MATHEMATISCH CENTRUM

2de Boerhaavestraat 49
AMSTERDAM.
Statistical Department

Head of Department: Prof. Dr D.van Dantzig
Chief of Statistical Consultation: Prof. Dr J.Hemelrijk.

Report SP 34

A sequential test with three possible decisions for comparing two unknown probabilities, based on groups of observations

by
Constance van Eeden

1. Introduction.

We consider two series of independent trials, e.g. two processes A and B, each trial resulting in a success or a failure with probabilities $p, 1-p$ and $p^{\prime}, 1-p$ for the two processes respectively.

A sequential test with two possible decisions for the comparison of p and p, developed by WALD [6], may be used if the trials are executed in pairs, each pair consisting of one trial for each process.

For groups of trials of both processes a sequential test with two possible decisions for comparing p and p has been described in [8]. This test is carried out as follows.

Suppose the group of trials, constituting the i-th stage of the test, consists of n_{i} trials for process A and m_{i} for process B. If the numbers of successes are a_{i} and $\left.b_{i}\right)^{1}$ respectively, \underline{a}_{i} and b_{i} both possess a binomial probability distribution with parameters m_{i}, p and m_{i}, p^{\prime} respectively.

The following transformation is then used: if \underline{n}^{\prime} possesses a binomial probability distribution with parameters n and p the random variable
(1.1)

$$
\left\{\begin{array}{lr}
y=2 \arcsin \sqrt{\frac{n^{\prime}}{n}} & 0<\underline{\underline{n}}^{\prime}<n \\
y=\sqrt{\frac{2}{n}} & \underline{x}^{\prime}=0 \\
y=\pi-\sqrt{\frac{2}{n}} & \underline{n}^{\prime}=n
\end{array}\right.
$$

is, for large n, approximately normally distributed with mean

$$
\begin{equation*}
\mu=2 \arcsin \sqrt{p} \tag{1.2}
\end{equation*}
$$

and variance

$$
\begin{equation*}
\left.\sigma^{2}=\frac{1}{n}+\frac{1}{n^{2}} \cdot 2\right) \tag{1.3}
\end{equation*}
$$

The transformation (1.1) is applied to \underline{a}_{i} and \underline{b}_{i}; after this transformation, these random variables will be denoted by \underline{u}_{i} and \underline{v}_{i} respectively.

1) Random variables are denoted by underined symbols; the same symbols, not underlined, are used to denote values assumed by these random variables.
2) Tables of y (in radians) and σ^{2} are given in [8] for $n=10(1) 50$ and $0 \leqq n \leqq n$.

The sequential test of WALD [6] with two possible decisions for the mean of a normal distribution with known variance is then applied to

$$
\underline{x}_{2}=\underline{u}_{2}-\underline{v}_{i} \quad(i=1,2, \ldots) .
$$

Both abovementioned tests are tests with two possible decisions, i.e. the tests result in one of the decisions $p>p$ or $p<p^{\prime}$.

The sequential test for comparing p and p for the case of pairs of trials may be generalized to a test with three possible decisions, i.e. a test resulting in one of the decisions $p>p^{\prime}$, $p<p^{\prime}$ or $p \approx p^{\prime}$, by means of a test developed by DE BOER [2]. This case will not be considered here.

In this paper the abovementioned test for comparing p and p' for groups of trials will be generalized by means of a sequential test for the mean of a normal distribution with known variance developed by SOBEL and WALD [7].

The sequential test of WAID with two and the test of SOBEL and WALD with three possible decisions for the mean of a normal distribution with known variance will be described first.
2. Sequential test for the mean of a normal distribution with known variance.
2.1. Two possible decisions.

For the case that the successive observations $x_{1}, x_{2}, \ldots \ldots$ are idependent observations of one random variablex, possessing a normal probability distribution with mean μ and known variance σ^{2}, WALD's sequential test with two possible decisions for μ has been described in [6] (p. 117-124). This test will be described here for the case that the variance is not constant. This results in a small change in WALD's test; the proof of the validity of this test follows at once from WALD's own proofs.

For the test a value μ_{0} of μ must be chosen, the two possible decisions being: $\mu<\mu_{0}$ and $\mu>\mu_{0}$, where we may substitute § resp. \geqq for < resp.>.

Furthermore two values μ_{1} and μ_{2} must be chosen with

$$
\mu_{1}<\mu_{0}<\mu_{2}
$$

such that the decision $\mu>\mu_{0}$ is considered an incorrect decision if $\mu \leqslant \mu_{0}$ and the decision $\mu<\mu_{0}$ is considered incorrect if $\mu \geqq \mu_{2}$; for values of μ between μ_{1} and μ_{2} it is not important which decision is taken.

The concepts "correct" and "incorrect decision" are thus

Table I
Correct and incorrect decisions

value of μ	correct	
	decision	
$\mu \leqslant \mu_{1}$	$\mu<\mu_{0}$	$\mu>\mu_{0}$
$\mu z \mu_{2}$	$\mu>\mu_{0}$	$\mu<\mu_{0}$
$\mu_{1}<\mu<\mu_{2}$	$\begin{cases}\mu<\mu_{0} & \text { and } \\ \mu>\mu_{0} & - \\ \hline\end{cases}$	

The interval $\left(\mu_{1}, \mu_{2}\right)$ is called the indifference region. If:
$\alpha=$ the probability of acceptance of $\mu>\mu_{0}$ if $\mu=\mu_{1}$
$\beta=$ the probability of acceptance of $\mu<\mu_{0}$ if $\mu=\mu_{2}$,
and if α and β are chosen both $<\frac{1}{2}$ the probability of an incorrect decision is $\leqq \alpha$ for $\mu \leqq \mu_{1}$ and $\leqq \beta$ for $\mu \geqq \mu_{2}$.

The value μ_{0} is of no further importance for the performance of the test.

The test is carried out as follows (σ_{i}^{2} is the known variance of x_{i}):

Additional observations are taken as long as:

$$
\begin{equation*}
\frac{\ln B}{\mu_{2}-\mu_{1}}<\sum_{i=1}^{n} \frac{x_{i}-\frac{\mu_{1}+\mu_{2}}{2}}{\sigma_{i}^{2}}<\frac{\ln A}{\mu_{2}-\mu_{1}}, \tag{2.1}
\end{equation*}
$$

where

$$
\begin{aligned}
& A=\frac{1-\beta}{\alpha}>1 \\
& B=\frac{\beta}{1-\alpha}<1
\end{aligned}
$$

The test is terminated as soon as (2.1) does not hold and the decision $\mu>\mu_{0}$ is then taken if

$$
\sum_{i=1}^{n} \frac{x_{i}-\frac{\mu_{1}+\mu_{2}}{2}}{\sigma_{i}^{2}} \geqq \frac{\ln A}{\mu_{2}-\mu_{1}}
$$

and the decision $\mu<\mu_{0}$ if

$$
\sum_{i=1}^{n} \frac{x_{i}-\frac{\mu_{1}+\mu_{2}}{2}}{\sigma_{i}^{2}} \leqq \frac{\ln B}{\mu_{2}-\mu_{1}} .
$$

If the random variables x_{i} all have the same variance σ^{2} the test may be carried out graphically, as indicated by WALD [6] (p. 118-121).

2.2. Three possible decisions.

The sequential test with three possible decisions for the mean μ of a normal distribution with known variance, developed by SOBEL and WALD has been described in [7] for the case that the variance of x_{i} is a constant. This restriction is again dropped here.

For the test two values μ_{0} and μ_{0}^{\prime} and four values μ_{1}, μ_{2}, μ_{3} and μ_{4} must be chosen such that

$$
\mu_{1}<\mu_{0}<\mu_{2}<\mu_{3}<\mu_{0}^{\prime}<\mu_{4}
$$

the three possible decisions being:

$$
\begin{aligned}
& \text { 1. } \mu<\mu_{0} \\
& \text { 2. } \mu>\mu_{0}^{\prime} \\
& \text { 3. } \mu_{0} \leq \mu \leq \mu_{0}^{\prime} .
\end{aligned}
$$

The intervals $\left(\mu_{1}, \mu_{2}\right)$ and $\left(\mu_{3}, \mu_{4}\right)$ are the indifference regions.

The concepts "correct" and "incorrect decision" are defined as follows:

Table II
Correct and incorrect decisions

value of μ	correct	incorrect
	decision	
$\mu \leqq \mu_{1}$	$\mu<\mu_{0}$	$\left\{\begin{array}{r}\mu_{0} \equiv \mu \leqq \mu_{0}^{\prime} \\ \mu>\mu_{0}^{\prime}\end{array}\right.$
$\mu_{1}<\mu<\mu_{2}$	$\left\{\begin{array}{r}\mu<\mu_{0} \\ \mu_{0} \leqslant \mu \leqslant \mu_{0}^{\prime}\end{array}\right.$	$\mu>\mu_{0}^{\prime}$
$\mu_{2} \leq \mu \leq \mu_{8}$	$\mu_{0} \leqq \mu \leqq \mu_{0}^{0}$	$\left\{\begin{array}{l}\mu>\mu_{0}^{\prime} \\ \mu<\mu_{0}\end{array}\right.$
$\mu_{3}<\mu<\mu_{4}$	$\left\{\begin{array}{r}\mu_{0} \leqq \mu \leqq \mu_{0}^{\prime} \\ \mu>\mu_{0}^{\prime}\end{array}\right.$	$\mu<\mu_{0}$
$\mu \geqq \mu_{4}$	$\mu>\mu_{0}^{\prime}$	$\left\{\begin{array}{r}\mu<\mu_{0} \\ \mu_{0} \leq \mu \leq \mu_{0}^{\prime}\end{array}\right.$

The values μ_{0} and μ_{0}^{\prime} are of no further importance for the performance of the test.

Suppose T is the sequential test of section 2.1 for testing $\mu=\mu_{1}$ against $\mu=\mu_{2}$, then this test leads to a decision as soon as
does not hold, where

$$
A=\frac{1-\beta}{\alpha} \quad, \quad B=\frac{\beta}{1-\alpha} \text {. }
$$

$\alpha=$ the probability of accepting $\mu \geqq \mu_{0}$ according to T if $\mu_{=} \mu_{4}$, $\beta=$ the probability of accepting $\mu<\mu_{0}$ according to T if $\mu=\mu_{2}$. Suppose furthermore that T^{\prime} is the analogous sequential test for testing $\mu=\mu_{3}$ against $\mu=\mu_{4}$ then T^{\prime} leads to decision as soon as

$$
\begin{equation*}
\frac{\ln B^{\prime}}{\mu_{4}-\mu_{3}}<\sum_{i=1}^{n} \frac{x_{i}-\frac{\mu_{3}+\mu_{4}}{2}}{\sigma_{i}^{2}}<\frac{\ln A^{\prime}}{\mu_{4}-\mu_{3}} \tag{2.3}
\end{equation*}
$$

does not hold, where

$$
A^{\prime}=\frac{1-\beta^{\prime}}{\alpha^{\prime}} \quad, \quad B^{\prime}=\frac{\beta^{\prime}}{1-\alpha^{\prime}} .
$$

$\alpha^{\prime}=$ the probability of accepting $\mu>\mu_{0}^{\prime}$ according to T^{\prime} if $\mu_{=} \mu_{0}$ $\beta^{\prime}=$ the probability of accepting $\mu s \mu_{0}^{\prime}$ according to T^{\prime} if $\mu_{=} \mu_{4}$. We introduce the following notation
(2.4)

$$
\begin{aligned}
& \left\{\begin{array}{c}
a=\frac{\ln A}{\mu_{2}-\mu_{1}} \\
b=\frac{\ln B}{\mu_{2}-\mu_{1}} \\
\sum_{i=1}^{m} \frac{\alpha_{i}-\frac{\mu_{1}+\mu_{2}}{\sigma_{i}^{2}}}{2}=y_{n}
\end{array}\right. \\
& a^{\prime}=\frac{\ln A^{\prime}}{\mu_{4}-\mu_{5}} \\
& b^{\prime}=\frac{\ln B^{\prime}}{\mu_{4}-\mu_{3}} \\
& \sum_{i=1}^{n} \frac{x_{i}-\frac{\mu_{r}+\mu_{4}}{\sigma_{i}^{2}}}{\sigma^{2}}=y_{n}^{i} .
\end{aligned}
$$

then according to T a decisions is taken as soon as (2.2a)

$$
b<y_{n}<a
$$

does not hold and according to T^{\prime} as soon as
(2.3a)
$b^{\prime}<y_{n}^{\prime}<a^{\prime}$
does not hold.

From (2.4) it follows that a and a are positive, b and b negative and
(2.5) $\quad y_{n}>y_{n}^{\prime}$

If now the inequalities

$$
\left\{\begin{array}{l}
b \leq b^{\prime} \tag{2.6}\\
a \leq a^{\prime}
\end{array}\right.
$$

are fulfilled, it follows from (2.5) and (2.6) that T^{\prime} cannot lead to the decision $\mu>\mu_{0}^{\prime}$ before the decision $\mu \geqq \mu_{0}$ has been found according to T and that T cannot give the decision
$\mu<\mu_{0}$ before the decision $\mu \mathbf{~} \mu_{0}^{\prime}$ has been given by T^{\prime}.
In that case only the following decision according to T and T^{\prime} are possible:

1. T' gives the decision $\mu \mu_{0}^{\prime}$ and T gives (at the same or a later step) the decision $\mu<\mu_{0}$ or the decision $\mu_{*} \mu_{0}$.
2. T gives the decision $\mu \geqslant \mu_{0}$ and T^{\prime} gives (at the same or a later step) the decision $\mu \leqslant \mu_{0}^{\prime}$ or the decision $\mu>\mu_{0}$.

The sequential test with three possible decisions is then defined as follows:

Additional observations are taken as long as not both tests T and T have given a decision. As soon as both tests are terminated a decision is taken according to the following rules:

1. $\mu<\mu_{0}$ if T^{\prime} has given the decision $\mu \leq \mu_{0}^{\prime}$ and T the decision $\mu<\mu_{0}$,
2. $\mu>\mu_{0}^{\prime}$ if T has given the decision $\mu \geqslant \mu_{0}$ and T^{\prime} the decision $\mu>\mu_{0}^{\prime}$,
3. $\mu_{0} \leq \mu \leq \mu_{0}^{\prime}$ if T has given the decision $\mu \geq \mu_{a}$ and T^{\prime} the decision $\mu \leqslant \mu_{0}$.
If (2.6) does not hold there exists the possibility of accepting $\mu>\mu_{0}^{\prime}$ according to T^{\prime} and of afterwards accepting $\mu<\mu_{0}\left(<\mu_{0}^{\prime}\right)$ according to T. This kind of contradictory result is excluded by (2.6).

If the random variables x_{i} all have the same variance σ^{2} the test may be carried out graphically, cf. [7].
3. Sequential test with three possible decisions for the comparison of two probabilities.
On the basis of the test of section 2.2 a sequential test with three possible decisions for comparing two unknown probabilities p and p may be developed as follows.

To the variables a_{i} and b_{i} (see section 1) one of the for lowing transformations is applied
(3.1) $\quad y=2 \arcsin \sqrt{\frac{n}{n}} 3$)
(3.2) $\begin{cases}y^{\prime}=2 \arcsin \sqrt{\frac{n^{\prime}}{n}} & 0<n^{\prime}<n \\ y^{\prime}=2 \arcsin \sqrt{\frac{1}{4 n}} & n^{\prime}=0 \\ y^{\prime}=\pi-2 \arcsin \sqrt{\frac{1}{4 n}} & n^{\prime}=n\end{cases}$
(3.3) $\left\{\begin{array}{lr}y^{\prime \prime}=2 \arcsin \sqrt{\frac{n^{\prime}}{n}} & 0<n^{\prime}<n \\ y^{\prime \prime}=\sqrt{\frac{2}{n}} & n^{\prime}=0 \\ y^{\prime \prime}=\pi-\sqrt{\frac{2}{n}} & n^{\prime}=n\end{array}\right.$
where n^{\prime} possesses a binomial probability distribution with parameters n and p.

The transformation (3.1) is introduced by FISHER [4], the transformation (3.2) by BARTLETT [1] and (3.3) is given in [8]. For further information about the transformations we refer to [3] (p. 395-416).

Denoting the variables \underline{q}_{i} and \underline{b}_{i}, after their transformation, by \underline{u}_{i} and \underline{v}_{i} the sequential test of section 2.2 is applied to the random variables

$$
\underline{x}_{i}=\underline{u}_{i}-\underline{w}_{i} \quad(i=1,2,3, \ldots \ldots)
$$

which possess, for large n_{i} and m_{i}, approximately a normal probability distribution with mean

$$
\mu=2 \arcsin \sqrt{p}-2 \arcsin \sqrt{p^{\prime}}=2 \arcsin (\sqrt{p q}-\sqrt{p q}) \quad \begin{align*}
& q=1-p \tag{3.4}\\
& q=1-p^{\prime}
\end{align*}
$$

and variance

$$
\begin{equation*}
\sigma_{i}^{2}=\frac{1}{m_{i}}+\frac{1}{n_{i}^{2}}+\frac{1}{m_{i}}+\frac{1}{m_{i}^{2}} . \tag{3.5}
\end{equation*}
$$

Two values μ_{0} and μ_{0}^{\prime} and four values $\mu_{1}, \mu_{2}, \mu_{1}$ and μ_{4} of μ must be chosen, with:

$$
\begin{equation*}
\mu_{1}<\mu_{0}<\mu_{2}<\mu_{1}<\mu_{0}<\mu_{4} \tag{3.6}
\end{equation*}
$$

3) Tables of $y=2 \arcsin \sqrt{x}$ are given in [5] for $x=$ $=0,000(0,001) 1,000$, p. 70-71, with y in radians.
4) Tables of $y=2 \arcsin \sqrt{\frac{1}{4 x}}$ and $y=\pi-2 \arcsin \sqrt{\frac{1}{4 x}}$ are given in [3], p. 406 for $n=10(1) 50$.
and four values $\alpha, \alpha^{\prime}, \beta$ and $\beta^{\prime}\left(\right.$ all $\left.<\frac{1}{2}\right)$ with (see (2.6))

$$
\left\{\begin{array}{l}
\frac{\ln B}{\mu_{x}-\mu_{1}} \leq \frac{\ln B^{\prime}}{\mu_{4}-\mu_{3}} \tag{3.7}\\
\frac{\ln A}{\mu_{2}-\mu_{1}} \leq \frac{\ln A^{\prime}}{\mu_{4}-\mu_{3}},
\end{array}\right.
$$

where

$$
\begin{array}{ll}
A=\frac{1-\beta}{\alpha} & B=\frac{\beta}{1-\alpha} \\
A^{\prime}=\frac{1-\beta^{\prime}}{\alpha^{\prime}} & B^{\prime}=\frac{\beta^{\prime}}{1-\alpha^{\prime}} .
\end{array}
$$

Having chosen these values the abovementioned test may be applied, leading to one of the decisions:

$$
\begin{align*}
& \text { 1. } \mu<\mu_{0} \\
& \text { 2. } \mu>\mu_{0}^{\prime} \tag{3.8}\\
& \text { 3. } \mu_{0} \leq \mu \leq \mu_{0} .
\end{align*}
$$

We shall translate these decisions in terms of p and p^{\prime}. Let

$$
\begin{equation*}
\sqrt{p q^{\prime}}-\sqrt{p^{\prime} q}=\delta \tag{3.9}
\end{equation*}
$$

then
(3.10)

$$
\mu=2 \arcsin \delta \quad|\delta| \leqslant 1 .
$$

The functional relationship (3.9) between p and p^{\prime} for given δ^{2} consists (see fig. 1) of the arcs $P Q$ and $R S$ of the ellipse:

$$
\begin{equation*}
p^{2}+p^{\prime 2}-2 p p^{\prime}\left(1-2 \delta^{2}\right)-2 \delta^{2}\left(p+p^{\prime}\right)+\delta^{4}=0 \tag{3.11}
\end{equation*}
$$

fig. 1.
Functional relationship between p and p^{\prime} for given value of δ^{2}. Choosing two values δ_{0} and δ_{0} and four values $\delta_{1}, \delta_{2}, \delta_{1}$ and δ_{i} of δ with
(3.12)

$$
\delta_{1}<\delta_{0}<\delta_{2}<0<\delta_{3}<\delta_{0}^{\prime}<\delta_{4}
$$

the decisions (1.8) are equipalent with the following deci sions for $\delta(\operatorname{see}(3.10))$:
(3.13)

$$
\begin{aligned}
& 1 . \delta<\delta_{0} \\
& \text { 2. } \delta>\delta_{0}^{0} \\
& \text { 3. } \delta_{0} \leqslant \delta_{0}^{\prime}
\end{aligned}
$$

and hence with the following decisions for p and p° :

1. the point (p, p) lies above the arc RS of figure with $\delta=\delta_{0}$,
(3.14) 2. the point $\left(p, p^{\circ}\right)$ lies below the $\operatorname{arc} P Q$ with $\delta=\delta_{0}^{\prime}$, 3. the point $\left(p, p^{\prime}\right)$ lies on or between the $\operatorname{arcs} P Q$ and RSwith $\delta=\delta_{0}^{\prime}$ and $\delta=\delta_{0}$ respectively.
The values $\delta_{1}, \delta_{2}, \delta_{3}$ and δ_{4} may be chosen by means of fig. 2, where the arcs $P Q$ and RS are given for several values of δ.

One may also choose these values as follows:

1. WALD [6] uses the ratio

$$
u=\frac{p q^{\prime}}{p^{\prime} q} .
$$

On the line $p+p^{\prime}=1 \quad \delta$ can be expressed in terms of u :

$$
\begin{equation*}
u=\left(\frac{1+\delta}{1-\delta}\right)^{2} \tag{3.15}
\end{equation*}
$$

which is equivalent to

$$
\left\{\begin{array}{cc}
\delta=0 & \text { if } u=1 \tag{3.16}\\
\delta=\frac{u+1-2 \sqrt{u}}{u-1} & \text { if } u \neq 1
\end{array}\right.
$$

Choosing four values for u with

$$
\begin{equation*}
u_{1}<u_{2}<1<u_{3}<u_{4} \tag{.317}
\end{equation*}
$$

one finds four values for δ such that

$$
\begin{equation*}
\delta_{1}<\delta_{2}<0<\delta_{3}<\delta_{4} . \tag{3.18}
\end{equation*}
$$

2. On the line $p+p^{\prime}=1$ the equality

$$
\begin{equation*}
\delta=p-p^{\prime} \tag{3.19}
\end{equation*}
$$

holds.
Choosing four values for $p-p^{\prime}$ one finds four values for δ. The four values of δ (or u respectively) must furthermore be chosen such that (3.7) holds.

Usually one will choose these values symmetrically, i.e. such that

Figure 2

Functional relationship between p and p^{\prime} for several values of δ.
(3.20) $\left\{\begin{array}{l}\mu_{4}=-\mu_{1} \\ \mu_{3}=-\mu_{2}\end{array}\right.$
which is equivalent to

$$
\left\{\begin{array}{l}
\delta_{4}=-\delta_{1} \tag{3.21}\\
\delta_{3}=-\delta_{2}
\end{array}\right.
$$

and to

$$
\begin{equation*}
u_{1} u_{4}=u_{2} u_{2}=1 \tag{3.22}
\end{equation*}
$$

If (3.20) holds, (3.7) is equivalent to

$$
\left\{\begin{array}{l}
B \equiv B^{\prime} \tag{3.23}\\
A \equiv A^{\prime}
\end{array}\right.
$$

Remark
It is not necessary that p and p^{\prime} are constants. We only need a constant δ.

References.
[1] Bartlett, M.S., Some examples of statistical methods of research in agriculture and applied biology, Suppl. Journ. Royal Stat. Soc., 4 (1937), 137-183.
[2] De Boer, J., Sequential test with three possible decisions for testing an unknown probability, Appl. Sci. Res. 3 (1953), 249-259.
[3] Eisenhart, C., M.W.Hasteryand, W.A.Wallis, e.a., Selected techniques of statistical analysis for scientific and industrial research and production and management engineering, New York, 1947.
[4] Fisher, R.A., on the dominance ratio, Proc. Royal Soc. of Edinburgh, 42 (1921-1922).
[5] Hald, A., Statistical tables and formulas, New York, 1952.
[6] Wald, A., Sequential analysis, New York, 1947.
[7] Sobel, M. and A.Wald, A sequential decision procedure for choosing one of three hypotheses concerning the unknown mean of a normal distribution, Ann. Math. Stat., 20 (1949), 502-522.
[8] Statistical Research Group of the Columbia University, Sequential analysis of statistical data, applications, section 3, New York, 1945.

