 3, 3, 1 and 2b) the power function 
a±(µ), when f(x) is an even function and m = n, is equal to (5. 1, 2), 
where now "U < Ua'' is to replaced by "U = 0". By a reduction as 
described in the remark of 3. 3 (under (3. 3, 5b)) it is found that: 

la±(µ)= JJFm(x)]' •[(1-F(x-µ)r] dx+ 
(5. 1, 5) 

+oo 
+ f [Fm(x)]' •[(1-F(x+ µ))m] dx. 

-00 

H ·t· "( ) £ d2 a±(µ) ence, wn mg a± µ or dµ 2 , 

+oo 
(5. 1, 6) a~ (0) = 2 f [Fm(x)]' •[(1-F(x))m]" dx, 

-oo 

the primes denoting differentiation with respect to x. Because of f(x) 
being even, F(- y) = 1 - F(y). Hence: 

o +oo 
(5.1,7) f [Fm(x)]'·[(l-F(x))m]"dx=- f [(1-F(y))m]'.[Fm(y)]"dy, 

-oo 0 

as is seen by the substitution x=-y. (The primes in the second member 
of (5. 1, 7) denote differentiation with respect toy). By partial integration 
the second member of (5. 1, 7) is seen to be equal to 

+oo + f [Fm(y)]' •[(1-F(y)r]" dy, 
0 

so that (cf. (5. 1, 6) and (5. 1, 7)) 

+oo 
(5. 1, 8) a~(0)=4 f [Fm(x)]'·[(l-F(x)r]"dx. 

0 

17. 
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Now [Fm(x)]' > 0 for every x with 0 < x < oo. Hence a sufficient 
condition for a'.:(0) being < 0 is that [(l - F(x))~]" < 0 for 0 < x < oo, 
where the equality-sign does not hold in the whole interval (0, oo). 

Such a function F(x), the derivative f(x) of which is an even function, 
is defined by 

0 for X <-1 

½(l-x2) 1fm for -1 < x < 0 
F(x)= 

l-½(l-x2 ) 1fm for 0 < x < + 1 
(5. 1, 9) 

1 for x > + 1 

For [{l-F(x)r]'1 = 2-m(l-x2)
11 = -21-m, if 0 < x <+I. Hence 

a'.: (0)= -23-m (1- 2
1m) < 0. 

Conclusion. The necessary condition for unbiasedness ( consisting in 
a'.:(0) not being < 0, cf. 2. 3, remark) is not satisfied in general. Hence 
the critical region defined by I U - ½ m n I > ½ m n - U a does not 
provide an unbiased te~t for the hypothesis µ = 0 against µ =f:= 0 without 
further restrictions being imposed upon F and G. 

5. 13. On the interchangeability of m and n in the power function 
when alternatives are two-sided. 

Theorem 6. Under the restrictions a) and b) of 3.1 the power 
function a±(µ), given by (3. 3, 3), when a is constant, is identical with the 
power function a±(µ) obtained when m and n are interchanged, provided 
f(x - c) is an even function of x for some c. 

Proof. (3. 3, 3) and theorem 2. 

5. 2. Calculation of a'.:(0) for Wilcoxon's test with specialization to the 
normal distribution. 

Throughout 5. 2 f(x) is assumed to be an even function . .After (5. 2, 8b) 

f(x) is taken to be equal to } 'e-'!.x'. From (3. 3, 3, l and 2b) it follows 
y2.n 

that (f(x) being an even function): a±(µ)= a+(µ)+ a_(µ)= 

+ J ... Jg {f(xi)dxi}!lf(Y;+µ)dy;}, 
u;;;,.ua 

Hence a±(µ)= a+(µ)+ a+(-µ), so that a±(0) = 2 a+(0) = 2 a 

a~(0) = a~(0) - a~(0) = 0 and a'.:(0) = 2 a~(0). 

Now a~(0) is calculated, starting from (4. 2, 7): 
The operator J-2 is defined by 

(5. 2, 1) J-2 ip(x) = J-1 J-1 tp= -J-1 tp' = + ip" (x) = + ip". 
18 
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From the definitions in 4. 2 it then follows that 

l L)ofL { I-1 (If +µ)m} X] (y) = [ J-1 :(L {(If +µ)m} X] (y) = (by (4. 2, 6))= 
(5. 2, 2) 

= -[I-2 (If +µ)m x] (y) + [J-1 (If +µ)m I-1 x] (y). 

Furthermore from (5.2, 1) and (4.2, 6): 

(5. 2, 3) [
0
: (If +µ)m J-1x] (y)=-[J-1(If +µr I-1x] (y)+ [(If +µr I-2 x] (y). 

From (4. 2, 7), by means of (4. 2, 6), (5. 2, 2) and (5. 2, 3), one obtains: 
a~(O) =-2 a~(O) = 

Here: 

If in (5. 2, 4) the expression between [] begins or ends with I-1 or 
1-2 for some w or z, then the corresponding term is to be considered 
as zero. 

Remark 1. The summation variables w and z should not be 
confounded, of course, with the w of 2. 1 ( critical region) and 
the z (coordinates) of the Appendix. 

As to the meaning of mh, nh and r, cf. (3. 3, 12b). 
The summations over U in (5. 2, 4) are to be extended over all 

combinations of r, and of mh and nh (1 < h < r) which give a value 
of U < Ua. If U = 0, then r = 1 and the sum over z in (5. 2, 4) is empty. 

Ua Ua 

Hence in the first term of (5~ 2, 4) L can be replaced by L . 
u-o u-1 

19 
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( 5. 2, 5) 

(512) 

Remark 2. Introducing the notations: 

d2h-I = mh, d2h= nh, and 

V (= f (x)), if j is even, 
{µ,i= U+µ (= f (x+ µ)), if j is odd, 

a~ (µ) can be written as: 

In the applications of (5. 2, 4 or 5) the following reductions are to 
be used: 

l 
[(Jf)K J-1 (lf)L J-1 (Jt)M] (-=) = 

(5. 2, 6) = ~ [(lf)K-1 (J/2) (Jf)L-2 (J/2) (Jt)M-1] (-=), if L > 2, 

~ [(Jf)K-1 (J/3) (Jf)f-1] (-oo), if L=} 

c3,nd: [(Jf)K 1-2 (Jf)L] (-oo) = 

(5. 2, 7) 

= [(Jf)K J-1 f(lf)L-1] (-oo) = 
= - [(lf)K f1(1f)L-1] (-oo) + [(lf)K ff (lf)L-2] (-oo) = 

= -[(lf)K-2 (If) (lff') (lf)L-1] (-=) + [(Jf)K-1 (J/3) (Jf)L-2] (-=) = 
= + ½ [(lf)K-2 (Jf3) (Jf)L-1] (-=) + ½ [(Jf)K-1 (J/3) (Jt)L-2] (-=). 

By means of (5. 2, 6) and (5. 2, 7) it follows from (5. 2, 4) that a~(O) = 

For P w, Q w,z , R. and S w and for the summations over U see the 
indications under (5. 2, 4). 

If Qw,z = 1 for some w or z, then the corresponding term in the first 
sum of the second member of (5. 2, 8) is to be replaced by: 

(5. 2, 8a) 4 m! n! [(- l)w+• (lf)Pw-I (l/3) (Jft•-1] (-oo). 

In (5. 2, 6), (5. 2, 7) and (5. 2, 8) those terms in which the first or 
the last. symbolic power has a negative exponent, are to be considered 
as zero. 

20 
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The expression (5. 2, 8) for a~(O) will be calculated for /(x) = Vl e-'t.zt 
2:ir 

(cf. c) in 3. 1) by means of the Appendix; cf. (A. 1, 1) and (A. 1, 9). It 
is seen from A. 1, Remark 2, that the calculations will be restricted 
to -r < 4, i.e. to m + n < 6. Furthermore, only relatively low values 
of 2a are considered (cf. 2. 2; 2 a= a±(O), see 5. 2, some lines before 
(5. 2, 1) ). If Ua = 0 determines a value of 2 a> 0,15, then only Ua = 0 
is considered, otherwise Ua = 1, too, will be considered. Cases with 
m = 1 or n = 1 are omitted as being trivial. By means of (5. 2, 8), 
(A. 1, 1) and A. 1, 9y the following results are obtained: 

(5. 2, 9) 

,, ~+ml n! [(//)m-2 (I/3) (Jfr-1] (-oo) + 
When Ua= 0, a± (0) = l + m! n! [(J/)m-1 (//3) (I/t-2] (-oo) = 

ml nl (m + n- 2). I' (m+;-2
) 

= m+n [ V 1m-2
0
3,1n-l + V 1m-1,3,1n-2 ]. 

22. n-2- . J/3 

When Ua = 1, a~ (0) = m! nl {+ 4 [(J/)m-2 (//2) 2 (I/t-2] (-oo)} + 
+ ml n! {+ [(Jf)m-s (//3) (Ifr] (-oo)-[(//}ffl-2 (//3) (I/r-1] (-oo)}+ 

+ ml nl {- [(//}ffl-1,(//3) (Jf)n-2] (-oo) + [(//}fl (//3) (Jfr-3] (-oo)} = 

(5.2,10) mln!(m+n-2).r(m+;-2
) 

1 = ~ [2 • V 1m-2,2,2,1n-2 + y'3 • V 1m-3,3,1n -
22.n 2 

1 1 1 - - · V1m-2 3 1n-1--• V1m-1 31n-2 + - • V1m 3 1n-s]. Va " Va " Va .. 
Those terms in the last members of (5. 2, 9) and (5. 2, 10) in which 

a symbolic power has a negative exponent, are to be considered as zero. 
From (5. 2, 9) and (5. 2, 10) the following results are obtained by 

means of (A. 2, 1), (A. 3, 2) and (A. 4, 4): 

m n Ua 2a a~JO) 

2 2 
n 2 y'3 [V3,1 + V1,3] = n y'3 = 0,36755 2 2 0 

1 
3 

3 Va Va [ Vo 11 
2n2 [Vs.1.1 + vl,3,1] = -;;i arc cos 4 + arc cos 4 2 3 0 

1 
5 

= ~ [n- arc cos~= 0,39132 

2 4 2 16 Va [V + V ]-0 15 n3 3,1,1,1 1,3,1,1 -

2 V3( · i/30-Vo · Vo] = ~ arc sm 8 + arc sm 4 = 

2y'3 1 2y'3 =~ arc cos 2= 3" = 0,36755 
21 
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m n 

2 4 

3 3 

(514) 

Ua 2a a:i: (0) 

1 4 ~ [2 V _ _!_ V ]-15 ,i2 2,2,1,1 V:i 3,1,1,1 -

6 [2 . Vw- V2 1 . V3o- V6] = - arc sill -....,,...~ - - arc Sill~....,,...~ 
,i2 6 vs 8 

= 0,51398. 
1 24 V:i 3 V3 . V6 

0 lO --;a Vl,3,1,1 = nZ arc Sill 4 = 0,34698. 

3 3 1 ¾ ~; [ V1,2.2.1 + ~ Va,1.1.1 - ~ V1.a.1.1] = 
9 [ . 2 1 . J/W- i/6 = n 2 arc Sill 3 + V:i arc Sill 8 -

- ~ arc sin ~] = 0,52282. 

Remark 3. For the values of acf.M.ANNand WmTNEY(2)or3.2. 
Remark 4. Because of theorem 6 (5. 13) it is not necessary 

to calculate separately the case ~ : : ! '. : : ! ~ . 
5. 3. A comparison with a'.i:(0) for Student's test for the difference of 

two means. 
The alternatives to the hypothesis tested (µ = 0) are µ =I=- 0 (therefore 

the notation a± is used, cf. (3. 3, 3)). Under the same assumptions 
about x1, . .. , xm, Yv . .. , y,,, as in 4. 3, the critical region for testing, 
according to STUDENT'S test, the hypothesis µ = 0 against µ =I=- 0 at 
the level of significance 2 a is given by jtj > ta. Here t and ta are defined 
as in 4. 3. As ta for the a-values needed has been tabulated in 3 decimal 

places only; or not at all, the quantity 'YJa = N -
2 

2 (N = m+ n) was 
N-2+ta 

calculated directly from 

( ) a=1.J (N-2 1.) 5. 3, 1 2 11a 2 , 2 , 

where I., (p, q) is the incomplete B-function tabulated by K. PE.ARSON (6). 
The power function of the critical region jtj > ta is (cf. P. L. Hsu (1)): 

(5. 3, 2) 

Hence a:i:(o) = 

(N-1) mn.I' -
2

-

_!_mn µ'J 00 

e 2 N '\"' [ mn ]k 
VN- 2.r(N-;2) ·t:i, 2N(N-2) · 

µ2k. r(2k+N- I) oo -k-N;;-1 

. k!I'(k/½) f xk-•(1+N~2) dx. 
t! 

= N VN - 2. i,t;. I' (N; 2) • 

00 
N+l 

00 
N-1 

· [! =! f xt ( 1 + N ~ 2)--
2 

dx- f x-• ( 1 + N ~ 2f-2 

dx] . 

~ ~ 
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By the substitution 1 + N ~ 2 = y-1 it easily follows that: 

(5. 3, 3) 

(N-1) 2I' -- N-2 mn 2 -2-
= N • (N -2) • 'l'/a • (1--rJa)l, 

v;;.r -2-

Here N= m+ n. 
In the cases, for which a~(0) was calculated for WILCOXON's test 

(cf. 5. 2, at the end) the following results are obtained for STUDENT's 
test from (5. 3, 3) and (5. 3, 1): 

m n 2a 'l'/a a~ (0) a~ (0)st - a~(0)w, 
2 2 1/3 5/9 0,37037 0,00282 

2 3 1/5 0.527963 0,40270 0,01138 

2 4 2/15 0,530988 0,38618 0,01863 

2 4 4/15 0,706294 0,54070 0,02672 

3 3 1/10 0,468123 0,35959 0,01261 

3 3 1/5 0,629850 0,54306 0,02024 

In order to facilitate the comparison with a~(0) for WILCOXON's test, 
a column is added containing the difference of a;:(0) for the test of 
STUDENT and for the test of WILCOXON. This comparison shows that 
under the conditions which allow the use of STUDENT's test, 6) a 
necessary condition for STUDENT's test being more powerful than 
WILcoxoN's one is satisfied (cf. the remark in 2. 3), but in the cases 
investigated the difference is very small. 

Remark. The following provisional result for large m and n 
was obtained for the power function of WILcoxoN's test when 
alternatives are two-sided: 

V2 -tc2 6mn 
a~ (0)w, ~ y;; · e a· ta· 2.n(m+n), 

x2 
1 -l o 2 1 • 

6) When f(x) =--=- e and g(x) = - e-• <re-µ) and a critical region 
oV2n ~ 

jtj > ta is defined as in the beginning of 5.3, then a~(µ) depends on r1. Denoting 
a±(0) by fJ(r12) to make this dependence explicit, it follows from Hsu (1) that, 
when m = 2, n = 3, and 2 a= 1/5, : fJ'(l) = 0,0447 for STUDENT'S test (the prime 
denotes differentiation with respect to a2), whereas calculations showed that the 
corresponding quantity for WILcoxoN's test is equal to 0,0357 .. So, in this 
example at least, WILcoxoN's test is less sensitive to the invalidity of the 
assumption r1 = I than STUDENT'S test. 
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except for a relative. error of the order 1/m _and 1/n. Here Ca is 
defined by: 

1 oo 
a-= ~ f e-•a:' dx, 

Ca 

where 2 a is the level of significance of the test. 
For STUDENT's test it is obtained from (5. 3, 3) that: 

,, (O) · j,'2 -,c2 r mn · 
a± stR:I v;;•e a.,,,a·m+n' 

(except for a relative error of the order 1/m and 1/n). Hence 
a~(O)w,fa~(0)81 R:I 3/n, so that the difference in power between 
the two tests is not great indeed. And then, Wn..coxoN's test 
is more general in that a (H0 ) has the same value whatever F(x), 
provided F(x) is continuous. 

At the end of this paper I wish to express my thanks to the organisation 
of Z.W.O., which by a grant made the work possible, to Prof. Dr D. VAN. 
DANTZIG for his stimulating interest during the investigation and for 
his material help in the redaction of this paper - more especially his 
advice has made it possible to state the calculations in 4. 2 and 5. 2 in 
their present, general, form - and to Mr J. HEMELRIJK and · other 
members of the staff of the Mathematical Centre at Amsterdam where 
the work was carried out, for their spirit of cooperation. 

6. Summ,ary. 

Some properties of the critical region and the power function of 
Wn..coxoN's non-parametric solution of the problem of two samples are 
studied. Under the conditions which allow the use of STUDENT'S test 
the difference in power between the two tests is investigated, as well 
for one-sided as for two-sided sets of alternative hypotheses, when the 
sum of the sample-sizes is < 5 and < 6 respectively. In these cases the 
difference is rather small. Indications are that for large sample sizes, 
too, the difference in power is not great. In an appendix the relation 
of the power function of Wn..coxoN's test with the volume of a spherical 
simplex is exposed, which shows the limitation of the sample sizes (to 
5 and 6 resp.) to be relevant. In an introduction the concepts of critical 
region and of power function in general are exposed. 
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A. APPENDIX 
<:JALCULATION OF A CERTAIN ·MULTIPLE INTEGRAL 

A. 1. The relation of the integral with a spherical simplex. 

Let 

(A. 1, 1) J = [1! (Jfki)] (-oo) = f ... f {1 {fk'{xi) dxi} 
G 

where 

ki > o, i ki= N, f (x) = ,~ e-•x' 
i=l V 2:n: 

and the region G 1s defined by - oo < x1 < x2 <. . . < x. < + oo. 
Then 

(A. 1, la) 

Be cos 0; denoted with C; and sin 0; with 8; (j= 1, ... , -r-1). Make 
the substitutions: 

(A. 1, 2) 
1 T-1 

xi= ''k,· • R • s.-i • II C; 
V"'i i=z-i+l 

(i = 1, ... , -r) 

with s0 = l; 0 < 01 < 2n; 0 < 0; < n (j= 2, ... ,-r-1). 
Then 

Hence 

o (x1, x2, ••• , Xz-1, x.) 
o (R, 01 , ••• , e._2, e._i) 

1 T-1 
---c== R·-1 . IT ct-1. 
V

I T i=l 
Ilk;, 
i=l 

r(i) 
(A. 1, 3) J = 1 

;--:;-- f e-• R' • R•-1 dR ·fl=------=---- · fl 
T O / T 

(2:n:) m . V g k, 2• (N-z-2> n½N V ,Q k; 

25 



170 

Here 

(A. l, 4} 

(518) 

where the region G' is defined by: 

1 1 1 1 .--1 1 
- ,IL < ,IL 8.--1 < ,IL 8 .--2 c.--1 < · · · < ,IL IT C; < + ~ · 

ykl yk1 yk1 yk., i=l ,k .. 

Now the ('r-climensional} volume of that part of the 1:-climensional 7) 

unit sphere, the orthogonal Cartesian coordinates z,(i= 1, ... ,1:) of which 

satisfy the inequalities (defining the (region G") ,::.- < ,::. < ... < ,:.::. 
rk1 1k1 r k-., 

is given by · 

(A. 1, 5) J. · · f TI dz,= V kt. A,,. .... k.r (say} 
G' •=1 

(cf. Remark 1). Bij the substitutions z, = - z~ (i = 1, ... , 1:) it is easily 
seen that 

(A. 1, 6) 

Moreover by the substitutions: 

(A. 1, 7) (i=l, ... ,T} 

with s0 = 1 ; 0 :::::;: 01 < 2 ;,i;; 0 < () 1 < ;,i; (i = 2, ... , T - 1) it is seen that 

1 
(A. 1, 8) V k, •...• k., = f R"-1 dB•£= {1/n} • £. 

0 

Thus by {A. 1, 3} and (A. 1, 8): 

(A. 1, 9) 
LI'G) 

Remark 1. If in vk, •...• k .. ki+1=ki+2= ... = ki+,.= k, the 
sequence of suffices ki+1 , ••• , ki+,. will be denoted shortly with 
the symbolic power k". 

Remark 2. V 1c,. 1<, ••••• k .. will be calculated below for T = 2, 3, 4. 

A. 2. The case 1: = 2. 

V 1c,. k, is the area of that part of the unit circle the coordinates Zi, Z:i 

of which satisfy ,:::- < ,~ . Clearly this is just half of the total 
y k1 y k2 

area. So 

(A. 2, 1) 

7) .- here is the number of dimensions of the underlying space. 
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A. 3. The case i- = 3. 

V 1c,. 1ca. 1ca is the volume of that part of the 3-dimensional unit sphere, 
the coordinates z1, z2, z3 of which satisfy the inequalities 

~<--2<..:.!!... 
Vki Vka YFa" 

This region is bounded by the surface of the sphere and by two planes, 
the equations of which are given by 

(A. 3, 1) ~--1=0 and ..:.!!...-1=0. 
Vki Vka Vka Vka 

The volume Vk,.k,,lca is built up out of points which make both the 
first members of the equations (A. 3, 1) negative. 

The corresponding angle between the two planes is given by n - <p, 

where <p is the angle between the positive normals. 

So 

(A. 3, 2) 

A. 4. The case i- = 4. 

Vk,. k,, lca. k, is the volume of that part of the 4-dimensional unit sphere, 
the coordinates Zi, z2, z3, z4 of which satisfy the inequalities 

....:!...<...:L<--1.<..1. 
Vki Vka Vka ~. 

This region is bounded by the "surface" of the sphere and by three 
hyperplanes, the equations of which are given by 

(A. 4, 1) 

= 0 (/) 

Zz Z3 

Vka-Vka = O (II) 

..:.!!... - ..:!..= 0 (Ill) 
Vka ~ 

4 

The hyperplane P = L zi Vki = 0 is perpendicular to the line 
i-1 

Z1 Z2 Z3 Z4 

VFi = Vkz = vFa = v~· 
which is contained in each of the three bounding hyperplanes. The 
points, P has in common- with Vk,. k,. lea, k,, fill up that part of the 
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3-dimensional unit sphere in the hyperplane P with (0, 0, 0, 0) as a 
centre, which is common to the point sets for which 

p _ 0; Zi - Z2 < 0; Z2 - Z3 < 0; Z3 - z, < 0. 
~ ~ ~ ~ ~ ~ 

Be v the volume of this part of the 3-dimensional unit sphere in the 
hyperplane P. Then: 

(A. 4, 2) 
+1 3.n-

Vk,.k,,k,,k, = V • f (l-q2
)'1• dq= S v. 

-1 

As to v, the following equality holds good: 
v/! n = <l>/4 n, where <l> is the spherical excess of the (spherical) triangle 
defined by the three hyperplanes mentioned above; -t n is the volume 
and 4 n the surface of the 3-dimensional unit sphere. So 

(A. 4, 3) v = t <l> =¼[(I, II)+ (II, III)+ (III, I)-n] 

where (I, II) is the angle between the hyperplanes I and II corresponding 
to the inequalities defining v and the same holds for (II, III) and 
(III, I). (I, II) is the supplement of the angle between the positive 
normals on I and II respectively; etc. So (III, I)= n/2, whereas 

(I, II) = arc cos Vkika ; (II: III) = arc cos V~ 
V(k1+k2) (k2+ka) V(ka+ka) (ka+k,) 

Hence 

,;,;. , J/k2 ka [V(k1 +k2+k3 )(k2+ka+k4 ) - J/k1 k,] 
<v = arc sm -'--=----=--=---'---=---'--:--=--::::=:::::::::::==========--'--=--= 

(k2+ka) V(k1 +k2) (ka+k,) 

and, by (A. 4, 3) and (A. 4, 2) it follows that 

(A. 4, 4) V _!;__ ~[V(k1+k2+ka) (k2+k3 +k4)- ~] 

k.,k,,k,,k,- 8 (k2+ka) V(k1+k2)(ka+k,) • 
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