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NOTE ON WILCOXON'S TWO-SAMPLE TEST WHEN TIES 
ARE PRESENT 

BY J. HEMELRIJK 

Mathematical Centre, Amsterdam 

Wilcoxon's parameterfree two-sample test (cf. Wilcoxon [1]; H.B. Mann and 
D. R. Whitny [2]) depends on a statistic U with the following definition: If 
X1 , • • • , Xn and Yr , · · · , Ym are the two samples, U is the number of pairs 
(i, j) with Xi > Yi. The probability distribution of U, under the hypothesis 
that the samples have been drawn independently from the same continuous pop­
ulation, has been derived by Mann and Whitney. The influence of ties on this 
probability distribution has not been investigated as yet. 

It is noteworthy that Wilcoxon's U is closely connected with the quantity S, 
which Kendall (cf. e.g. Kendall [3]) introduced in the theory of rank correlation. 
When r pairs of numbers (uk, vk) are given, Sis computed by scoring: 

-1, if (uh - Uk) (vh - Vk) < 0, 

0, if (uh - Uk) (vh - Vk) = 0, 

+1, if (uh - Uk) (vh - vk) > 0, 

and adding the scores for all pairs (h, k) with h < k. If, in this definition, we 
take r = n + m and substitute the values Xr, · · · , Xn, Y1, ·· · · , Ym in this 
order for U1 , • • • , Un , Un+i , • • • , Ur , and O or 1 respectively for vk if uk = x; 
for some i or '!f'k = y i for some j respectively, then the following relation holds: 

(1) 2U + S = nm. 

The simplest way to see this is by considering the total score of 2U + S for 
every pair (h, k). This score is equal to + 1 if Vh = 0 and vk = I, and 0 other­
wise. The sum of the scores is therefore nm. 

Relation (1) holds if no ties are present among the two samples x1 , • • •, 

x,. and Y1, · · · , Ym. It is natural to define U in general by extending (1) to 
the case when there are ties. Since for a pair (x; , y i) with X; = y i the score of 
S is equal to zero, the score for U must be taken as ½ for such a pair. 

Now Kendall has derived the mean and the standard deviation of S under 
the hypothesis that for a given order of the quantities v1 ,· • • • , Vr all the r ! 
possible permutations of u1 , · · · , Ur are equally probable. This condition is 
fulfilled in our case if the samples x1, · · · , Xn and Yr, · · · , Ym have been drawn 
at random from the same population (which need not be continuous anymore). 
Therefore, the mean and standard deviation of U under the null hypothesis 
may be derived from Kendall's formulas. 
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According to Kendall ([4], pp. 56 and 60), we have 

(2) 

and 

E(S) = 0 

var (S) = / 13 {r(r - 1)(2r + 5) - E t(t - 1)(2t + 5) 
t 

(3) - ~ s(s - 1)(2s + 5) l + gr(r _ 1\r _ 2) {~ t(t - l)(t - 2) l 

• {~ s(s - l)(s - 2)1 + 
2
r(r ~ l) q:: t(t - l)} {~ s(s - 1)}, 

where summation Li takes place over the various ties among ui , · · · , Ur , and 
E. over the ties among Vi , • • • , Vr ; t and s respectively indicating the number of 
elements in every group of equal numbers among ui , · · · , Ur and v1 , • • · , v, 
respectively. From (1) we have 

(4) 

and 

(5) 

E(U) = ½ nm - E(S) = ½ nm 

var (U) = ¼ var (S). 

The group Vi , • • • , Vr consists of n numbers O and m numbers 1; thus s in (3) 
takes the values n and m and we have 

L s(s - 1) (2s + 5) = n(n - 1) (2n + 5) + m(m - 1) (2m + 5), 
• 
E s(s - 1) (s - 2) = n(n - 1) (n - 2) + m(m - 1) (m - 2), 
• 

E s(s - 1) = n(n - 1) + m(m - 1) . 
• 

Substituting in (3) and (5), we obtain after some reduction 

var (U) = ,\nm(n + m + 1) - -h E t(t - 1)(2t +5) 

(6) 

I 

+ n(n - 1) (n - 2) + m(m - 1) (m - 2) E t(t _ l) (t _ 2) 
36(n + m)(n + m - l)(n + m - 2) 1 

+ n(n - 1) + m(m - 1) E t(t _ l) 
8(m + n)(m + n - 1) t ' 

where E, takes place over the ties among the values Xi , • • • , Xn, Yi, • • • , y,,., 
taken together. · 

When no ties are present this reduces to results of Mann and Whitney [2]: 

(7) E(U) = ½nm;var (U) = bnm (n + m + 1). 

From (6) and (7) it is easy to prove (e.g., by induction) that var (U) is decreased 
by the presence of ties among the observations. These results constitute a first _ 
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step towards the possibility of using Wilcoxon's test for samples from any 
population. 
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