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A FAMILY OF PARAMETERFREE TESTS FOR SYMMETRY WITH 
RESPECT TO A GIVEN POINT. I 

BY 

J. HEMELRIJK 

(Con:imunicated by Prof. D. VAN DANTZIG at the meeting of May 20, 1950) 

I. Introduction. 

In this paper a family of tests will be described for the hypothesis H0 , 

that a number of random variables zi (i = 1, ... , n) 1 ) are distributed 
independently, each having a probability distribution, which is sym­
metrical with respect to a given point zi = a, which is the same for every 
i. The tests will be based on the information supplied by n observations 
;Z1 , ••• , zn, where zi denotes an observation of the random variable zi. 
A special case of H0 is the hypothesis, that all zi have the same sym­
metrical probability distribution with a given point of symmetry, 
zi (i = 1, ... , n) being a random sample from this distribution. No 
.additional assumptions will be made about the probability distributions 
-0f zi, such as normality or even continuity. 

It will be tacitly understood, if not mentioned otherwise, that a= 0; 
this does not imply a loss of generality. 

In mathematical statistics these tests may be applied to many problems. 
An important practical application to a problem, occurring often in 
connection with medical and biological experiments, will be described 
in section 2. 

The sign test, introduced by R. A. FISHER (1925) (cf. also W. J. DIXON 

.and A. M. Moon (1946)), may be regarded as a partial solution of our 
problem; this test, however, is a test for the common median of the 
zi only. It can therefore not be a powerful test for the hypothesis H0.' 

Other tests for the common median of a number of random variables zi 
have been developed (cf. J. E. WALSH (1949)) on the assumption of 
continuity of the probability distributions of zi. Apart from the fact, 
that we want to avoid this assumption of continuity, we shall try to 
exploit the additional assumption of symmetry contained in H0, which 
cannot be taken into account in a parameterfree test for the median only. 

The test, derived in this paper is an application of the randomization 
method, introduced by R. A. FISHER (1925) and described extensively 
e.g. by E. L. LEHMANN and C. STEIN (1949). 

1 ) The random character of a variable is denoted by the use of a bold type 
symbol; a special value, assumed by a random variable is denot.ed by the same 
,symbol in normal type. 
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2. Applications. 

2. 1. Let us suppose, that a number of patients, (say n), suffering 
from a certain disease, have been treated with a drug, which has to be 
tested, and that the effect of the drug can only be ascertained by measuring 
the value, before and after the treatment, of a random quantity x, e.g. 
the blood pressure. The hypothesis to be tested is, in such a case, that the 
drug does not have any effect on the distribution of x. 

Two sets of observed values of x are available: for every patient we 
have one value before and one value after the drug has been administered. 
In general, however, the application of a ·two-sample test on the two 
sets of values mentioned is not justified since the probability distribution 
of x is usually different for every patient. If, on the other hand, a unique 
probability distribution of xis assumed to exist on a population, containing 
all patients, the two sets of observed values are correlated, because two 
observations have been made for every patient, one for each of the two 
samples. If x is assumed to have the same distribution for every pati"}nt, 
a two sample test can be applied, but this condition is rarely satisfied. 

2. 2. In order to overcome these difficulties the observations are 
paired and the test is based on these pairs, consisting of the value of x 
for each patient before and after the treatment. 

Let xi (i = 1, ... , n) be the random variable x for the i th patient 
before the treatment and x~ the corresponding variable after. 

Then, if the hypothesis, that the drug has no effect, is true, xi and 
x~ have the same probability distribution 2) and the random variables 

(1) zi = xi-xl 
are distributed symmetrically with respect to zero. Moreover, if the 
random variables xi (i = 1, ... , n), as well as the x~ are independently 
distributed, the same applies to the zi. In this case the hypothesis to 
be tested is H0• 

Applications of a similar type may be found in other fields of experiment. 
We confine ourselves, however, to this example, indicating the kind of 
problem, which may be solved by testing the hypothesis H0 in question. 

3. The general principle of the tests. 

3. 1. Let us denote an n-dimensional Euclidean space, with coordinates 
z1 , ... , Zn, by S. The random point E = (z1 , ... , zn), representing the 
set of random variables z1 , ... , Zn, has a probability distribution on S, 
which, if H0 is true, is symmetrical in every coordinate of S (with the 
origin of S as point of symmetry.) 

Let further the symbol Z denote the conditions 

(2) Z: lzil = lzil i = l, ... ,n 
2) That is, if no other factors than the drug affect the probability distribution 

of xi systematically. This assumption is inevitable, if the influence of the drug 
only is to be ascertained. 
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where the zi are any given numbers, and let F(Z) denote the (unknown) 
simultaneous cumulative distribution function F (I Zi I, ... ,I z,, I) of the 
random variables jzi! (i = 1, ... , n). Let M = M(Z) be the subset of 
S, consisting of those points, which satisfy Z. If m of the values zi are 
equal to zero, M consists of 2n-m different points. 

According to the above mentioned symmetry of the probability 
distribution off., all points of M have, if H0 is true, the same conditional 
probability, under the condition Z, if we exclude from S a set of 
probability zero, where this conditional probability is undetermined. 
Moreover, each point of M corresponds with one of the 2n-m different 
ways, in which signs may be attributed to n - m numbers -::j::. 0. If 
.x1 , ... , x"i are the positive coordinates and - y1 , .•• , - y,,

2 
the negative 

coordinates of E ES (all x1 and Yk thus being positive; n1 + n2 = n - m), 
then there is a one to one correspondence between the points of M and 
the possible partitions of those of the values I zil which are -::j::. 0, into 
a group of values xi and a group of values Yk· 

We thus have 

Lemma 1: If H 0 is true, and condition Z is satisfied, all 2n-m partitions 
of the n - m positive values among I z1 I , ... , I z,, I into a group of values x1 
and a group of Yk are equally probable. 

3. 2. A uniquely determined function 

{3) 

of Zi, ... , z,,, defined on S, is called a statistic; s = s (f.) = s (z1 , .•• , z,i) 
has a probability distribution, which follows from the probability 
distribution .of f. on S; the latter distribution being unknown, the same 
will usually be the case with the former. Assuming H0 to be true, 
however, we may derive properties of the distribution of certain 
statistics and, sometimes, the distribution itself. 

Two types of statistics will be used in the tests for H0 : 

A. A number v1 of statistics, the values of which are uniquely deter­
mined by the values jzil (i = 1, ... , n). The simultaneous distribution 
function of these statistics need not be known, even if H0 is supposed 
to be true. We need these statistics, which might be called ,,nuisance­
statistics'', to overcome difficulties with discontinuities of the distributions 
of zi. The elimination of their unknown distribution function is described 
in theorem I, at the end of this section. 

One of these statistics will be m, the number of those among the 
variables zi which assume the value zero. 

B. A number v2 of statistics, of which the conditional simultaneous 
distribution function, under the condition Z, will be derived, assuming 
H0 to be true. Let us denote these statistics simultaneously by a random 
point Q in a subset of a v2-dimensional Euclidean space. 
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One of these statistics will be n1, the number of positive coordinates 
of E.. For this statistic we have 3) 

Lemma 2: If H0 is true, the conditional probability distribution of 
the number of positive coordinates nv under the condition Z, is given by 

(4) 

with O < n1 < n - m, where m is the number of values I zi I, which are 
equal to zero. 

Proof: The number of partitions of n - m values into two groups 

of n1 and n2 = n-m-ni values respectively, is equal to (~). From 

this and lemma 1, lemma 2 follows. 

Remark: Lemma 2 is also true, if the condition Z is replaced by the 
condition m = m. The sign test ( cf. section 1) is based on lemma 2 with 
this latter condition. · 

We further have the following lemma: 

Lemma 3: If H0 is true, and the conditions Z and n1 = ni are 

satisfied, all (n~m) partitions of the n - m positive values among jz;I 

into a group of n1 values X; and a group of n 2 = n - m - n 1 values Yk, are 
equally probable. 

This lemma follows at once from lemma 1; the condition n1 = n1 selects 
a number of equally probable partitions from the 2n-m partitions, which 
are possible if only Z is imposed. 

3. 3. GivenZ, i.e. the values I zi I (i = 1, ... , n), the statistics mentioned • 
in 3. 2. B are represented simultaneously by a random point Q in a 
v2-dimensional set of points V. For every Z we shall, in later sections, 
indicate a critical region R = R (Z) in V ,with the property 

(5) P [QER(Z) jZ; H 0 ] < s 

with given s > 0. Then the following theorem is easy to prove: 

Theorem I: If we reject H0 if and only if 

(6) Q ER (Z) 

where Z represents the observed values I zi! (i = 1, ... , n), then the probability, 
that H 0 , being true, will be reiected, is < s. 

Proof: The probability, that H 0, being true, will be rejected, is 

f P [Q ER (Z) I Z; H 0] dF (Z) < sf dF (Z) = s, 

where the integral-sign denotes integration over the n-dimensioi+al 
space S. 

3) The symbol P [A IB; H] denotes the conditional probability ot the event A, 
under the condition B, and the hypothesis H. 
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4. An exact test for H0 • 

4. 1. In this and the follo_wing section an exact test for H0 will be 
given, which in a way is nothing more than an application of the test 
for independence in a 2 X 2 table. The family of tests mentioned in the 
title of this paper, which is a generalisation of this one, will be described 
later. 

We shall use the following statistics ( cf. section 3. 2): 

A 1. The number m of values zi, which are equal to zero. Since the • 
probabilities P [zi= O] are unknown, the probability distribution of 
m is unknown too and H0 does not specif,;v any assumption about it. 

A 2. A statistic r = r (f) which is defined as follows: 
If there are no equal values among x1 , ••• , xn,, y1 , ••• , Yn, (as defined 

in section 3. 1), we put 

[x] denoting the integral part of x. 
If some of the values x 1 and Yk are equal, we define r by dividing the 

set of values x1 , ••• , xn,, y1 , ... , Yn, into two sets A and B, containing 
a and b of those values respectively (with b-a 2: 0), and with the property, 
that every member of A is smaller than every member of B (thus no 
member of A being equal to any member of B); among all possible 
divisions, which satisfy these conditions, that one is chosen, which 
minimizes b-a. This division is uniquely determined and we now define 
r = r (E) ·b. The above definition of r, for the case, that there are no 
equal values among x1 , ... , xn,, y1 , .•. , Yn, is a special case of this 
general definition. 

The distribution of r depends on the discontinuities of the distributions 
of z;. 110 does not contain any assumption about these discontinuities; 
therefore the distribution of r remains unknown if H0 1s assumed to 
be true. 

B l. The number n1 of positive values among the z.i• 

B 2. A statistic u, defined in the following way: 
For every E ES the values x1 , •.. , xn. and y1 , ... , y,,

2 
and the number 

r having been defined in such a way that the r largest among these values 
are uniquely determined, we now define u (E) as the number of values xi 
among these r largest values. Thus u (E) 1s uniquely determined for 
every E ES. 

Remark: If, instead of the statistic r, as defined above, we had 
chosen any statistic satisfying the conditions: 

a. To be uniquely determined by I z1 I , ... , I zn I ; 
b. To determine uniquely the r largest elements among I z1 I, ... , I zn I, 

the method would otherwise have remained unchanged. Our choice of 
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the definition of r, which might seem rather arbitrary, has been made 
on the consideration, that for r = n1 + n2 or r = 0 the test reduces to 
the sign test, which is not very sensitive. An optimum choice for r 
should be based on some knowledge of the power function of the test. 
This problem has not yet been solved, the determination of power 
functions being generally a rather difficult one if parameter-free methods 
are concerned. 

4.' 2. We now proceed to prove the second theorem, on which the 
test will be based: 

Theorem II: If H0 is true, the conditional simultaneous probability 
distribution of n1 and u, under the condition Z, is given by 

(7) P [n = n1; u = u I Z; Ho]= 2-n+m (:) c:;::r) 
with O < ni < n-m and Max (0, r + m + n1-n) < u < Min (n1 , r). 

Proof:. According to lemma 1 all partitions of the n-m positive 
values among lzil, are equally probable under the condition Z. There 
are 2n-m such partitions, among which 

(:) (~) 
have u values xi among the r largest and n1 - u among the n-m-r 
smallest values. 

This proves the theorem. 

Remarks: 1. It may be proved in a way analogous to the proof 
of theorem I, that the condition Z may be replaced by the conditions 
m= m and r= r. 

2. According to theorem II, u and n1 - u are, under the conditions 
Z and H0 , independently distributed, each with a binomial distribution, 
with 0 < u < r and 

(8) G (u I Z; Ho)=½ r; aulZ;H, = ½ Vr 
and with 0 < n1 - u < n-m-r and 

(9) G(n1-ulZ; H 0 ) = 7r; an,-ulZ;H, = ½ Vn-m-r• 

3. The conditional distribution of u, given m, rand ni, which follows 
easily from theorem II and remark 1, is a hypergeometrical distribution, 
given by 

'., \', , ' 

(10) 

with ni + n2 = n-m and Max (0, r - n2) < u < Min (ni, r). 
This result may also be obtained directly from lemma 3. 
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5. The critical region. 
5. 1. The choice of a critical region depends on the alternative 

hypothesis or hypotheses against which H 0 is to be tested. To give an 
impression of the possibilities for this choice, a special case of the 
conditional distribution of n1 - u and u has been given in table 1, where 
n-m = 20 and r = 11; u has only been tabulated up to u = 5 and 
n1 - u up to 4, because of the symmetry of the distribution. The values, 
given in the table, are to be multiplied by 2-20 in order to get the 
probabilities wanted. 

TABLE 1 

5 462 4158 16632 38808 58212 
4 330 2970 11880 27720 41580 
3 165 1485 5940 13860 20790 
2 55 495 1980 4620 6930 
1 11 99 396 924 1386 
0 1 9 36 84 126 

~I 0 1 2 3 4 

-+ 

220• P [ n1 = n1 ; u = u I n-m = 20; r = 11; H0]. 

5. 2. If no alternative hypothesis is specified, we may adopt the 
system of G. A. BARNARD (1947) to find a critical region. According to 
this system, the critical region is a set of points (n1 - u, u), all of which 
have probabilities smaller than or equal to those of the points not 
contained in the critical region. In our case, the largest symmetrical 
critical region R1 with size < 0,05 is then the region, indicated in fig. I. 

On intuitive grounds this region may be expected to be a rather 
good one. 

The computations are not very numerous and of a simple kind. The 
marginal distributions may be found in tables of the binomial coefficients, 
cf. e.g. T. C. FRY (1928) or A. VAN WIJNGAARDEN ,(1950). The other 
probabilities follow from the marginal distributions by multiplication. 
The number of computations, moreover, can be reduced considerably. 
If a certain point (n1 - u, u) has been found as the result of the experiment, 

only those products have to be computed, which are < (r) (n-rnr--r). 
U n1-u 

If the sum of these products divided by 2n-m is smaller than the 
significance level chosen, H0 is to be rejected. 

If n-m and r are large, the probability distribution of n1 - u and u 
may be represented approximately by a two-dimensional normal 
distribution. This approximation is, however, not' a very good one for 
values of n-m and r of the order of magnitude used for table I. Another 
approximative method, which is more satisfactory, will be given in a 
later section, in connection with the generalisation to be described there. 

9 



(952) 347 

u I 

11 ~-C..'-----0---0--0--0---0----~ 

10 0 C O O O O O O ? 
'l 

: f 

9 

8 

7 

0 0 0 

0 

0 

6 

5 

4 0 0 

3 0 0 

2 0 0 0 0 

0 0 0 0 0 0 0 0 

0 
2 3 4 5 6 7 8 9 

n,-u 

Fig. 1. Critical region R 1 when no alternative hypothesis is specified. Significance 
level 0,042. 

5. 3. We shall now consider a special alternative hypothesis H, 
against which H0 may be tested more profitably with another critical 
region than R1 • H is the hypothesis, that the zi (i = 1, ... , n) are 
distributed independently and symmetrically with respect to points 
zi = a,i, satisfying the following conditions: 

1. a,i -=I=- 0 for at least one value of i; 

·> a,i ? 0 for all i, or ::ii < 0 for all i. 

This situation will often arise. In the example of section 2 for instance, 
although it cannot be said, that H is exactly the alternative hypothesis, 
it will certainly often be more important to detect a displacement of the 
distributions of zi along the z-axis than asymmetry of these distributions. 

Assuming H to be true, little can be said about the distribution of ni, 
since H does not specify any assumption about the amount of the 
displacements. It is, however, reasonable, to exclude for n1 the value 

n1 = n----;n, if it is an integer, from the critical region, since the probability 

of this value is asymptotically equal to zero, if the number of distributions, 
shifted along the z-axis, increases indefinitely. If the distributions of some 
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of the variables zi have been shifted to the left, i.e. if 

p [ "1 > n 2 m I H] < p [ "1 < n 2 m I H] ' 
it is evident, that small values of u are more probable than large values. 
An analogous statement may be made for a displacement to the right. 

We therefore propose the following construction of critical region R2 , 

wheh H is the alternative hypothesis: 
We divide the lattice of possible points (n1 - u, n) into two parts by 

the line n1 = n-;, excluding the lattice points on this line. In both 

resulting parts we build up a critical region of half the size wanted 
according to the system of Barnard; we only have to describe this 
region for one of these part,;, (e.g. the lower part; cf. figure 2) since the 

u 

11 

10 0 0 0 0 0 

9 

8 

7 

6 

5 

4 

3 

2 

0 

10 

Fig. 2. Critical region R 2, when the alternative hypothesis is a displacement of 
some of the distributions in one direction along the z -axis. Significance level 0,053. 

critical region as a whole ought to be symmetrical with respect to the 
centre of the lattice, if no information is available about the direction 
of the displacement. 

We start by taking the point (0, 0). 
If v points P 1 , ••• , Pv have been chosen, the (v + l)th point is the 
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point with smallest probability (under hypothesis H0 ) among all points P 
satisfying the following conditions: 

a. All points with the same n1 as P, but with smaller value of u, are 
contained already in P 1 , ... , P ;. 

b. If u = 0 for P, the point directly to the left of P is already 
among P 1 , ... , P,. 

In this way, the (v + l) th point may not yet be determined uniquely, 
since two or more of the points P may have equal probabilities, all other 
points P having a larger probability; in that case we choose the point 
with smallest n1 among the points with this (minimal) probability. 

Applying this principle to our example, we get the critical region 
indicated in figure 2. The numbers inside the rectangle denote the order, 
in which the points have been added to the critical region. 

It is clear, that a one-sided critical region may be constructed in one 
of the two parts of the lattice only, if H specifies the direction of the 
displacement. 

5. 4. It is of some interest to compare the critical regions R1 and R2 

of figure 1 and 2 with the corresponding critical region belonging to the 
sign test for n-m = 20. This region consists of the lattice points on the 
lines ni = 0, ... , n1 = 5 and n1 = 15, ... , n1 = 20. The significance level 
is 0,041. If the points of the lines n1 = 6 and n1 = 14 are added, the 
significance level jumps to the value 0,115. Since the sign test is a test 
for the median only, it should be compared especially with the second 
critical region. The critical region of the sign test then contains four 
points, which are not contained in the region R2 of figure 2, while 
20 points of R2 are not contained in the critical region of the sign test. 

5. 5. Example. 

Consider the following sample of 22 values zi: 

+ 7,4; + 6,3; + 3,6; + 3,5; + 3,4; + 2,9; + 2,5; + 1,1; 0; 0; 
-1,3; - 2,5; - 3,2; -4,6; - 4,6; - 4,6; - 4,8; - 6,3; - 7,0; - 7,9; 
-8,0; - 8,7. 

We have: n-m = 20; n1 = 8; r = 11; u = 2. The point P 0 wtth 
coordinates n1 - u = 6, u = 2 is contained in R2, but not in R1 ( cf. fig. 2 
and I resp.). The result is not significant, if the sign test is applied. If 
we compute the sizes of the smallest critical regions, which contain the 
point P 0 , we find for the three methods: 

Type of region 

RI 
R2 

sign test 

12 

size 
0,076 
0,042 
0,503 

(To be continued). 
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A FAMILY OF PARAMETERFREE TESTS FOR SYMMETRY WITH 

RESPECT TO A GIVEN POINT. II 

BY 

J. HEMELRIJK 

(Communicated by Prof. D. VAN DAN:TZIG at the meeting of June 24, 1950) 

6. Introduction. 

6. 1. In a previous paper on this subject 1 ) an exact test has been 
given ffor the hypothesis H0 , that n random variables zi (i = 1, ... , n) 
are distributed independently, each with a probability distribution, 
which is symmetrical with respect to zero. We shall now give a general­
isation of this test by describing a family of tests for H0 , which contains 
this one as a special case. The computations involved in the application 
of the test are described in section 11 and an example is given at the end 
of this paper in section 12. 

6. 2. These tests will be based on the simultaneous application of 
the sign test, which depends on the number of positive and negative 
values among zv ... , zn, and on the application of a parameterfree two 
sample test to the two groups of values Xi, ... , xn

1 
and Yv ... , Yn, defined 

in section 3. 
A two sample test is a test for the hypothesis H', that two random 

samples x1, ... , xn, and Yv ... , Yn, have been drawn independently 
from the same population. We shall mainly be concerned with a "family" 
of two-sample tests, consisting of those two-sample tests, which are based 
on the fact, that, assuming H' to be true, all partitions of the n1+n2 values 
xi and Y1c of the two samples, taken together, into two samples of n1 and 
n2 values respectively, have the same probability. This fact may also be 
expressed by saying, that, if H' is true and the samples are drawn in a 
fixed order, all permutations of the obtained values are equally probable. 

6. 3. Several two-sample tests have been developed on this basis, 
e.g. by E. J. PITMAN (1937), N. SMIRNOFF (1939) (using a theorem developed 
by A. KoLMOGOROFF (1933)), A. WALD and J. WoLFOWITZ (1940) and 
F. WILCOXON (1945). Wilcoxon's test was studied in detail by H. B. 
MANN and D. R. WHITNEY (1947). 

7. The main theorem. 

7. I. Let T be a two sample test of the type described above and let 

1 ) These Proceedings 53, 941-955 (1950). 
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ui, ... , u, be the statistics, on which T is based. These statistics are 
known functions of the random variables x1, ••. , xn, and Yv ... , Yn, and 
n1 and n2 are given numbers. Usually v = 1, but this is by no means 
necessary. We shall therefore give the main theorem in the more general 
form with v > 1. 

Since we are using two-sample tests, which have been developed pre­
viously, we may assume the simultaneous distribution of u1, ... , u., 
under the assumption that H' is true, to be known. '\Ve shall denote by 

( 11) 

the conditional simultaneous distribution function 2) of u1 , ... , u., under 
the condition (denoted by the asterisk), that the two samples, taken 
together, assume the set of values Xi, ... , xn,, Yi, ••• , Yn, and under the 
assumption, that IJ1 is true. 

7. 2. If, instead of the two samples, we take the values Xi, .•• , xn, 
and Yv ... , Yn, defined in section 3, it follows from lemma 3, that, if H0 

is true, if n1 = n1 and if condition Z is satisfied, the conditions indicated 
by the asterisk in ( 11) are satisfied too, and that ( 11) is the conditional 
distribution function of ui, ... , u,.. We express this fact by changing the 
notation of this distribution function into 

( 12) 

where 'Ui, ... , u, are derived from x1, ... , xn, and y1, ... , Yn,, the group 
of positive values and the group of negative values (taken positively) of 
the original observations Zi, ... , zn, which are available to .test the sym-
metry of the variables Zi, ... , zn. 

For n1 = 0 and n1 = n - m (i.e. n2 = 0) the statistics u1, ... , u, have 
not yet been defined, since one of the groups x1, ••• , xn, or Yv ... , Yn, is 
empty in that case. Defining for this case u1 = ... = u, = 0, we find 
from lemma 2 and 3: 

Theorem III: If H0 is true, the conditional simultaneous vrobability 
distribution of n1 and ui, ... , uv, under the condition Z, is given by 

( 13) ( 
P [n1 = n 1 ; u1 < u1 ; ... ; uv < u,jZ; H 0] = 

= 2-n+m ci·;::n) G (u1,···, u. IZ; "1 = n1; Ho), 

with O < n1 < n-m. 

Remarks: 1. If we want to test the hypothesis H~, that all zi are 
distributed independently according to the same symmetrical probability 
distribution, T need not be restricted to the family of tests described in 
6. 2. For it is easy to prove, that under the hypothesis H~ and under the 
conditions n1 = n1 and m = m the values Xi, ••. , xn, and y1, ... , Yn, 111ay 

2) We use the term "distribution function" in the sense sometimes denoted 
by the term "cumulative distribution function". 
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be regarded as independent random. samples from. a comm.on population. 
This m.ay be of importance, if additional information about the comm.on 
probability distribution of the zi is available, or is contained in the hypo­
thesis to be tested, since we may then use any two sample test based 
on this information. 

2. Theorems I and III enable us to give a test for H 0, based on the 
statistics n1 and ui, ... , uv. Since a family of tests T may be used ( cf. 
section 6. 2), we have a family of tests for H 0• The exact test, described 
in part I of this paper, is a member of this family as m.ay be seen from. 
remark 3 of section 4. 2.~T is then a two sample test based on the statistic u. 

8. The critical region. 

8. 1. In section 7. 1 we have supposed the conditional probability 
distribution of u1, ... , uv, under the conditions Z, n1 = n1 and hypo­
thesis H0, to be known, since T is a known two sample test. For the same 
reason we now assume a critical region for u1, ... , u" to have been chosen 
already. We shall, however, want to make a distinction between bilateral 
and unilateral critical regions. To make this clear, the critical regions of 
some of the two-samples tests mentioned in 6. 3 will be described. 

8. 2. WILcoxoN's test depends on .the number of pairs (xi, yk) 
(j = 1, ... , n1 ; k = 1, ... , n2) with xi> Yk· This statistic, usually denoted 
by U, can take all values 0, 1, ... , n1 + n2• A unilateral critical region 
has either the form 

U _~n2 > U 
2 = a 

or 

U _ n1n2 <- U 
2 = a 

where Ua depends on n1, n2 and the chosen significance level a. The first 
of these critical regions is suitable for testing the hypothesis H', that 
Xi, ..• , xn, and y1, ••• , Yn, are random samples taken independently 
from the same population, against the alternative (composite) hypo­
thesis, that x1 , ... xn, are independent observations of a random. variable 
x and Yi, ... , y,,, of a random. variable y, with 

p [x < y] < ½ 
and the second critical region is suitable for testing H' against the alter­
native hypothesis, that 

p rx < y] > ½ 3) 

3 ) This has been proved recently by Prof. D. VAN DANTZIG as a generalisation 
of MANN and WHITNEY's theorem, according to which WrLCOXON's test is consistent 
against alternatives with P [x < a] < P [y < a] for all a, if the first of the 
above mentioned unilateral critical regions is used, and consistent against 
alternatives with P [x < a] > P [y < a] if the second C'ritical region is used. 
Cf. D. VAN DANTZIG (1947-1950), Chapter 6, § 3. 
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A symmetrical bilateral critical region for U has the form 

I U - n1t2 I > U,a 

and 1s suitable for testing H' against the alternative hypothe.:sis, that 

P[x<y] :;t:½. 3) 

The probability distribution of U can be computed exactly with the 
aid of a recursion formula given by MANN and WHITNEY, under the 
assumption, that H' is true and that x and y have a continuous probability 
distribution. It has been tabulated by them for n1 < 8 and n2 < 8 and 

for larger ·values the normal distribution with mean n~n2 and variance 

1\-n1n2 (n1 + n2 + 1) (which is the asymptotic distribution of U for n1 --+ = 
and n2 --+ =, n1/n2 and n2/n1 being bounded) is a good approximation. 

8. 3. The statistic of PITMAN's test, which we shall also denote rv U, 
is the difference of the means of Xi, ... , xn, and y1, ..• , Yn,: 

The unilateral critical regions 

U<-U~ 

and 

U> U~ 

where U~ depends on the observed values Xv ..• , xn,, Yv ... , Yn, and the 
chosen significance level a, are suitable for testing H' against the alter­
native hypotheses 

8,x < 8,y 

and 

GX> 8,y 
respectively. 

A bilateral critical region 

is suitable for testing H' against the alternative hypothesis 

8,x=,t:8,y 

The probahility distribution of U can be derived exactly from the 
values x1, ... , xn,, y1 , ••• , Yn, This, however, is only practicable, if n1 and 
n2 are very small. For larger values of n1 and n2 PITMAN has given an 
approximation for the distribution of U. The assumption of continuity 
is not necessary. 

8. 4. The test of WALD and W 0LF0WITZ is based on the number of 
runs in the sequence of values xi and Yk (i = 1, ... , n1 ; k = 1, ... , n2) 

17 
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when arranged according to decreasing magnitude. Small values of this 
statistic are critical. Its probability distribution is known exactly as 
well as asymptotically, under the assumption that H' is true and that the 
probability distribution of x and y is continuous. F. S. SWED and C. 
EISENHART (1943) have given tables of this distribution for n1 < n2 < 20. 

For this test we shall not try to make a distinction between unilateral 
and bilateral critical regions, sincP the class of alternative hypotheses; 
for which the test is consistent contains nearly all possible alternative 
hypotheses. It is difficult to see how this class could be divided into two 
mutually exclusive classes of a kind similar to the two clasRes of alter­
natives for Wilcoxon'R test or Pitman's test, which have been dt:>scribed 
in 8. 2 and 8. 3. As far as our application of the test of Wald and 
\Volfowit.z is concerned, its critical region can therefore be ta.ken to he a 
bilateral one. 

8. 5. The probability distribution of the statistic of the test of 
KoL::.\WGOROFF-S1vnRNOFF is knovm asymptotically only. An exact method 
for determining the confidence limits for an unknown distribution function 
(the problem, which had been solved asymptotically by A. KOL:.\IOGOROFF 
(1933)) has been given by A. WALD and J. WoLFOWITZ (1939). Possibly 
the method applied by Smirnoff to derive a two sa.mple test from Kolrno­
goroff's theorem might be applied to this theorem of \Valcl and Wolfowitz 
and give an exact two sample test of this type. 

So far, however, we have no knowledge either of the exact probability 
distribution of the statistic of this test, nor of the amount of the diver­
gence between this exact distribution and the asymptotical one, derived 
by Smirnoff. Apart from this the remarks, made above about the critical 
region of the test of Wald and Wolfowitz, apply to this test also. No 
attempt will be made to make a distinction between unilateral and 
bilateral critical regions. The only difference is, that in this case large 
values of this statistic are critical, and that no continuity of the pro­
bability distribution of x and y is needed. 

8. 5. We shall now consider the choice of a critical rrgion for testing 
H0 , if no alternative hypothesis is specified. In order to simplify the notation, 
we confine ourselves to v = l, i.e. to the caim, that the two sample test T 
is based on one statistic U. Denoting the bilateral critical region for T 
with size s by Rn-m,n,(s), we propose the following construction of a 
critical region R"'{ with size < a for testing H0 , applicable if ct> 2-n+m+i: 

A. Let le he the largest positive integer < n----;,m, for which the relation 

( 14) 2 -n+m (n-rn) ~ ct 
k -n-----11i+I 

holds (where mis the value of m following from the observations z1, ••• , z.,) 
or, if no positive integer satisfies (14), le= 0. 

18 
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B. Put 

(15) (J = fJ (n-m, a)= 2-n+m+i it C7) 
and 

(16) 
a-fJ 2n-m 

s=s(n-m,ni,a)= 2k 1 • (-) n---ni- - n---ni 

n1 

C. Then the critical region Rf consists of those points (n1, U), for 
which at least one of the following two c0nditions holds: 

0 1 : n1 < le or n 1 > n-m-k 

02: u E Rn-m,n, ( o) 

where o < s, and s-o is as small as possible. [It is clear, that the size 
of Rf is then < a. 

8. 6. For n - m = 12 and a= 0,10 (a has been chosen rather large 
to get better diagrams) Rf has been outlined in fig. 3 for the case that 

G 

(l9 

0,8 

0,7 

0,6 

0,5 

0,4 

0,3 

()2 

0,1 

0 12 n, 

Fig. 3. Critical region Rf, when no alternative hypothesis is specified 
and when T is vVrLcoxoN's test or PrTMAN's test; a= 0,10. 

Wilcoxon's test. or Pitman's test is used for T and in fig. 4 if the test of 
Wald and Wolfowitz is used. In these figures G(UIZ; n1 = n1 ; H 0 ), the 
conditional distribution function of U, has been plotted on vertical lines 
above the points n1 = 1, ... , n1 = 1 I. Rf consists of the points (ni, U) 
on those parts of these lines, which have been drawn, The points with 
ni.=0 and n1 = 12 belong to the critical region according to 8.5.A. This 
has been indicated by drawing the vertical lines above these points. The 
broken parts of the vertical lines indicate the region, where H 0 is not 
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rejected. The reader should bear in mind, that in reality G is disconti­
nuous. 
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Fig. 4. Critical region Rf, when no alternative hypothesis is specified 
and Tis the test of WALD and WoLFOWITZ; a=0,10. 

Remark: The crit.ical region Ri for the case, that the test of Kolmo­
goroff-Smirnoff is used for T, can be constructed in an analogous way, 
large values of G being critical instead of small values. Strictly speaking, 
however, we do not know much about a in that case. 

8. 7. As a special alternative hypothesis, against which H0 can be tested, 
we consider the hypothesis H (cf. section 5. 3) of a displacement of one or 
more of the variables zi in one direction along the z-axis. In this case we 
restrict the "family" of tests T to those tests, where a unilateral critical 
region can be indicated (cf. 8. 2, 8. 3 and 8. 4). We shall denote unilateral 
critical regions of the types U < U1 and U > U~ with sizes by R~-m.n,(s) 
and R~'-m.n, (s) respectively. These critical regions may also be defined 
by the relations 

G(UjZ; n1 = n 1 ; H 0) < G1 = G(UdZ; n1 = n 1 ; H 0) 

and 

For reasons given in section 5. 3 we exclude, if n - m is even, the points 

(n1, U) with n1 = n 
2 

m from the critical region R;, for testing H 0 against 

H. We further remark, that for Wilcoxon's test and Pitman's test the 
probability of small (large) values of U increases if some of the variables 
zi are shifted towards the left (right) and decreases, if the displacement 
is towards the right (left) along the z-axis (cf. section 5. 3). We therefore 
propose for these cases the following construction for R;, (with size < a), 
applicable if a 2:: 2-n+m+I: 
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A. Let k be the largest positive integer < n 
2 

m, for which the relation 

(14) holds, or, if no positive integer satisfies (14), k = 0. 

B'. Define {3 by ( 15) and ( cf. ( 16)) : 

(16') s' = s' (n-m, n,_, a)= s (n-m, nv a) 

if n - m 1s odd, and 

( 16") ' ' a-fl 2n-m 
s = s (n-m, ni, a)= 2k 2 (--) n-m- - n-m 

n1 

if n - m is even. 

O'. Then Rt consists of those points (ni, U), for which at least one of 
the following three conditions holds : 

0 1 : n1 < k or n 1 z n-m-k 

0~: n1 < n-;n and U E R~-m.n,.(o) 

0~: n1 > n-;n and u E R~'-m,n, (o) 

where o < s, and s - o is as small as possible. 
For n -m = 12 and a= 0,10 Rt has been given in figure 5 for the 

case that Wilcoxon's test or Pitman's test has been used for T. 
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I ' ' I I 
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i ' ' I ' ., I ' I ' ' ' ' ' 2 3 4 • s s 1 a 9 10 11 12 n, 

Fig. 5. Critical region Ri, when the alternative is a displacement of at least one 
of the distributions in one direction along the z-axis; a= 0,10. 

If the direction of the displacement is specified in the alternative 
hypothesis, the critical region may be confined either to the left or to the 
right half of the diagram only, using 2a instead of a in (14) and (15). 

8. 8. The computations are now comparatively simple. A table of 
k, 2n-m and of the quantities 

(17) a-fl 2tt-m 
y= n-m-2k-I. 
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and, for even values of n - m, of 

( 18) y' = a-{J • 2n-m 
n-m-2k-2 

427 

has been computed by the Computing Department of the "Mathematisch 
Centrum" for a= 0,025; 0,05 and 0,10 and for n-m= 10(1)50 (cf. 
section 10). From this table the ·value of e(n - m, n1, a) or e' (n - m, nv a) 
is easily computed with the aid of a table of the binomial coefficients ( cf. 
5. 2). If then condition C (or O') is satisfied, the result is significant with 
significance level < a. 

Moreover, if n1 # 0 and # n -m, an upper bound for the size of the 
smallest critical region of type Rf or R:, which contains the point (ni, U) 
following from the observations, may be found as follows: 

Let 17 be the size of the smallest critical region for U, given n - m and n1 

(either bilateral or unilateral), which contains the observed value U, then 

(19) 

8. 9. Sections 8. 5 and 8. 6 may be applied to the special case, des­
cribed in sections 4 and 5. According to remark 3 of section 4. 2, u has, 
if H0 is true, for given n1 and under the condition Z, a hypergeometric 
distribution. For this distribution we have 

(20) 

and 

( 21) 

with n1 + n2 = n - m. A normal probability distribution with (20) and 
(21) as mean and variance respectively is a good approximation of this 
probability distribution of u, especially if a continuity correction is applied. 

If n - m is so large, that the exact method of section 5 becomes too 
laborious, this approximate method may be used imitead. It should, 
however, be born in mind, that the construction of the critical regions 
Rt and Rt is different from the construction of R1 and R2 , and that R't and 
RJ should therefore not be regarded as approximations of R1 and R2, but 
a,,; an approximate method using a slightly different form of critical 
regions. 

On the other hand, if the number of observations is small and T is a 
test, such that the exact distribution of U is known, the critical region 

• may, for the general case, be chosen according to a system analogous to 
the method described for the special case in section 5. \Ve shall not go 
into the details of this method for other special cases, since the principle 
remains unchanged for every T. 

9. Remarks. 
Of the two-sample tests, mentioned in 6. 2, the tests of Wilcoxon and 
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of Wald and Wolfowitz can only be applied to our problem if x1 , •.. , xni 

and y1, ••• , Yn, are all different. This is not required for the tests of Pitman 
and Kolmogoro:ff-Smirno:ff. On the other hand, the latter is not an exact 
test, as has been pointed out already in section 8. 5. Since small values 
of n1 or n2 will often occur in the application of the test, this is a serious · 
drawback. The same applies, to a certain extent, to Pitman's test, since 
the computation of the exact distribution of its statistic is impracticable 
for values of n1 and n2 , which are at all large. Furthermore little is known 
about the accuracy of the approximation to the distribution of U, given 
by Pitman, especially in the case of discontinuous random variables. 

So far the only exact test for H 0, developed untill now, which is valid 
if there are equal values among Xi, ••• , xn,, y1, ..• , Yn,, and which can be 
used for reasonably large values of n1 + n 2, seems to be the one described 
in sections 4 and 5. Moreover for large values of n1 + n2 the accuracy of 
the approximate method, described in 8. 9 is independent of the number 
of equal values among Xi, ••• , xn, and y1, ••• , Yn,· 

If no equal values occur among the xi and Yk, Wilcoxon's test seems 
a very suitable one for T, especially when the alternative hypothesis is 
the hypothesis H of a displacement along the z-axis. 

The number of values z;, which are equal to zero, is of no consequence 
whatever as far as the choice of T is concerned. 

I I. Explanation of the table and of the practical application of the test. 

The use of the table in applying the test may be facilitated by the 
following indications: 

n denotes the number of observations Zi, ... , Zn and m the number of 
values zi which are equal to zero; 

n1 denotes the number of positive values Xi, ••. , xn, among Zi, ... , Zn• 

If n1 < k or n1 ~ n - m - k, H0 is rejected with significance level < a. 
If k < ni < n - m - k, two cases are to be distinguished: 

I. If no alternative hypothesis to H0 is specified, the chosen two sample 
test T is applied to the two sets of values Xi, ••. , xn, and y1, ••• , Yn, (the 
Yk are the negative values among Zi, ... , Zn taken positively). This results 
in a value U of the statistic U of T. Let 17 be the size of the smallest 
bilateral critical region for U, belonging to T, which contains U. If then 

rJ < f(n-:;i) 
H0 is rejected with significance level < a; cf. (17) for y. 

In case Wilcoxon's test is used for T, we have 

17= 2G (UjZ; n1 = n1 ; H 0) 

if U < n1 n 2 and 
2 

17= 2 {I-G (UjZ; n1 = ni; H 0)} 
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n-m 2n-m 
k 

10 1024.10° 0 
11 2048.10° 0 
12 4096.10° 0 
13 8192.10° 1 
14 1638.101 1 
15 3277.101 1 
16 6554.101 1 
17 1311.102 2 
18 2621.102 2 
19 5243.102 2 
20 1049.103 3 
21 2097.103 3 
22 4194.103 3 
23 8389.103 3 
24 1678.104 4 
25 3355.104 4 
26 6711.104 4 
27 1342.105 5 
28 2684.105 5 
29 5369.105 5 
30 1074.106 6 
31 2148.106 6 
32 4295.106 6 
33 8590.106 7 
34 1718.107 7 
35 3536.107 8 
36 6872.107 8 
37 1374.108 8 
38 2749.108 9 
39 5498.108 9 
40 1100.109 9 
41 2199.109 10 
42 4398.109 10 
43 8796.109 10 
44 1759.1010 11 
45 3518.1010 11 
46 7037.1010 11 
47 1407.1011 12 
48 2815.1011 12 
49 5629.1011 13 
50 1126.1012 13 

(1196) 

10. Table of k, 2n-m, y and y'. 

a= 0,025; 0,05; 0,10 

a= 0,025 a= 0,05 
-- - -

y y' k y y' 

2,622.10° 2,950.10° 0 5,467.10° 6,150.10° 
4,919.10° 0 1,004.101 

9,126.10° 1,004.101 1 1,987.101 2,235.101 

1,768.101 1 3,816.101 

3,450.101 3,796.101 1 7,175.101 7,892.101 

6,560.101 1 1,339.102 

1,234.102 1,337.102 2 2,730.102 3,003.102 

2,475.102 2 5,205.102 

4,776.102 5,175.102 2 9,817.102 1,064.103 

9,091.102 3 1,991.103 

1,809.103 1,959.103 3 3,825.103 4,144.103 

3,521.103 3 7,267.103 

6,749.103 7,231.103 4 1,473.104 1,596.104 

1,285.104 4 2,840.104 

2,624.104 2,812.104 4 5,421.104 5,807.104 

5,053.104 5 1,101.105 

9,657.104 1,026.105 5 2,125.105 2,278.105 

1,970.105 5 4,068.105 

3,804.105 4,043.105 6 8,281.105 8,874.105 

7,291.105 6 1.600.106 

1,488.106 1,582.106 6 3,068.106 3,260.106 

2,878.106 7 6,264.106 

5,528.106 5,837.106 7 1,210.107 1,286.107 

1,130.107 7 2,323.107 

2,187.107 2,307.107 8 4,755.107 5,053.107 

4,412.107 8 9,184.107 

8,611.107 9,092.107 8 1,765.108 1,864.108 

1,667.108 9 3,623.108 

3,376.108 3,565.108 9 6,993.108 7,383.108 

6,581.108 10 1,424.109 

1,273.109 1,337.109 10 2,765.109 2,918.109 

2,590.109 10 5.339.109 

5,040.109 5,291.109 11 1,090.1010 1,151.1010 

9,755.109 11 2,115.1010 

1.988.1010 2,088.1010 11 4,083.1010 4,287.1010 

3,867.1010 12 8,363.1010 

7,487.1010 7,825.1010 12 1,621.1011 1,702.1011 

1,530.1011 13 3,302.1011 

2,972,1011 3,107.1011 13 6.420.1011 6,744.1011 

6,040.1011 13 1,244.1012 

1,177.1012 . 1,232.1012 14 2,541.1012 2,668.1012 

429 

a= 0,10 

k I y y' 

, 0 1,116.101 1,255.101 

1 2,260.101 

1 4,262.101 4,795.101 

1 7,912.101 

2 1,585.102 1,783.102 

2 3,035.102 

2 5,709.102 6,280.102 

3 1,144.103 

3 2,203.103 2,424.103 

3 4,175.103 

4 8,405.103 9,246.103 

4 1,622.104 

4 3,086.104 3,344.104 

5 6,248.104 

5 1,205.105 1,306.105 

5 2,299.105 

6 4,679.105 5,069.105 

6 9,019.105 

6 1,723.106 1,845.106 

7 3,523.106 

7 6,785.106 7,269.106 

7 1,298.107 

8 2,663.107 2,853.107 

8 5,125.107 

8 9,808.107 1,042.108 

9 2,019.108 

9 3,883.108 4,126.10~ 
10 7,934.108 

10 1,534.109 1,630.109 

10 2,951,109 

11 6,052.109 6,430.109 

11 1,169.1010 

11 2,248.1010 2,373.1010 

12 4,623.1010 

12 8,920.1010 9,415.1010 

13 1,825.1011 

13 3,536.1011 3,732.1011 

13 6,820.1011 

14 1,400.1012 1,477.1012 

14 2,708.1012 

14 5,222.1012 5,483.1012 

According to continental usage the comma designates the decimal sign (e.g. 0,5 = ½). 
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II. If H0 is tested against the alternative hypothesis Hof a displacement 
along the z-axis in one direction (which one not being specified) of 
some of the variables zi, a two sample test Tis applied to Xi, ••• , xn, and 
y1, ... Yn,, which allows a distinction between two unilateral critical 
regions. Taking e.g. Wilcoxon's test, the size rJ' of the smallest unilateral 
critical region containing the value U, found from the observations, is 
computed, using the unilateral critical region of the form 

LJ_n1n2 > U 
2 = a 

if n1 > n-;m , and the unilateral critical region of the type 

LJ_n1n2 <-U 
2 = a 

if n-m f n1 <-2- (c. 8. 2). 

In the first case, we have 

r/ = 1-G (UjZ; n1 = n1 ; H 0) 

and in the second case 

r/ = G (UjZ; n1 = n1 ; H 0). 

'< ~n-m,) 'Y/ _y n 
1 

, < ,r !t(n-m,) 
'Y/ - Yj\ n1 

If n - 1n is odd, and 

or if n - 1n is even, and 

H0 is rejected; cf. (17) and (18) for y and y'. 
The values of 2n-m have been included in the table to facilitate the 

computation of the size a* of smallest critical region (either of unilateral 
or bilateral type), which contains the point (ni, U), following from the 
observations. This computation has been described in 8. 8. 

12. Example. 
Let us consider a set of observed values Zi, ... , z22 : 

- 8,0; - 5,0; -4,5; - 3,0; -2,7; -2,3; -2,1; --1,3; -1,2; 
-1,0; - 0,9; - 0,5; - 0,2; 0; 0; 1,8; 2,5; 3,5; 6,2; 7,3; 7,4; 9,5. 

We then haven= 22, 1n = 2, n1 = 7. From the table of section 11 we 
find (for a= 0,05) 

8 = y I C10) = 737s::o = o,o49 

and k = 3. Therefore k < n1 < n - 1n - k and a two sample test must 
be applied. Let us take Wilcoxon's test for this. The number of pairs, 
(xi, Yk) with xi > Yk is 73. According to section 8. 2 we have 

and 

8, U = 7. 13 = 45,5 
2 

au= V-h 7.13(7 + 13 + 1) = 12,62. 
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(1198) 

Applying a correction for continuity, we find 
U-½-&U 72,5-45,5 = 2 14 

Gu 12,62 ' • 

From a table of the normal distribution we find therefore, that 

17= P [I U-8U] > I 73-45,5IIZ n1 = n1 ; H0] = 0,032. 

Since 17 < e, H0 is rejected with significance level 0,05. 

431 

If, however, H0 is tested against the alternative hypothesis H of a 
displacement of some of the variables zi in one direction along the z-axis, 
H0 is not rejected, since 

n----ni I n1 < -2- = 8, (n1 Ho) 

and 

U > n12n2 = 8 (UI n1 = n1; Ho) 

thus G(UJZ; n1 =n1 ; H0) having the value 1-0,016= 0,984. The point 
(n1, U) corresponding with this result is not contained in the critical 
region R: (cf. figure 5). This means, that the observations do not indicate 
a displacement of some of the zi in one direction along the z-axis. They 
do, however, suggest displacements in; both directions, or asymmetry 
of some of the distributions or a combination of displacements and asym­
metry. This follows from the fact, that H0 is rejected if no special alter­
native hypothesis is specified. 

My thanks are due to Prof. D. VAN D.i\.NTZIG for his remarks and criti­
cism, which have been very helpful, and for reading the manuscript. 
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