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1. - Broadly considered four stages can be distinguished in the development of 
mathematical statistics 1 . The first stage, beginning e.g. with John Graunt (1662) 
is characterized by the treatment of statistical quantities as if they were constant, 
as long as. no obvious changes in the situation had occurred. E.g. the rutio of 
the yearly number of deaths and of Jiving was estimated by Graunt as 1:32, in 
his summary as 1:30. Hence Sir William Petty "computed" the population of 
Paris, Rome, Amsterdam etc., simply by multiplying the known ye~rly number 
of deaths by 30. Graunt apparently knew, that his numbers were mean values, 
and had some awareness of the phenomenon of statistical variability, but not 
of its dependence on tbe numbers of observations. E.g. Graunt believed that he 
could draw conclusions about country-life being healthier than town-life from the 
fact that the ratio of the• greatest to the smallest death rate during a number of 
years was at most 2:1 in London, but 5:1 in a (small) country parish. Using 
modern terminology we can say that in the first stage the distribution of a de
mographic quantity was characterized by one number, e.g. a mean ratio or a ratio 
of means, etc. 

The second stage is characterized by the growing awareness of the phenome
non of variability. Its main historical sources were the efforts to find laws for 
the errors made in astronomical observations. It culminated in Laplace's discov
ery in 1778 that the normal law of errors results from a large n,umbel' of inde
pendent elementary errors, whatever their individual "laws" (assumed to be iden
tical) may be. Its somewhat more elementary treatment by Poisson and, in par
ticular, its imbedding in the formalism of least squares by Gauss (1809) rapidly 
worked as the Mephistophelian drink ; " Mit diesem Trank im Leibe siehst eine 
Helena in jedem Weibe" : many statisticians soon believed to find the normal 
distribution almost always and everywhere. In particular Adolphe Quetelet (1796-
1874), under direct influence of Laplace, and in his track Francis Galton (1822-
1911) did much to spread knowledge of the normal distribution, which in that 
stage doubtless was necessary for their most important contribution, which was 
the introduction of methods and results, hitherto mainly used in astronomy and 
geodesy, into the social and biological sciences. Mathematically speaking the sec
ond stage is chararterized by the description of empirical (univariate) distribu
tions by means of two parameters, e.g. mean and standard deviation, and, more 
generally, if multivariates are considered, by means of the moments of first and 
second order. Hence the method of least squares, the simple and multiple corre
lation- and regression-analysis, the old theory of risk by Hattendorff, and in a 
way also the analysis of variance and covariance can· be considered to belong to 
this stage. 

1 Cf. D. VAN DANTZIG (1951). 
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The third stage is characterized by the discovery by Edgeworth, Kapteyn and 
in particular Karl Pearson of the fact that under closer examination really occur. 
ring distributions rarely prove to be normal, and that their description requires 
more constants, e.g. the moments of third and fourth order. . This led to the 
system of P e a rs o n curves, to the Gr am-Ch a r 1 i e r developments, and, 
more generally, to the theory of curve-fitting. Pearson's "goodness of fit" cri
terion z2 proved to be a useful tool for the judgment of the degree of fitting reach
ed. The third stage, like the second one, had been based on the more or less 
explicit belief that statistical phenomena were governed by laws of general validity 
albeit that they showed somewhat greater complexity than just the normal law 
Notwithstanding the brilliant results obtained, in particular by Karl Pearson, it 
ended more or less in disappointment. The parameter va.lues (and sometimes even 
the types of the curves) obtained by adjustment showed hardly any constancy 
or regularity. Moreover some other laws, partly dating from an older period, as 
Gompertz-Makeham's law of mortality (1825-1860), P.F. Verhulst's law of growth 
(1845) rediscovered by R. Pearl and L.J. Reed (1920), and known under the queer 
name of "logistic curve"), Pareto's law of income distribution (1896), J. C. Kap
teyn's logarith:µiically normal law (1903) for the distributions of the dimensions 
of biological individuals etc. proved to fit rather badlv in many cases, and to 
resist decisive improvement by introducing a greater number of parameters. Also 
the Gram-Charlier and similar developments were found to be of rather limited 
usefulness. 

The growing uneasiness about the possiblity of mastering distributions depend
ing on four or more parameters led the way to the fourth stage together with a 
renewed critical q,ttitude towards the foundations of probability theory in tp.e 
twenties (John Maynard Keynes, Richard Von Mises, Ronald A. Fisher) and thir
ties (Hans Reichenbach, A. Kolmogoroff, Jerzy Neyman, e.a.). Asfar as prac
tical statistical methods are concerned this increased desire for logical rigour 
showed itself a.o. in the gradual replacement of asymptotic relations, which refer 
to indefinitely increasing numbers of observations, by exact relations, valid for re
stricted sample-sizes ( cf. "Student's" and R.A. Fisher's "theory of small samples ") 
in R.A. Fisher's refutation of the Bayes-Laplace theory of inverse probability and 
its replacement by his "maximum likelihood methods", and in Jerzy Neyman's 
revision, partly in common with Egon S. Pearson, of the principles of testing hy
potheses. It is as an outcome of this desire for logical rigour that we see today's 
greatly increased interest in the class of methods, designated by various terms, 
as "non-parametric", "distribution-free" and "rank-invariant" methods in 
mathematical statistics, which we consider as being more or less characteristic for 
the fourth stage of this science. Hence, grosso modo we could characterize the 
four stages up to now by the use (in univariate distributions) of one parameter, 
two parameters, many parameters, and no parameters respectively1 . 

1 By subdividing the history of mathematical statistics into this four stages, we, 
of course, do not wont to stress this point of view as the only reasonable one. Other 
subdivisions, or greater stress laid upon other aspects of modern statistics may be, 
equally justified. 
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2. - The general form of statistical inference is as follows. Some observa
tions, which we represent in their totalit.y by the letter z have been made; 
some more observations, which we represent in their totality by the letter w will 
be made ; it is requested to make some prediction on w, based on some assump
tion concerning the simultaneous probability distribution of z and w. The va
riables involved are thus considered as random variables or variates. This will be 
denoted by underlining their symbols. · The same symbols, not underlined, may 
then be used to denote values, which these variates may assume. 

One of the simplest cases occurring in practice is the one where z, called the 
" evidence ", consists of n numbers z1 , ..• , Zn whereas w consists of N numbers 
~ 1 , ••• , '}!!N, the _z__i and ~i being stochastically independ-;nt 1 and all having the 

same probability distribution 2• The problem is, to determine a region S in the 
space RN of all possible w, such that the probability that w actually will he con
tained in S is at least equal to a given number 1-oc. We-denote this condition 
by saying that w is contained in S spr oc, where "spr oc" is an abbreviation for 
the expression "salva probabilitate oc ", meaning " except for a probability at most 
equal to oc ". In other cases more restrictive, and often more complicated assump
tions than the ones mentioned above have to be made. The number oc will be 
called the " unreliability threshold ". In the theory of testing hypotheses it is 
often called the "level of significance", the exact probability ~ (< oc) of the ex
cepted cases being called" size". In general ~ might be called the (true) "unre
liability ". In the theory of confidence regions 1 __: oc is called the " confidence 
coefficient ". · 

Empirically the assumption that z and w have a common probability distri
bution means that the way in which z a'.nd w a'ctually have been .or will be obtain
ed, can, with an accuracy sufficient for practical purposes, be assimilated with 
a " random choice " of an element underlying this probability distribution. This 
random choice is a procedure which can only be described in empirical terms, 
e.g. as drawing a lot from a lottery under definite empirical conditions which we 
shall not try to describe here. In order to ens.ure that this " probability model " 
can be used, it is not strictly necessary that the combined observation of.: and 
w itself is a repeatable phenomenon, but it suffices that either some natural cause 
:i; at work, ascertaining the requested similarity with the model, or otherwise 
some " randomization procedure " is applied. The replacement of these emJ?irical 
conditions by the mathematical model of probability theory is called the "switch
ing on " of the latter, whereas the " switching off " is performed by applying 
the law of forge numbers together with the d'Alembert-Borel principle of neglecting 
sufficiently small probabilities. In particular this is done by neglecting the pro
bability that among a large number of predictions, all made with the same unre
liability threshold oc, an appreciably larger fraction than oc will prove to be failures, 
provided the " switching on " conditions always are satisfied and the predictions 

1 " Mutually completely independent" according to J. NEYMA.N's ( 1950) terminology. 
2 More generally n and/or N may also be variates (as in stochastic processes, e.g. 

sequential analysis). For the present we leave this generalization out of consideration. 
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are stochastically independent. It is irrelevant, whether the ~ and 1:!; always are 
of the same kind or nor. 

If, in the special case mentioned above, n is so large that the deviation from 
the law of large numbers can be neglected, we have essentially to do with a pre
diction based on a known probability distribution. If this is the case for N in
stead of n, the prediction can be considered as (viz·. is in the limit for N-+ oo 
spr O equivalent with) a statement on the probability distribution. 

A statement about a probability distribution is usually called an (in general) 
"composite hypothesis" and, if it determines the probability distribution uniquely, 
a " simple hypothesis ". Whereas often the term " composite " is omitted, we 
prefer to drop the term " simple ", i.e. to use the term " hypothesis " only for 
simple ones and to call a " composite hypothesis " a "set (or region) of hypotheses ". 
In particular the set of all possible hypotheses with respect to a given situation 
is called the "hypothesis space". A set of hypotheses, stated, on the basis of a 
given evidence z, to contain spr oc the unknown underlying probability distribu
tion, is called a (safe) "confidence set" (or confidence region) spr oc for this pro
bability distribution. The adjective " safe " is added because the true unrelia
bility ~ may be smaller than oc . 

It is of importance to remark that some condition, e.g. of stochastical inde
pendence and constancy of probability distributions is unavoidable. Such an 
assumption can be tested as a hypothesis, but only by means of other assumptions 
of a similar nature. Without any such assumption nothing at all can be done. 
For instance the two hypotheses 

a) :1, , ... , ~ are " univalued ", i.e. each takes one unknown value spr 0 

(creed of compl~te determinacy) 

b) ~, .•. , ~n are independent random variables, e.g. all normally distributed 

with positive standard deviations and unknown means ( creed of complete 
indeterminacy) 1 are always irrefutable. 

The fundamental difference between the " fourth stage methods " and the 
previous ones is contained in the greater liberality with which such assumptions 
previously were admitted. At present one prefers to admit assumptions only, 
which, with no more than a relatively slight degree of ideaHzation, can be consid
ered as being guaranteed by the empirical " switching on conditions ". The set 
of hypotheses, singled out in this way by these conditions, is called the " cla8s 
of admissible hypotheses", denoted by Q. Each confidence region has to be con
tained in this class. 

There are cases where the experimental conditions " guarantee " (with an 
accuracy and a certainty sufficient for practical purposes) that the class of admissi
ble hypotheses has a finite number of dimensions only, so that every admissible 
hypothesis can be determined by specifying the values of a finite number of "pa
rameters", constant for every admissible hypothesis, variable over the whole class 
In such cases the second or third stage methods, " parametric methods ", can be 
applied .. 

1 If we take the standard deviation to be o, case b) corresponds with any o =f= 0, 
whereas case a) is the special case G = 0. 
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Abundant, however, are the cases where this is not so and this has led to 
the development of statistical methods based on as few assumptions as seemed prac
ticable. These methods are usually called " non parametric ", " distributionfree ", 
etc., without precise definitions of these terms being given. Indeed, such defini
tions prove to be·difficult to give. An interesting analysis of these terms is given 
in a forthcoming publication by M.G. Kendall and R.M. Sundrum, which the au
thors had the kindness to show to us in manuscript. 

Without trying to give definitions for these notions certain types of conditions 
will be indicated, which . are usually admitted in this type of work and which 
often happen to be "guaranteed" by the empirical conditions (always with the 
abovementioned proviso). 

a) Conditions of stochastic independence. The class Q of admissible hypo
theses is often restricted to distributions, where all zi (or groups of them) are 
independent variates. More generally this may hold-for some known functions 
of the z, instead of for the z, themselves. · 

b) Conditions of identity of distribution functions. In particular it often 
happens that it is known that some of the :._• have the same distribution function 

(which itself is un:known), that some other ones also have the same distribution 
function (which may be the same as the first one or not), etc. For brevity we 
shall call two variates "isomorous" if they have the same distribution functions, 
so that conditions b) may be referred to as "conditions of isomory ". 

c) Conditions of continuity. - Rather often the condition can be imposed 
that. all z. have continuous probability distributions. 

Although further conditions are to be mentioned later, it may be remarked at 
this pomt, that a number of statistical methods, and in particular m1:1,ny sfatistical 
testR, have been developed, based on conditions of these three types only. Some 
of these will be used in later sections of this paper to illustrate the progre,ss made 
in this direction durLTJ.g the last few years and we will return to this set of con
ditions in the next section. 

Further it may be noted that a set of eonditions of t,ype a) b) and c) always 
is rank invariant, i.e. invariant under simultaneous transformations of all z. into 
va.riables Zi = c;:> (z,) , where ·;, (z) jg a monotonous increasing continuous furi°iition 1. 

The reverse, how:ver, is not true; conditions like F 1 (z) < F 2 (.:) ,j11i (z) dF2 (z) 

1 < 2 , etc., where F. denotes the distribution function of Zi, are rank 

invariant, but are not covered by the above conditions. We therefore generalize 
a}, b) and c) together by introducing : 

d) Conditions of a rank invariant characttr. The notion of rank invariance 
seems to be a rather fundamental one in this context, but it is not rnfficient to 

1 For reasons of simplicity we here leave the possibility of discontinuities or of 
intervals of constancy out of consideration. 
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characterize the statistical methods which form the subject of this paper. It is 
e.g. noteworthy that Pitman's tests, one of which is treated in a later section, 
are based on rank invariant conditions, but are themselves not rank invariant, 
i.e. their result is not invariant under rank invar~ant transformations of the ob
servations. 

Apal't from the conditions mentioned already, others are sometimes used. 
Without laying any claim to eompleteness, we give some more types of these. 

e) Algebraic relations between distribution functions. Some algebraic rela
tions between the distribution functions Fi of zi (i =I, ... , n), e.g. 

F 2 (z) == p F 1 (z) + (I -p) Fi (z) 

may be considered. Also conditions of identity or algebraic equalities may hold 
for the distribution functions of some known functions of the Zi instead of for the 

Zi themselves (e.g. for z2 + a and z1 , a being a known or unknown constant, etc.). - - ~ 

f) Oond#ion.s of boundedness or symmetry. Examples: 

Fi(a)=I-F.(b)=O (a<b), 

F. (-z) = 1-Fi(z) 

for all i or for some of them, etc. 

3. - The field of all methods of such character as has been indicated in the fore
going section, is so large already, that it would be impracticable to give a com
plete survey of what has been done, as may be illustrated by the 72 pages of 
titles of papers on these subjects in the bibliography compiled by I.R. Savage 
(1952). On the other hand some excellent surveys of parts of the field have 
been given already, e.g. by H.Scheffe (1943), J. Wolfowitz (1949), P.A.P. Moran, 
J.W. Whitfield and H.E. Daniels (1950) and W.H. Kruskal and W.A. Wallis (1952). 
Therefore no attenipt at completeness in any sense has been made in this paper : 
a rather special complex of distribU:tionfree tests has been chosen more or less 
arbitrarily for its illustrative qualities. In particular a number of tests for the 
following hypothesis win be treated. 

H0 : a) the varia.tes _:l, ... , :!' are independent, 

b) they are isomorous (i.e. all of them have the same distribution function), 
c) their distribution function is continuous. 

The class Q of admissible hypotheses is determined by requiring a) and c) 
to hold, and b) to hold for some subsets into which the set of variates {_:1 , •..• ,:_n) 

can be divided. Often special subclasses of Q are considered. in particular with 
regard to the power function. 

The hypot,hesis H 0 tested implies the hypothesis H 00 : the sim·ultaneou.s distri
bution funct?'.an of :1- , •.. , ~n is invariant under the group G of all permutations of 

these variates, 
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whereas O corresponds with the class of hypotheses ro : the simultaneous distri
bution function of .:_l , ... , ~" is invariant under the group K of all such permuta

tions of thesP variates which leave each of the subsets of isomorous variates invariant. 
Evidently K is a subgroup of G. 

Now H 0 may be tested by testing H 00 and this is done according to the fol
lowing principle (due to R.A. Fisher (1935)). If z1 , .•. , z,, are any observations of 
the variates _:1 , ... , ~", which may be supposed to be all different (as this is 

true sprO), then H00 implies the probability of the inequalities Zi1 < ... <zin for 
any permutation i1 , ... , i,, of the suffixes I , ... , n to be the same for all per
mutations of these suffixes, hence = I/g, g = n ! being the number of permuta
tions in G. Choosing some set M, consisting of m permutations, as a critical re
gion, its "size" is mfg, hence < a if m < oc g. The critical set M in G for test
ing H00 corresponds with a critical region in the complete sample space for testing 
H 0, consisting of all jz1 , ••• , z,.!, such that the permutation ;i1 , .•• , i,,( is contai
ned in M if and only if Zi

1 
< ... < Zin• Then the probability that (zt, ... , z,,) is 

contained in this region is mfg, as the conditional probability that this is so, given 
zt , ... , z,, , has the same value for, all samples lz1 , ..• , z,,! , the probability of 
equal values among the Zi being zero. 

The condition of continuity, although convenient, is not necessary for applying 
this principle. lf it is dropped, sets of observed values jz1 , ••• , z,,! which are 
not all unequal have to be considered too. The above principle, however, may 
also be formulated as follows. Let H00 be true and lef the set of variables I:!-, .. ':!'! 
assume the values z1 , ..• , z,, in any order. We define the random permutation 
~ , •.• , j_,, of the numbers I , ... , n by ::._i taking the value ;ii' Then all g = n ! 
possible permutations have equal probabilities. This formulation implies the one 
given above, but now equal values among the z. are permitted. To give a pop
ular picture of the principle : H00 implies that the values, taken by the varia
bles z1 , . . . , z,, might be written down on n lottery tickets and then, by succes
sively drawing these tickets at random, be assigned to the variables z1 , z2 , etc. 
without changing the simultaneous probability distribution of !J.., ... ~ :_; 

4. - Thus critical regions for testing H00 may easily be formed, their sizes 
may be computed exactly or approximately ; it also often is feasible to take into 
account certain subclasses of Q as classes for which the test is meant,to be espe
cially powerful and consistency for this class may then often be proved ; but the 
computation of the powerfunction of these tests is very complicated and usually 
not much is known as yet about this very important function even for restricted 
classes of alternatives, except sometimes for large samples. Accordingly most head 
way has been made in the directions mentioned first and only during the last 
few years the problem of the power function has yielded to the efforts of a num
ber of prominent statisticians, among whom W. Hoeffding has obtained the most 
important results. 

Following the general line of the historical development a description of the 
tests without bothering much about their power functions will be given first, some 
remarks about the power functions in special cases being given afterwards. 
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5. - Our starting point is the method oi rank correlation, based on the 
rank correlation coefficient t, which was first considered by R. Greiner (1907) and 
F. Esscher (1924) and which was rediscovered by M. G. Kendall (1938), who gave 
the theory its present form. 

Consider a set (ui, v1), •.. , (un, Vn) of n pairs of arbitrary real numbers, among 
which at least two of the ui (and two of the v1) are different from each other. .Ar
ranging the numbers u1 , ... , u,. according to increasing magnitude, assigning an 
arbitrary order to equal numbers, we obtain a ranking, which may contain groups 
of equal numbers, called ties. In this ranking each number ui has a rank; to 
all numbers of a tie the arithmetical mean of the ranks of these numbers is assign
ed, equal numbers ui thus having the same rank. The same procedure is ap
plied to v1 , ••• , Vn- Denoting the ranks obtained in this way by 81 , ••• , 8,. and 
r1 , •.•. , r,. respectively, we have a set (81 , r1), •.• , (8n, r,.) of pairs of ranks. 

From these pairs of ranks Kendall computes a quantity S by_ scoring 

and by adding the scores for all pairs (h,, k) with h < k. The definitions may 
also be given precisely in the same way with the numbers (ui, vi) themselves 
instead of their ranks and in words it may be given as follows. For every pair 
(h,, k) (h,, k = 1, ... , n; h < k) + 1 is scored if the order of magnitude of uh 
and uk is the same as that of vh and vk,-1 if t,hese two pairs have opposite order 
and O if none of these two cases is fulfilled, i.e. if uh = uk or vh = vk or both. It 
is clear that the value of S only depends on the pairs of ranks (81 , r1), ••• , (8n, r ,.) 
but not on the arrangement of these pairs. 

Given the set of numbers u1 , .•• , un, v1 , ... , Vn ( or the set of ranks 81 , ••• 

s,. ,r1 , ... , r,.) there are g = n! ways of forming sets of n pairs (u, v) (or (s, r)). 
Supposing these g sets of pairs to have equal probabilities 1/g, the probability dis
tribution of S may be derived. As will be seen later this supposition reduces in 
a number of special cases to the hypothesis H 00 of section 3 and it will therefore 
also be denoted by H 00 , although it is of a more general form. 

'When no ties are present the probability distribution of S under H00 may be 
computed directly by means of a recursion formula (cf. M.G. Kendall (1938) and 
(1948)); tables up to n = 10 are given there, a more extensive table up to 
n = 40 has been given by' L. Kaarsemaker and A. Van Wijngaarden (1952)). Fur. 
thermore in this case S is asymptotically normally distributed with mean O and 
variance n (n-1) (2 n + 5) 18 (cfr. M.G. Kendall (1938), G.B. Dantzig (1939)). 

Tests for H00 , developed along the lines indicated in section 3, may be used 
to test several hypotheses implying H00• E.g. if u and v are two independently 
distributed random variables and (u1 , v1), ... ,(u,., vJ are n-independent pairs of ob
servations of these variables, then H 00 is satisfied and the statistic S may be used 
as a test statistic for this independence, large values of I §_ I being~ critical values. 
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Moreover W. Hoeffding (1948 b) proved, that for n > 5 not only H OO follows from 
the independence of u and v but on t,he other hand, if u and v have continuous 
joint and marginal probability distributions, then HOO also implies independence 
of u and v. 

~ If only one of the two rows of numbers u1 , ... , Un and v1 , ... , Vn is a row of 
observations of one or more random variables, the other row may e.g. be used to 
order these observations. Taking ui = i and vi= Xi (i =I, ... , n), where xi 
denotes an observation of a random variable xi, H.B. Mann (1945) uses S 1 to 
test the hypothesis H0 , that the random variables x1 , ••• , Xn are independently 
distributed according to the same continuous probability distribution. H0 implies 
H OO and thus the distribution of! under H O is known. Defining eii by the re

lation 

I 
p [_:i <3] = 2 + Eij, 

Mann proves the onesided test with large values of S critical to be consistent for 
alternatives satisfying 

3 

lim n-2 ~ eii = + =· 
n~oo i<i 

The test may then be used as a test against (upward, or, with small values 
of S critical, downward) trend. This result also throws some light on the kind 
of alternatives for which the abovementioned test of independence is consistent. 
Mann gives a condition for unbiasedness of the onesided tests and discusses a class 
of alternatives for which the test is most powerful among all tests based on ranks. 
These conditions, being rather involved and not easily expressible in simple prop
erties of the distributions of the xi , will not be discussed here. 

When there are ties in one ranking only ( e.g. when equal values occur among 
the ui but not among the Vi) not so much is known about the distribution of~ 
under H 00 • G.P. Sillitto (1947) tabulated the exact distribution for n = 3, ... , 10 
with pairs and triplets of equal values allowed in one ranking and T.J. Terpstra 
(1952 a) proved the asymptotic normality of S under mildly restrictive condi
tions. Terpstra uses his result to construct a t;,t against trend for g;oups of ob
servations from a number of random variables x1 , ... , xh with continuous distri
bution functions, the hypothesis tested being, -that these distribution functions 
are identical. Given ni (i = I , ... , h) independent observations of xi, he takes 
Ui = u2 = ... = Un1 = I , u,.1 +1 = ... = un1 +n2 = 2 , etc. and sitl)stitutes for 
v1 , ••• , vn

1 
the n1 observations of x1 , for vn

1 
+1 , ••• , v,.1 +n2 the n 2 observations 

of X2, etc. Then 8 (or a linear function of B) may be used as a test statistic 
forthe abovementioned hypothesis (which again implies H00), large and small va-

1 His statistic, denoted by :£· is in fact a linear function of!!.: 
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Ines of S being critical for an upward and a downward trend respectively 
in the arrangement of variables :_i , ... , ~• . This test is consi':ltent for a 
iarge class of alternatives similar to the alternatives considered by Mann 1 • On 
the other hand Terpstra's result may also be used to generalize Mann's test against 
tr.end, with one observation of each of the random variables !I\ , ... , Xn , for the 
case that the distribution functions of these variables are no't continuous. The 
ties then occur in the Vi and not in the Ui • 

Another test, which may be derived from Kendall's S, is the well-known test 
of Wilcoxon (1945) for the problem of two samples. As-;, matter of fact Terps
tra's test against trend is a generalization of thts test and reduces to Wilcoxon's 
test when h, = 2, i.e. when there are two groups of observations. This test, which 
has been developed independently by a number of authors (cf. W. M. Kruskal 
and W.A. Wallis (1952) for historical details) is a test for the hypothesis, that 
two independent samples x1 , ... , Xn, and y1 , ... , y"2 have been taken from the 

same continuous distribution. Putting U1 = . -:. = Un1::;;; 1 ' Un1 +1 = ... = Un1 +n2 = 2, 
Vi = Xi ( i = 1 .... , n:i.) and Vn1 +i = Yi (j = 1 , ... , n2) , Kendall's S becomes a 
linear-function of the test statistic u~ed by Wilcoxoi;t, which is the sum of the 

n1 

ranks of the x; , i.e. ~ r i . The hypothesis, that the two samples are taken from 
~ i=l ~ 

the same population implies H00 and thus S may be used to test this hypothesis. 
The power of Wilcoxon's test will he dis;;_ssed in a later section of this paper. 

For the case, whtn ties occur in both rankings, the mean (which is equal to 0) 
and the variance under H00 are known (M.G. Kendall (1947)), but no general 
theorem about the limiting distribution of S for large n seems to have been given 
as yet. For some special cases asymptotic normality has been proved and it seems 
l.ikely that this property holds under very general conditions concerning the ties. 
It is e.g. likely, that in the case of Terpstra's test against trend applied to varia
bles with discontinuous distributions S is asymptotically normal, but this has 
not been proved as yet. It has been p~ved, however, for Wilcoxon's test, when 
ties are present by W.H. Kruskal (1952) (cf. also J. Hemelrijk (1952)). In all 
these cases the test statistic S is a linear function of the ranks of the observation.;; 
when arranged according to size. 

Another special case, noted by Kendall (1948) p. 35, is the 2 x 2 table. When 
n objects, possessing or not-possessing a quality A and a quality B, are inspect
ed and when ui is taken to be 1 when the i th object possess·es the quality A 
and 2 otherwise, V; taking the same values according to the presence or absence 
of quality B, then 8 2 is proportional to the usual x2 of a 2 x 2 table, the margi: 
nal totals being fixe°d. This shows S to oo normally distributed in the limit for 
the extreme case, when both ranking consist of a dichotomy. In a similar way 
S may be brought into relation with the general contingency table and with tests 
ihich may be derived from 2 x 2- and contingency tables, like the median test of 
Westenberg (1948) and G.W. Brown and A.M. Mood (1948) and generalizations of 
this test (cf. e.g. A.M. Mood (1950), G.W. Brown, and A.M.Mood (1951), J. He
melrijk (1950 b), N. Blomquist (1951)). 

1 TERPSTRA's condition ,.-1 =0 ((ln)½) should be read ,_-l = o (l2 n½). 
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6. - The trend tests mentioned in section 5 and Wilcoxon's test are based on 
linear functions of the ranks of the n opservations when arranged according to 
size. Generalizations have been made by means of quadratic functions of the 
ranks. Wilcoxon's test has been generalized to a test for k samples independently 
by W. H. Kruskal (1952) (cf. also W. H. Kruskal and W. A. Wallis (1952 ), by 
P. J. Rijkoort (1952) and by T. J. Terpstra (1952 b) in two different ways. Let 
ni (i = 1 , ... , k; L ni = n) independent observations of xi be given and let 
Ri be the sum of the ranks of this sample of Xt in the racldng of all n obser
;ations together, then Kruskal uses as test statistic 1 

and Rijkoort uses 

k R~ 
~ _i 

i=l n, 

k 2 
:E R1,. 
i=l-

Terpstra's first test coincides with that of Kruskal ; his second test is more 
elaborate. Apart from the sums of ranks Ri he introduces the quantities Rh,f 

(h, , j = l , ... , k ; h, < i) , defined as the su'm of the ranks of the h,th sample, 
computed from the pooled h,th and jib sample, arranged according to size. His test 
statistic is then 1 

In all three cases the hypothesis H0 tested is again, that the variables ,:i , ... , ?!_k 
are isomorous (i.e. have the same distribution). As before H 0 implies H00 and the 
exact distribution of the test statistic as well as approximations and the limit
ing distribution for large (or many) samples may be derived from H 00• No com. 
parison of the power functions of the three tests has been made as yet. For 
k = 2 they reduce to Wilcoxon's test. 

Another general method, which strictly speaking, is not a generalization of 
Kendall's rank correlation method but of C. Spearman's (1904), is M. Fried
mann's (1937) method of m rankings. In this case there are m rankings of 
equal length, the hypothesis tested being that for each of these all permutations 
of the ranks have equal probabilities. The variance of the column totals of 
the ranks is used as a test statistic for this hypothesis, large_ values being critical. 
The original theory is only applicable to a rectangular scheme of plots with exactly 
one observation in each plot. Lately this rather severe restriction has been partly 
removed by J. Durbin (1951), who generalized the method to incomplete block 
designs, and practically completely by A. Benard and Ph. Van Elteren (1953), who 
generalized it to arbitrary numbers of observations in the plots (empty plots 
being permitted also), subject to weak restrictions. Their method contains several 

1 Strictly speaking the test statistics in the original papers are linear functions of 
the statistics given here ; this does not change the test. 
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others as special cases, in particular the method of m rankings itself, Durbin's 
generalfaation, the k sample test of Kruskal and Terpstra, Wilcoxon's two sample 
test and the sign test. In this method also a quadratic function of the ranks in 
the m rankings is used as a test statistic, but its general form is too involved 
to be given here. 

7. - In the foregoing sections the power function of the tests has not been 
mentioned. For most of the tests considered not much is known about the 
power as yet, but in some cases important progress has been made. A number 
of general theorems of great interest have been given by W. Hoeffding (1948 a) 
(1951) (1952), and these have been applied to several problems by other authors, 
e.g. by E. L. Lehmann (1951) (1953) and M. E. Terry (1952). The theorems of 
Hoeffding, which are too technical by nature to be given here, refer to the 
asymptotic distribution of statistics based on ranks under several hypotheses. 

To illustrate the results in this direction, the problem of two sampks will be 
discussed a little further and five tests for this problem will be compared. 

Let x1 , ... , Xn
1 

and y1 , •.. , y,.
2 

be n = n1 + n2 independently distributed ran
dom var~bles, one observation -of each of these variables being available. The 
hypothesis tested is, that the probability distributions of x1 , ..• , y,.

2 
are identical, 

the alternative hypotheses being, that this is true for X1, ~- • , Xn1 and for Yi, . .. ,Yn2 
separately, but that the probability distributions oCthese two groups~f varia
bles differ in some specified way. Let us denote in general the cumulative 
distribution functions of the xi by F and of the y; by G and omit the indices i 
and i when this is convenieri:t ; then we have -

for the hypothesis tested. 
The following tests will be considered. 

I. i:,tudent's test (W. S. Gosset (1908), R. A. Fisher (1926) ), using the sta
tistic 

with 

IL Pitman's test (E. J. G. Pitman (1937) ), based on the statistic 

n1 

tp= ~ Xi. 
i=l~ 

III. Wilcoxon's test (F. Wilcoxon (1945) ) using 

n1 

tw= ~ r;, 
i=l -
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where ri is the rank of xi (i = 1, ... , n1), when all xi and Yi together are arranged 
according to size. - - ~ · 

IV. Terry's test (M. E. Terry (1952) ). The test statistic of this test is 

where r i is again the rank of xi and E Zn,r 1 is the mathematical expectation of 
the rth order statistic of a rand~m sample of size r,, ( = n1 + nz) from a standard 
normal distribution. 

V. Van der Waerden's test (B. L. Van der Waerden (1952), (1953) ), based on 

n1 ( r· ) 
t X = L 'Y _d_l ' 
- i=l n + 

where 'Y (q) denotes the q-quantile of the standard normal distribution 1• 

The first of these tests is not distributionfree. However, several of the 
other tests have been constructed with this test in mind and their power func
tions have been investigated especially in comparison with the power of Student's 
test, which is uniformly most powerful if applied onesided for onesided alternatives 
implying that x and y are normally dfatributed with equal variances but differ
ent means. 

The test statistic of the other four tests are seen to be closely related. If 
we denote the two samples taken together by z1 , ... , Zn, a general expression 

- -
for these statistics is 

n1 

t* = L (j)i , Cf'i = q> (zi , r i) , 
i=l ~ ~ -

1 Let !Ji (q) denote the q-quantile of the standard normal distribution, i. e. let. 

1 ,p~q) -}x2 --J e d x = q, v~ 
-"" 

then 
1 

E Z = 1 f Fr-I !Ji (F) (1 - F)n-r d F, _n,,• B (r, n-r + 1) 
0 

so that: 
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where qi (z, r) stands for z, r, E ~n,r and qi (n: 
1
) respectively, ri being the 

rank of Zi if z1 , •.. , z,. are arranged according to size and where the summation 
takes place ov~r thosei for which the corresponding Zi constitute the sample X1, ••• 

x,.l° There is no special reason, except perhaps simplicity, for confining qi to one 
o"°r these four functions. In genera] any monotonous function of z and or r, 
would give a useful test statistic for the problem considered. 

The hypothesis H 0 tested implies again H00, which may here be expressed by 
considering the sample Xi, • •• , x,.

1 
to be generated by random sampling without 

replacement from the vaiues Z1 ~- •• , Zn, found in the experiment, i.e. the values of 
both samples pooled. The sampling moments of t* may thus be derived by 
means of the well known formulae for sampling with~t replacement from a finite 
population (this method has in fact been used by the au+,hors of the tests in 
one form or another). 

With 

and 

this leads to 

and 

2(t*IH. )_n:in2 2 er oo ' z1 ' ... ' z,. - --1 a • - n-

These formulae being valid irrespective of the values of the Zi , they may also 
be used when ties are present in the observations, provided some convention has 
been adopted for determining the value of qi for these tied observations. The 
simplest way of allocating values of qi to tied individuals is to average· in each 
tie the values of qi which the members of this tie would have had if they had 
been unequal but otherwise in the same position with respect to all z,; not belong
ing· to this tie. This method has been used by many authors, especially when 
ranks are concerned; cf. e.g. M. G. Kendall (1948) and for historical references 
W. H. Kruskal and W. A. Wallis (1952) footnote 1, page 11. It was also proposed, 
in a letter to the authors, by Van der Waerden forbistestanditseemstothe 
authors to constitute an improvement (i.e. it is deemed likely that the power 
function is improved) on the randomization procedures, which are sometimes 
proposed as a mean of dealing with ties (cf. e.g. M. E. Terry (1952) ). It may 
be remarked that the variance of t* always decreases when untied values are 
replaced by their average and that the difference is usually small when there are 
no large ties. This means that the formulae for the variance without taking 
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the presence of ties into account can safely be used as a first approximation, 
correcting for ties only if there are large ties. The mean E (t* I H 00 ; z1 , ..• , zn) 
does not depend on the presence or absence of ties. 1 -

We thus find for the four tests considered the following expressions for the 
mean and variance of the test statistic under H00 • 

tw 

tp 

mean 

I 
2 n1 (n + I) 

0 

0 

variance 

ni n n \ I n 12 
-~-2_ l: ,zh- - l: zk. 
n (n - I) h=l I n k=l I 

l I ni n2 

12 n1 n2 (n + 1) - 12 n (n - l) 7 (t-1) t (t + 1) 

(a) Equal values of zh being permitted. 

(a) 

(b) 

(c) 

(c) 

(b) t denotes the number of individuals of a tie of Zi, • •• ' Zn, the l: - sign 
denoting summation over all ties ( cf. J. Hemelrijk (1952) and W.H. Kru-
skal and W. A. Wallis (1952) ). · 

(c) In these expressions average values of E ~n,h and of lji (n :
1

) being 

substituted in th~ case of ties; the mean is not affected by this. 
The asymptotic distribution of t*, under H 00 , is a normal distribution as 

has been proved for tp by A. Wald an:a. J. Wolfowitz (1944), for tw by H.B. Mann 
and D.R. Whitney {1947) and for !_T and .!.,x by the authors of these tests. The 

conditions for this asymptotic behaviour are slightly different for the different 
tests, but this does not seem to be essential. For tp and tp also other approx
imations of the distribution of the test statistic havebeen given, which are more 
accurate for smaller samples. The asymptotic normality when ties. are present 
has only been proved as yet for tw by W. H. Kruskal (1952). 

Pitman's test II is clearly not rank invariant. It differs from the rank inva
riant tests III-V in that it is based on the conditional distribution of tp for given 
values of the zi, whereas the tests III-V depend on the ranks only, ari:d are there
fore, if ties have probability zero, unconditional. In the case, however, when 
ties are present, the latter also become conditional. 

1 Instead of arranging the values of <p itself, one might also average the arguments 
of <p, when <p is defined for these average arguments. Then both the mean and the 
variance of t* depend on the thies, whereas the method proposed above does, not change 
the mean under H 00 • 



18 

The difference between the tests III-V is illustrated in figure 1, where the 
curve C represents the standard normal distribution function. 

For an observation with rank r the random variable Zn,r has a probability 
distribution, which, when represented by a mass-distribution on the z-axis and 

then projected on C, has a centre of gravit3- G (cf. fig. 1) with ordinate _r_ 
n+I 

and, for r > n ~ 1 
with an abscissa E ~n,r, which, because of the concavity of 

the right hand half of C is somewhat larger than the abscissa ~ (-r-) of the 
n+I 

intersection G' of C with the horizontal line through G. The three quantities 

1 

_r_ e------,ttF--e 
n+1 

C 

(Wile oxo nJ 

z 

\f'(n~1) E Zn r 
Cv.d. Waerden) CTerry) 

Fig. I. -· Tests III, IV and V. 

cp (z, r) used by Wilcoxon, Terry and Van der Waerden are thus clearly indicated 
in this diagram. 

For small samples, when one wishes to.use the exact probability distribution .. 
Pitman's test has the disadvantage, caused by the use of the observations them
selves, that no general expression for the probability distribution under H00 , not 
involving the values z1 , ... , Zn , can be given. This means, that the distribution 
has to be worked out for every case separately, which is rather an elaborate pro
cedure. For the other tests the exact distribution under H 00 may be calculated 
once and for all for small samples, as has been done by the authors of the tests 
and others (for references about the distribution of tw cf. W. H. Kruskal and 
W. A. Wallis (1952) ). -

When choosing between these tests for applications the main point of interest 
is their power under alternative hypotheses. Unfortunately not much is known 
about this for small samples, but a number of results have been presented for 
large samples. 



19 

Pitman's test statistic tp is, given the values z1 , .•. , z,,, equivalent with Stu
dent's statistic ts comput~ from the same observations, as may be seen as 
follows. Introdicing 

n -
· --(tp-n1 z) 2 

w = _n_1_n_2 ____ _ 
n 
~ (z;, -z)2 

h=l 

it follows that a critical region based on large values of'!!! coincides with a symme

trical bilateral critical region for tp , n1 z = ~ £ zh being the expected value 
~ n h=l 

of tp under H00 . However, computation shows that 

w 

1-w 

t2 _s 
n-2' 

hence w is a monotonous function of ti and Pitman's test may be described as 
using Student's ts as test statistic, but deriving its distribution under HO by 
means of the eqwlity of the probabilities of all permutations of the observations. 
The difference between Pitman's and Student'ri test can be seen as follows. Tak
ing, according to Pitman, for every set of Zi a critical region with size ~, the 
sum of these regions constitutes also a critical region with size ~ , under any 
common distribution function of the z; . In particular this is the case if this 
distribution is normal. Then Student,; critical region with size ~ differs from 
Pitman's, as the former consists (in the onesided case) of values ts> is (~), where 
ts {~) is some constant depending on n1 , n2 , and~ only, whereas the latter consists 
of values ts > ls (~, z) , where the right hand member depends on z _ )z1 , .•. , z,,l 
and on n1 , n2 , and ~- Considering Student's critical region for fixed values of 
z1 , ... , z,,, this conditional region will thus for some sets Jz1 , .•. , z,.! be larger 
and for other ones be smaller in size than Pitman's conditional critical region. 

A. Wald and J. Wolfowitz (1944), however, proved the asymptotic normality 
of Pitman's tp under H00 and J. Wolfowitz (194.9) states that the test iR "asymp
totically the same" as Student's test as a consequence of this pr9perty. The 
meaning of this expression is not made clear, but it probably is, that the above
mentioned difference between t,he critical regions decreases for increasing n, or, 
more precisely, that if x and y have the sBmc, normal distribution, the proba
bility of rejecting H O with one of the tests and not with the other c·ne tends to 
zero for n-+ oo (with ni/n2 and n2/n1 both bounded). For alternative hypotheses 
for which both tests are consistent, this propert,y is obvious, the probability of reject
ing H O tending to 1 for both tests. The further consequences of the " asymptot
ic identity " for the power of the tests under alternative hypotheses SLl:lm not 
yet to be completely clarified. As far as the authors 11re aware nothing is known 
about the power function of Pitman's test for small samples. 

The power of Wilcoxon's test has been investigated for very small samples 
from normal distributions with equal variances by H. R. Van der Vaart (1950). 
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He found (for n < 5) that the slope of the power function of the onesided test 
of Wilcoxon at t,he point H 0 : F = G differs only slightly from the corresponding 
slope of the power function of Student's onesided test (the ratio having values 
between 1 and 0,94). The same was proved to hold (again under normal alter
natives with equal variances) for the difference between the. second derivatives of 
the power functiolh<i of the twosided tests in the point H O • For large samples the 
ratio of the second derivatives approaches the value 3/r.: (~ 0,955) 1. A similar 
result (as yet unpublished) was obtained by G. E. Noether and E. J. G. Pitman 
for both the onesided and twosided tests. They proved that the relative asymp

totic efficiency, defined as the ratio of the numbers of observations necessary to 
give the two tests locally the same powerfunction in the neighbourhood of the 
point F= G (cf. G. E. Noether (1950) ), tended also to 3/n for n----+ = with ni/n2 

and n2/n1 bounded. On the other hand they found Wilcoxon's test to be far more 
efficientt.han Student's test when F and Gare not normal but skew distributions of 
a special type E.g. the ratio mentioned proves to be 3/2 for x2-distributions with 4 de
grees of freedom (Student's test is not applicable without changing the probability
distri bution of t8 for small samples in this case, but asymptotically it remains 
valid). Another important result is due to E. L. Lehmann (1953), who proved 
that the test is most powerful among all rank tests in the point H O : F = G 
with regard to alternatives of the form 

G=pF+ qF2
, O<p<l, p+q=l, 

i.e. that the first derivative of the power function with regard to p in the point 
p = 1 is maximized by this test ; F denotes any continuous distribution function. 

As for other asymptotic results, D. van Dantzig (1951b) and E. L. Lehmann 
(1951) proved the consistency of the test for alternatives with 

1 
p [x>y]-=/== 2· 

The onesided test was proved by Lehmann (1951) to be unbiased against 
the alternatives that 

F(u)> G (u) for all u 

(or< instead of> for the other onesided test). Van der Vaart proved (as yet 
unpublished) that the twosided test is biased for a large class of skew distri
butions as alternatives, when n1 -=p= n2 • 

Terry designed his test to be asymptotically a locally most powerful rank 
order test at the point H O : F == G for normal alternatives, i.e. the slope of the 
power function of the onesided test at this point is asymptotically a maximum for 
all tests based on ranks. Terry also investigated the power of his test under 
normal alternatives experirrentally for n1 = n2 = 4 and found the difference with 
the power of Student's test to be considerable. 

Van der Waerden proved his test to be asymptotically the same as Student's 
test for the case, that y is distributed normally and n2 ----+ oo , n1 being bounded ; 

1 In a letter to the authors VAN DER V AART has announced that the corresponding 
ratio for the onesided tests has the limiting value V 3/ r: • 
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the xi only need to be distributed independently according to continuous distri
butions, which need not be identical. 

The tests of Terry and Van der W aerden are closely related ( cf. fig. 1) ; in 
fact their critical regions differ only very slightly. For 7ii = n2 = 5 e.g. compu
tation shows the exact onesided critical regions to coincide up to a level of signifi
cance 0,08 and above that level only incidental differences of little importance are 
present. An important difference between these tests and Wilcoxon's test is, 
that more different levels of significance are obtained by the former ones: in many 
cases permutations of the observations giving the same value of iw yield different 
values for tT and tx. A consequence of the structural difference be"tween the three 
test statistics is, that in tT and t x much greater weight is laid upon the extreme 
observations than in tw .~We have e.g. for n = 20 for the largest z the following 
weights. -

Wilcoxon's test: 20/ ~ 7,, = 0.065, 
h=l 

Van der Waerden's test: o/ (!~) / ~
1 

o/ (:1) = 0.117, 

Terry's test : E ~ 20,20 / h~l E ~ 20,h = 0.122. 

The weight of the extreme observations is largest for Terry's test, but the 
difference between the weights for this test and. Van der Wa<:irden's is small compar
ed with the difference with the weights for Wilcoxon's test. 

For Pitman's test no fixed weights are attached to the observations, the z, 
being used themselves. 

It is not quite clear, what the consequences of these different weights on the 
power function will be. Van der Waerden compared the power of tw and tx for 
a number of numerical examples with small 7ii and n2 , including norni'al altern'atives 
and some distributions satisfying the relation G (u) = F (u + d) for all u. He 
found tx to have more power than tw for these cases. On the other hand It follows 
from Lehmann's result, that for a'iternatives of the form G =: p F + q F 2 Wil
coxon's test has the largest power. A further investigation seems desirable. The 
larger number of different values assumed by tx and tT in comparison with tw 
certainly is a point in fa.vour of these two tests, but this could also be obtained 
by substituting much simple functions for cp (z, r) in the formula for· t* and there 
is no special need to use the normal distribution function. On the other hand the 
smaller weights of the extreme observations for tw, has the important advantage, 
that the influene;e of outlying observations, which may (but need not) be caused 
by mistakes of some kind and which may have a bad effect on the reliability of 
a statistical analysis - both when they are used and when they are eliminated, 
the elimination often being of an arbitrary character - is much smaller for this 
test than for the other two tests. Furthermore Wilcoxon's test is the easiest of 
the three as far as computations are concerned. 

8. - It is clear that results like those mentioned in section 7 only form the 
beginning of a statist.ioal theory for situations, where no assumptions about the 
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form of the underlying probability distribution are warranted. Especially the 
lack of knowledge of the power functions for small samples is irritating, because it 
really is the small sample theory which we are after, so that asymptotic results 
usually are not of great importance. Although there is nothing against the use 
of limiting distributions when the degree of approximation is known, or may be 
estimated by comparison with exact distributions - for these cases the limiting 
distributions are in fact very useful -, one should not forget that, asymptotically 
speaking nearly all statistical methods are distributionfree owing to the central 
limit theorem. 

The possibility of making as many distributionfree tests as one wishes is 
indicated by the method outlined in section 7 for the problem of two samples. 
Pitman, Terry and Van der Waerden used functions for rp (z, r) which connect 
their tests with the normal distribution. The same may be done analogously 
with other distributions and their principle of " normalizing ranks " may also be 
applied to the generalizations of Wilcoxon's test which have been described in earlier 
sections of this paper. On the other hand the in:fl:uence of the tails of the underly
ing distributions may also easily be diminished still further than is done by the 
use of ranks, by choosing smaller weights for the small and large values among 

Z1 , ••. 'Zn' e.g. by taking <p (z, r) = (r-:- n t 1)1'2• It seems, however, rather use

less to go further in this dire~tion of developing new tests, where tests are available 
already, without first developing methods to evaluate the powerfunctions for small 
numbers of observations, with respect to different classes of alternative hypotheses. 

On the other hand it is important that one should not be compelled to make 
unwarranted suppositions (like normalit.y and equality of variances, if these are 
not known to be fulfilled) only because of the lack of methods which do not need 
these suppositions. Some headway has been made in this direction especially by 
the recent development of trend tests and k sample tests mentioned in section 5 
and 6 and by the generalization of the method. of m rankings by Benard and Van 
Elteren. Also there are many other developments which have not been mentioned 
in this paper. However, large fields of statistical methods like those commanded 
by the dassical theory of regression and analysis of variance anrl covariance have 
not yet been conquered completely by methods which do not depend on normality 
and homoscedacity. Several attempts in this direction have been made and 
incidental results have been obtained. Cf. e.g. G. W. Brown and A. M. Mood 
(1951), J. Hemelrijk (1950 a), H. Theil (1950), J.E. Walsh (1952). The method 
of Mood and Brown goes farthest in the direction of an analogon of the analysis 
of variance with more than one classification, but it is based on the median and 
is probably not very powerful. The method of m rankings and its generaliza
tions seem more promising in this respect. The development of a general ana
logue of the classical theory in this field would be very important. 

It would also be very important, if a unifying theory of ranking methods, 
distributionfree methods etc. were built up. The papers of Hoeffding are a start
ing point for this, but even the conceptional background of the methods in que
stion is not yet clear, as may be seen from section 2 of this paper and from the 
forthcoming paper of M. G. Kendall and R. M. Sundrum. 

As a final remark we draw attention to the fact, that the foregoing methods 
all deal with the testing of hypotheses and that this only is a first step in the 
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theory of statistical analysis. More important is the determination of confidence 
regions and the obtainment of predictions on future observations. To find confi
dence regions by means of tests of hypotheses it is desirable to have a method 
which enables us to test every hypothesis of the hypothesis space separately or at 
least to test different groups of hypotheses. Then the set of all hypotheHes or 
groups of hypotheses which are not rejected, with a given level of significance oc, 
on a given evidence Z, form a confidence set for the true hypothesis with confi
dence coefficient 1 - ;_ . In many cases, however, only a restricted group of hypo
theses - often of the character of "null-hypotheses" like H 00 - can be tested 
and for the larger part of the hypothesis space no appropriate tests are available. 
This is a weak point of the theory. Nevertheless something can be done in the 
direction of determining a confidence set, even if for only one critical region 
R some knowledge about the power function ~ (H) is available. A situation often 
occurring is: ~ (H) = P [Z ER I HJ , i.e. the probability that the evidence Z lies 
in R, if H is true, is exactly computaqle and < /'f. for some especially simple hypo
thesis H 0 ; for hypotheHes near H 0 , an upper estimate-~ (H) of~* (H) is known, 
and for hypotheses greatly differing from H 0 , a lower estimate ~* (H) of ·~ {H) 
can be computed. If, in that case, a Z E R is found, not only H O , but also all 
H for which ~* (H) <::::: oc may be rejected, and the set of all remaining H is a safe 
confidence set spr oc . If, on the other hand a Z outside R is found, all H with 
~*(H)> 1-oc can be rejected. For, if such a hypothesis were· true, P [Z e R] would 
be =1-~*(H) < 1- ~ (H) < oc. Hence, for _all Z ER all H with ~* (H) < 1-oc 
form a confidence set. In general, of course, both confidence sets will be too large, 
i.e. with more mathematical trouble it would be possible to obtain smaller sets in 
which we could already have confidence spr oc. For the case of a single unknown 
parameter with a power function of the ordinary type we illustrate the situation 
in fig. 2 1• For H near H 0 (3 (H) > ~ (H), ~ (H0) < oc; for H far from 

Fig. 2. Safe confidence sets. 2 

H0 ~*(H)<~ (R). All H outside the interval (a, b) form a safe confidence set if 
Z E R is found; all Hin (c, d) form a safe confidence set if a Z outside R is found. 

1 For an analogous discussion, based on the critical region belonging to WILcoxoN's 
test, cf. D. VAN DANTZIG (1951). 

2 In fig. 2 (3 and f3 stand for [3* a.nd f3"' respectively. 
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We see that from this point of view H0 is not of particular importance, ex
cept for the fact that it may be helpful in computing ~* (H) and ~ (H). On the 
other hand the method described here is very primitive and only two different 
confidence sets are possible as the result of the experiment. Nevertheless we 
must insist that only by determining (safe) wnfidence sets within the whole class 
Q of all empirically guaranteed hypotheses we can ·keep the unreliability threshold 
of the complete statist,ical procedure under control. This clearly indicates the 
fact, that the methods of statistical analysis based on few assumptions (i.e. with 
large class~s Q of admissible hypotheses) have only just been started on their way 
of development and that much remains to be done to give them more scope and 
power. 

Appendix 

Let Z1 , .•• , z,. be a set of n real numbers. lf all Zi are different, the rank 
of any one of them, say z; , after arrangement ac.cording to increasing order is 

(1) 
n 

ri = ~ t (zi - z1), 
i=l 

where t (z) denotes the " unit fun0tion " 

(2) l l if z:2::0 
L (z) def _ 

0 if z<O. 

I 
The mean rank = 2 (n +I); the "reduced rank", i.e. the difference of the 

rank from its mean, which we shall denote by ;; , is 

(3) 
~ I n 
ri = -

2 
~ sgn (zi-z;), 

. i=l 

where the " signum function " sgn z is defined by 

(4) sgn zdeJ : 

?-1 
if z>O 

if z = 0 

If among the z; equal values occur, a "tie" is defined as a set of all z; equal to 
one of them.. If the ranks of tied values are defined according to the mean
rank-method proposed by M.G. Kendall, the relation (3) remains valid, whether 
ties occur 1 or not. 

For abbreviation we write 

(5) Z;; def sgn (z; - z;) ' 

1 It is customary to say that "no ties" are present if all ties have size I, i. e. 
if the number of ties is n. 
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so that for arbitrary i and j 

(6) 

Moreover, if I= ) l , ... , n ! is the set of all suffixes, and if S and T are arbitrary 

subsets of I , we put 

(7) l 
Z. T def ~ z .. ' 

1,, - jeT 1,J 

1 

Zs. def ~ z .. 
'1 - i£S ,,,1 

and 

(8) 

We have then 

(9) ~

Z. T= -ZT. 
i., ,i 

Z =-Z j S,T T,S 

~ zs,s = 0. 

By means of (3), (5), (7) we find 

(10) 

by (10), if I' ti) denotes the complement of i in I, i.~. the set of all j e I which 
are 4= i. In the same way, if i e T, zi,T is twice the reduced rank of Zi in the 
ranking 2 of the elements of T, and, if if T, z. T is the difference between the ,,,, 
number of elements in T which are < Zi and the number of elements in T which 
are> zi. 

If the sets S and T are disjoint ( = have no elements in common), the quan
tity zs,T , is twice the reduced value of the test statistic U (accordmg to Mann 
and Whitney's notation) of Wilcoxon's test : 

(11) 
l l 

Us,T = 2 (zs,T; + n1 n2), Us,T = 2 Zs,T, 

if n1 = I SI and n2 = I T I are the sizes of S and T respectively 3• We remark 
that zs,T is an additive setfunction with respect to both its arguments 4• 

1 We remind that the symbol j € T means "j belongs to T" (j is an element of 
T), so that the sum in (7) is to be extended over all j belonging to T. (E is G. Pean6's 
« esti-symbol »). · 

2 We omit further the condition "according to non decreasing order, ties being 
accounted for in the customary manner ". 

3 Generally we denote the size (here : = number of elements) of a set S by l S I-
• For some purposes it is easier to use, instead of the sums zs,T, the correspon-

ding means zs,T = zs,T/n, n 2 , which lie always between - I and + 1. Then the ad
ditivity is not replaced by a property of similar simplicity. Whereas, if S and T are 

d . · · h S,S+T n 1 S,T 
lSJOlilt, Zs S+T = Zs T ' we ave z = --- z ' ' n,+n2 
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Now, let I be the sum (union) of Tc disjoint subsets ("samples") 81 (A= 1, ... , Tc} 
of sizes n,. = I 81 I , so that n = Z:n;. • Then, the quantity T used in Terpstra's 
test against trend is 

(12) 

The quantity 

(13) 
12 ; 2 

H=--- z:_l' 
k (k + 1) ;. n;. 

used in the Tc samples test, introduced independently by Terpstra and Kruskal, 
as well as Rijkoort's 

(14) X2R= 12(k-l) ~-2 
2 "' 2 ,:.,, u.,.' (n + 1) (n - ,:.. n.,.) l 

used asymptotically for the same purpose, both are quadratic forms in the quan
tities 

(15) 

By the additivit.y of zn1,s as a function of' 8, together with (9), 1 can be replaced 

by the complement of 8;. in I, making obvious that (according to Terpstra's ori
ginal definition) u1 is Wilcoxon's between R;. and its complement. 

Terpstra's second test statistic ( cf. section 6) is the quadratic form 

6Z: 
l,µ 

f;2 
SJ.,Sµ 

--~-nH. 

Finally, if I is the sum of nm disjoint subsets (" cells '~) 0µ., where µ. = 
I, ... , m ; v = i, ... , n, arranged in m "rows" 

and n "columns" (belonging to different "observators ") 

o., = ~ Oµv, 
µ 

then the quantity used in Bernard and Van Elteren's generalized m -ranking test 
is a quadratic form in the quantities ;;;, each of which is the sum over rows of 
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the ranks occurring in the , th column, each row being ranked separately. Hence 

(16) 

Comparing this with (15), we see that 'v'v is the sum over rows of the quanti
ties (16), obtained by considering each row as being built up out of the cells as 
samples. 

Generally speaking we may ask to test the hypothesis that tlJ_e Zi (i EI) are 
independent variates, the common distribution of which is invariant u""ii.der a given 
group G of permutations of I, within the set of admissible hypotheses stating that 
this invariance is required under a subgroup H of G only. We shall, however, 

not go into those, as yet incomplete, results in this direction, which have been 
obtained. 

Instead, we want to make a remark on the possibility of generalizing the theory 
for the cabe where the Zi are multivariates. Let m; assume that each Zi is a vector 
in an Euclidean f -dimensional space, its components being Zi,l, ••• , Z;,,f or, gen
erally, Zi,a ( oc = l, ... , /). Then itj seems a natural generalization, to consider 
statistics which are functions of the quantities 

(17) 
(

Zi0;1 , • · • , Zi0 ,f , l) 
Zi0 , ••• , it = sgn det : : 

Zit,1 , • • • , Zit,f l 

only, as for .f = l these reduce to 

(18) 

in accordance with (5). To which transformations z ~ z1 = q; (z) may the n vectors 
be subjected simultaneously without altering the quantities (17) 1 ].'or / = l we 
know that (18) (with i and i instead of i 0 and i 1) remains invariant if zi = cp (zi), 
z1 = cp (zi ), where cp (z) is any strictly increasing continuous function of z. For 
f = 2 the invariance of (17) requires that 

l I , 
, 

l Zi,l Zi,2 Zi,1 Z;,,2 

(19) l = sgu z1,1 
, 

l sgn Zj,l Zj,2 Zj,2 ' 

l I Zk,1 
, 

l Zk,l Zk,2 Zk,2 

where (Zi,1 , zc,2) = <p (Zi,l , Z;,,2). In particular both members of (19) must, van
ish simultaneously. Hence cp must transform straight lines into straight lines, 
i.e. the transformation must be affine and, moreover, orientation preserving. The 
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same holds true for any f > 2. For f = I the condition of simultaneous vanish
ing- of (18) and its transform requires only that the transformation is bi-univoque. 

The group of all affine transformations, however, depends on a finite number 
of constants only, whereas for f = I we had the group of all orientation preserv
ing to'f)Ological transformatiom;, depending on an arbitrary function Here we have 
an analogy with the group of conformal transformations, which in two dimensions 
depends on an arbitrary function, but in any larger number of dimensions (where 
it must transform spheres into spheres) on a finite number c,f constants only. 

The generalization (18) has two other disad-vantages. Firstly, the quantities 
which (apart from a factor j(f + 1) !l-1

) generalize the Wilcoxonion, viz. 

(20) Z = ~ .... :2: Zi0 , •.• ,it So, ... ,St . S 
i 0 c O i1 e s1 

do not lead in a natural way to a two samples test, but to an (f + I) samples 
test only. Secondly, even for / = 2 and an n which is not ex~remely smal1, the 
actual computation of (20) becomes very cumbersome as it requires the determi
nation of the orientations of all triangles which can be formed out of the n points 
(Zi,I , • • •, Zi,f), 

At first sight one might think that the natural generalization of rank-invariant 
statistics, say for f = 2, were statistics invariant under arbitrary orientation -
preserving topological transformations of the plane into itself. This, however, 
can not be the case, as any point cloud can by such a transformation be trans
formed into any other point cloud having the same number of (different) points. 
Some further restriction of the transformation group is therefore unavoidable. 
One can, of course, admit rank-invariant transformations of each of the coordi
nates separately, but one might admit other simple transformations, e.g. rotations 
also. As yet the problem of finding the more dimensional generalization of rank 
invariant statistics remains open. 
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Resume 

Cette communication est un expose de quelques uns des derniers resultats et mon
tre le developpement dans le domaine des methodes statistiques ayant pour base quel
ques hypotheses, methodes generalement designees par « distribution libre ", « non-para
metrique ", « ordre inchange "· 

L'on indique specialement un ensemble de methodes etroitement liees a la methode 
de la correlation, en y comprenant aussi des « tests for trend " des tests d'echantillon 
k et des generalisations de la methode m "rankings"· Deux tests d'echantillons (Stu
dents, Pitman, Wilcoxon, Terry, Van der Waerden) sont examines plus largement; 
sont discutes aussi les theoremes concernant leurs fonctions, theoremes dus a plusieurs 
au:teurs. L'importahce des enquetes concernant la portee des echantillop.s moindres est 
mise en evidence aussi bien en ce qui concerne l'opportunite d'une generalisation des 
methodes employees, par analogie a l'analyse des variations comportant un plus grand 
nombre de classifications, non basees sur la,normalite des distributions premieres. 

A l'appendice se trouve un resume des groupes des methodes exposees. 




