Reprinted from THE ANNALS OF MATHEMATICAL STATISTICS Vol. 23, No. 1, March, 1952 Printed in U.S.A.

NOTES

SP 4 8260

NOTE ON WILCOXON'S TWO-SAMPLE TEST WHEN TIES ARE PRESENT

By J. Hemelrijk

Mathematical Centre, Amsterdam

Wilcoxon's parameterfree two-sample test (cf. Wilcoxon [1]; H. B. Mann and D. R. Whitny [2]) depends on a statistic U with the following definition: If x_1, \dots, x_n and y_1, \dots, y_m are the two samples, U is the number of pairs (i, j) with $x_i > y_j$. The probability distribution of U, under the hypothesis that the samples have been drawn independently from the same *continuous* population, has been derived by Mann and Whitney. The influence of ties on this probability distribution has not been investigated as yet.

It is noteworthy that Wilcoxon's U is closely connected with the quantity S, which Kendall (cf. e.g. Kendall [3]) introduced in the theory of rank correlation. When r pairs of numbers (u_k, v_k) are given, S is computed by scoring:

$$\begin{aligned} &-1, \text{ if } (u_h - u_k) (v_h - v_k) < 0, \\ &0, \text{ if } (u_h - u_k) (v_h - v_k) = 0, \\ &+1, \text{ if } (u_h - u_k) (v_h - v_k) > 0, \end{aligned}$$

and adding the scores for all pairs (h, k) with h < k. If, in this definition, we take r = n + m and substitute the values $x_1, \dots, x_n, y_1, \dots, y_m$ in this order for $u_1, \dots, u_n, u_{n+1}, \dots, u_r$, and 0 or 1 respectively for v_k if $u_k = x_i$ for some *i* or $u_k = y_j$ for some *j* respectively, then the following relation holds:

$$2U + S = nm.$$

The simplest way to see this is by considering the total score of 2U + S for every pair (h, k). This score is equal to +1 if $v_h = 0$ and $v_k = 1$, and 0 otherwise. The sum of the scores is therefore nm.

Relation (1) holds if no ties are present among the two samples x_1, \dots, x_n and y_1, \dots, y_m . It is natural to define U in general by extending (1) to the case when there are ties. Since for a pair (x_i, y_j) with $x_i = y_j$ the score of S is equal to zero, the score for U must be taken as $\frac{1}{2}$ for such a pair.

Now Kendall has derived the mean and the standard deviation of S under the hypothesis that for a given order of the quantities v_1, \dots, v_r all the r!possible permutations of u_1, \dots, u_r are equally probable. This condition is fulfilled in our case if the samples x_1, \dots, x_n and y_1, \dots, y_m have been drawn at random from the same population (which need not be continuous anymore). Therefore, the mean and standard deviation of U under the null hypothesis may be derived from Kendall's formulas.

E(S) = 0

According to Kendall ([4], pp. 56 and 60), we have

(2)

and

$$\operatorname{var}(S) = \frac{1}{18} \left\{ r(r-1)(2r+5) - \sum_{t} t(t-1)(2t+5) \right\}$$

(3)

$$-\sum_{s} s(s-1)(2s+5)\} + \frac{1}{9r(r-1)(r-2)} \{\sum_{t} t(t-1)(t-2)\}$$
$$\cdot \{\sum_{s} s(s-1)(s-2)\} + \frac{1}{2r(r-1)} \{\sum_{t} t(t-1)\} \{\sum_{s} s(s-1)\},\$$

where summation \sum_{t} takes place over the various ties among u_1, \dots, u_r , and \sum_{s} over the ties among v_1, \dots, v_r ; t and s respectively indicating the number of elements in every group of equal numbers among u_1, \dots, u_r and v_1, \dots, v_r respectively. From (1) we have

(4)
$$E(U) = \frac{1}{2}nm - E(S) = \frac{1}{2}nm$$

and

(5)
$$\operatorname{var}(U) = \frac{1}{4} \operatorname{var}(S)$$

The group v_1, \dots, v_r consists of *n* numbers 0 and *m* numbers 1; thus *s* in (3) takes the values *n* and *m* and we have

$$\sum_{s} s(s-1) (2s+5) = n(n-1) (2n+5) + m(m-1) (2m+5),$$

$$\sum_{s} s(s-1) (s-2) = n(n-1) (n-2) + m(m-1) (m-2),$$

$$\sum_{s} s(s-1) = n(n-1) + m(m-1).$$

Substituting in (3) and (5), we obtain after some reduction

var
$$(U) = \frac{1}{12}nm(n+m+1) - \frac{1}{72}\sum_{t}t(t-1)(2t+5)$$

(6) $+\frac{n(n-1)(n-2) + m(m-1)(m-2)}{36(n+m)(n+m-1)(n+m-2)}\sum_{t}t(t-1)(t-2)$
 $+\frac{n(n-1) + m(m-1)}{8(m+n)(m+n-1)}\sum_{t}t(t-1)$

where \sum_{t} takes place over the ties among the values $x_1, \dots, x_n, y_1, \dots, y_m$, taken together.

When no ties are present this reduces to results of Mann and Whitney [2]:

(7)
$$E(U) = \frac{1}{2} nm; var(U) = \frac{1}{12} nm(n+m+1).$$

From (6) and (7) it is easy to prove (e.g., by induction) that var (U) is decreased by the presence of ties among the observations. These results constitute a first

step towards the possibility of using Wilcoxon's test for samples from any population.

REFERENCES

- F. WILCOXON, "Individual comparisons by ranking methods," Biometrics Bull., Vol. 1 (1945), pp. 80-83.
- [2] H. B. MANN AND D. R. WHITNEY, "On a test of whether one of two random variables is stochastically larger than the other," Annals of Math. Stat., Vol. 18 (1947), pp. 50-60.
- [3] M. G. KENDALL, "A new measure of rank correlation," *Biometrika*, Vol. 30 (1938), pp. 81-93.

[4] M. G. KENDALL, Rank Correlation Methods, Ch. Griffin and Co., London, 1948.

ø

10 Spir

Reprinted from THE ANNALS OF MATHEMATICAL STATISTICS Vol. 23, No. 1, March, 1952 Printed in U.S.A.

NOTES

NOTE ON WILCOXON'S TWO-SAMPLE TEST WHEN TIES ARE PRESENT

By J. Hemelrijk

Mathematical Centre, Amsterdam

Wilcoxon's parameterfree two-sample test (cf. Wilcoxon [1]; H. B. Mann and D. R. Whitny [2]) depends on a statistic U with the following definition: If x_1, \dots, x_n and y_1, \dots, y_m are the two samples, U is the number of pairs (i, j) with $x_i > y_j$. The probability distribution of U, under the hypothesis that the samples have been drawn independently from the same *continuous* population, has been derived by Mann and Whitney. The influence of ties on this probability distribution has not been investigated as yet.

It is noteworthy that Wilcoxon's U is closely connected with the quantity S, which Kendall (cf. e.g. Kendall [3]) introduced in the theory of rank correlation. When r pairs of numbers (u_k, v_k) are given, S is computed by scoring:

 $\begin{aligned} &-1, \text{ if } (u_h - u_k) (v_h - v_k) < 0, \\ &0, \text{ if } (u_h - u_k) (v_h - v_k) = 0, \\ &+1, \text{ if } (u_h - u_k) (v_h - v_k) > 0, \end{aligned}$

and adding the scores for all pairs (h, k) with h < k. If, in this definition, we take r = n + m and substitute the values $x_1, \dots, x_n, y_1, \dots, y_m$ in this order for $u_1, \dots, u_n, u_{n+1}, \dots, u_r$, and 0 or 1 respectively for v_k if $u_k = x_i$ for some *i* or $u_k = y_j$ for some *j* respectively, then the following relation holds:

$$(1) 2U+S=nm.$$

The simplest way to see this is by considering the total score of 2U + S for every pair (h, k). This score is equal to +1 if $v_h = 0$ and $v_k = 1$, and 0 otherwise. The sum of the scores is therefore nm.

Relation (1) holds if no ties are present among the two samples x_1, \dots, x_n and y_1, \dots, y_m . It is natural to define U in general by extending (1) to the case when there are ties. Since for a pair (x_i, y_j) with $x_i = y_j$ the score of S is equal to zero, the score for U must be taken as $\frac{1}{2}$ for such a pair.

Now Kendall has derived the mean and the standard deviation of S under the hypothesis that for a given order of the quantities v_1, \dots, v_r all the r!possible permutations of u_1, \dots, u_r are equally probable. This condition is fulfilled in our case if the samples x_1, \dots, x_n and y_1, \dots, y_m have been drawn at random from the same population (which need not be continuous anymore). Therefore, the mean and standard deviation of U under the null hypothesis may be derived from Kendall's formulas.

According to Kendall ([4], pp. 56 and 60), we have

$$E(S) = 0$$

(2) and

var (S) =
$$\frac{1}{18} \{r(r-1)(2r+5) - \sum_{t} t(t-1)(2t+5)\}$$

(3)
$$-\sum_{s} s(s-1)(2s+5) + \frac{1}{9r(r-1)(r-2)} \{\sum_{t} t(t-1)(t-2)\} + \{\sum_{s} s(s-1)(s-2)\} + \frac{1}{2r(r-1)} \{\sum_{t} t(t-1)\} \{\sum_{s} s(s-1)\},$$

where summation \sum_{t} takes place over the various ties among u_1, \dots, u_r , and \sum_{s} over the ties among v_1, \dots, v_r ; t and s respectively indicating the number of elements in every group of equal numbers among u_1, \dots, u_r and v_1, \dots, v_r respectively. From (1) we have

(4)
$$E(U) = \frac{1}{2} nm - E(S) = \frac{1}{2} nm$$

and

(5)
$$\operatorname{var}(U) = \frac{1}{4} \operatorname{var}(S).$$

The group v_1, \dots, v_r consists of *n* numbers 0 and *m* numbers 1; thus *s* in (3) takes the values *n* and *m* and we have

$$\sum_{s} s(s-1) (2s+5) = n(n-1) (2n+5) + m(m-1) (2m+5),$$

$$\sum_{s} s(s-1) (s-2) = n(n-1) (n-2) + m(m-1) (m-2),$$

$$\sum_{s} s(s-1) = n(n-1) + m(m-1).$$

Substituting in (3) and (5), we obtain after some reduction

$$\operatorname{var}(U) = \frac{1}{12}nm(n+m+1) - \frac{1}{72}\sum_{i}t(t-1)(2t+5) + \frac{n(n-1)(n-2) + m(m-1)(m-2)}{36(n+m)(n+m-1)(n+m-2)}\sum_{i}t(t-1)(t-2) + \frac{n(n-1) + m(m-1)}{8(m+n)(m+n-1)}\sum_{i}t(t-1),$$

where \sum_{t} takes place over the ties among the values $x_1, \dots, x_n, y_1, \dots, y_m$, taken together.

When no ties are present this reduces to results of Mann and Whitney [2]:

(7)
$$E(U) = \frac{1}{2}nm; \operatorname{var}(U) = \frac{1}{12}nm(n+m+1).$$

From (6) and (7) it is easy to prove (e.g., by induction) that var (U) is decreased by the presence of ties among the observations. These results constitute a first

step towards the possibility of using Wilcoxon's test for samples from any population.

REFERENCES

- [1] F. WILCOXON, "Individual comparisons by ranking methods," *Biometrics Bull.*, Vol. 1 (1945), pp. 80-83.
- [2] H. B. MANN AND D. R. WHITNEY, "On a test of whether one of two random variables is stochastically larger than the other," Annals of Math. Stat., Vol. 18 (1947), pp. 50-60.
- [3] M. G. KENDALL, "A new measure of rank correlation," *Biometrika*, Vol. 30 (1938), pp. 81-93.

[4] M. G. KENDALL, Rank Correlation Methods, Ch. Griffin and Co., London, 1948.

14

WILL Reprinted from THE ANNALS OF MATHEMATICAL ŠTATISTICS Vol. 23, No. 1, March, 1952 Printed in U.S.A.

NOTES

NOTE ON WILCOXON'S TWO-SAMPLE TEST WHEN TIES ARE PRESENT

By J. Hemelrijk

Mathematical Centre, Amsterdam

Wilcoxon's parameterfree two-sample test (cf. Wilcoxon [1]; H. B. Mann and D. R. Whitny [2]) depends on a statistic U with the following definition: If x_1, \dots, x_n and y_1, \dots, y_m are the two samples, U is the number of pairs (i, j) with $x_i > y_j$. The probability distribution of U, under the hypothesis that the samples have been drawn independently from the same *continuous* population, has been derived by Mann and Whitney. The influence of ties on this probability distribution has not been investigated as yet.

It is noteworthy that Wilcoxon's U is closely connected with the quantity S, which Kendall (cf. e.g. Kendall [3]) introduced in the theory of rank correlation. When r pairs of numbers (u_k, v_k) are given, S is computed by scoring:

 $\begin{aligned} &-1, \text{ if } (u_h - u_k) (v_h - v_k) < 0, \\ &0, \text{ if } (u_h - u_k) (v_h - v_k) = 0, \\ &+1, \text{ if } (u_h - u_k) (v_h - v_k) > 0, \end{aligned}$

and adding the scores for all pairs (h, k) with h < k. If, in this definition, we take r = n + m and substitute the values $x_1, \dots, x_n, y_1, \dots, y_m$ in this order for $u_1, \dots, u_n, u_{n+1}, \dots, u_r$, and 0 or 1 respectively for v_k if $u_k = x_i$ for some *i* or $u_k = y_i$ for some *j* respectively, then the following relation holds:

$$(1) 2U+S=nm.$$

t

The simplest way to see this is by considering the total score of 2U + S for every pair (h, k). This score is equal to +1 if $v_h = 0$ and $v_k = 1$, and 0 otherwise. The sum of the scores is therefore nm.

Relation (1) holds if no ties are present among the two samples x_1, \dots, x_n and y_1, \dots, y_m . It is natural to define U in general by extending (1) to the case when there are ties. Since for a pair (x_i, y_j) with $x_i = y_j$ the score of S is equal to zero, the score for U must be taken as $\frac{1}{2}$ for such a pair.

Now Kendall has derived the mean and the standard deviation of S under the hypothesis that for a given order of the quantities v_1, \dots, v_r all the r!possible permutations of u_1, \dots, u_r are equally probable. This condition is fulfilled in our case if the samples x_1, \dots, x_n and y_1, \dots, y_m have been drawn at random from the same population (which need not be continuous anymore). Therefore, the mean and standard deviation of U under the null hypothesis may be derived from Kendall's formulas.

According to Kendall ([4], pp. 56 and 60), we have

$$E(S) = 0$$

(2) and

var (S) =
$$\frac{1}{18} \{r(r-1)(2r+5) - \sum_{t} t(t-1)(2t+5) \}$$

(3)
$$-\sum_{s} s(s-1)(2s+5)\} + \frac{1}{9r(r-1)(r-2)} \{\sum_{t} t(t-1)(t-2)\} \\ \cdot \{\sum_{s} s(s-1)(s-2)\} + \frac{1}{2r(r-1)} \{\sum_{t} t(t-1)\} \{\sum_{s} s(s-1)\}$$

where summation \sum_t takes place over the various ties among u_1, \dots, u_r , and \sum_s over the ties among v_1, \dots, v_r ; t and s respectively indicating the number of elements in every group of equal numbers among u_1, \dots, u_r and v_1, \dots, v_r respectively. From (1) we have

(4)
$$E(U) = \frac{1}{2}nm - E(S) = \frac{1}{2}nm$$

and

(5)
$$\operatorname{var}(U) = \frac{1}{4} \operatorname{var}(S).$$

The group v_1, \dots, v_r consists of *n* numbers 0 and *m* numbers 1; thus *s* in (3) takes the values *n* and *m* and we have

$$\sum_{s} s(s-1) (2s+5) = n(n-1) (2n+5) + m(m-1) (2m+5)$$

$$\sum_{s} s(s-1) (s-2) = n(n-1) (n-2) + m(m-1) (m-2),$$

$$\sum_{s} s(s-1) = n(n-1) + m(m-1).$$

Substituting in (3) and (5), we obtain after some reduction

$$\operatorname{var}(U) = \frac{1}{12} nm(n+m+1) - \frac{1}{12} \sum_{t} t(t-1)(2t+5) + \frac{n(n-1)(n-2) + m(m-1)(m-2)}{36(n+m)(n+m-1)(n+m-2)} \sum_{t} t(t-1)(t-2) + \frac{n(n-1) + m(m-1)}{8(m+n)(m+n-1)} \sum_{t} t(t-1),$$

where \sum_{t} takes place over the ties among the values $x_1, \dots, x_n, y_1, \dots, y_m$, taken together.

When no ties are present this reduces to results of Mann and Whitney [2]:

(7)
$$E(U) = \frac{1}{2} nm; var(U) = \frac{1}{12} nm(n+m+1).$$

From (6) and (7) it is easy to prove (e.g., by induction) that var (U) is decreased by the presence of ties among the observations. These results constitute a first

step towards the possibility of using Wilcoxon's test for samples from any population.

REFERENCES

- [1] F. WILCOXON, "Individual comparisons by ranking methods," Biometrics Bull., Vol. 1 (1945), pp. 80-83.
- [2] H. B. MANN AND D. R. WHITNEY, "On a test of whether one of two random variables is stochastically larger than the other," Annals of Math. Stat., Vol. 18 (1947), pp. 50-60.
- [3] M. G. KENDALL, "A new measure of rank correlation," Biometrika, Vol. 30 (1938), pp. 81-93.

[4] M. G. KENDALL, Rank Correlation Methods, Ch. Griffin and Co., London, 1948.

z

8260 • •