MATHEMATICS

A TEST FOR THE EQUALITY OF PROBABILITIES AGAINST A CLASS OF SPECIFIED ALTERNATIVE HYPOTHESES, INCLUDING TREND ${ }^{1}$). I

BY
CONSTANCE VAN EEDEN and J. HEMELRIJK
(Mathematical Centre, Amsterdam)
(Communicated by Prof. D. van Dantzig at the meeting of January 29, 1955)

1. Introduction

The problem considered in this paper concerns $k(k \geqq 2)$ independent series of independent trials, each trial resulting in a success or a failure. For each trial of the i-th series, $i=1,2, \ldots, k$, the probability of a success is the same and this probability will be denoted by p_{i}, the probability of a failure being $q_{i}=1-p_{i}$. Denoting the number of trials in the i-th series by n_{i}, the number of successes by $a_{i}{ }^{2}$) and the number of failures by $\boldsymbol{b}_{\boldsymbol{i}}$ and defining

$$
\begin{equation*}
\boldsymbol{t}_{1} \stackrel{\text { def }}{=} \sum_{i} \boldsymbol{a}_{i}, \quad \boldsymbol{t}_{2} \stackrel{\text { def }}{=} \sum_{i} \boldsymbol{b}_{i}, \quad n \stackrel{\text { def }}{=} \sum_{i} n_{i}, \tag{1.1}
\end{equation*}
$$

the situation may be summarized by means of the following table
TABLE 1

Series	Probability of succes	Numbers of		
		failures	trials	
$\mathbf{1}$	$p_{\mathbf{1}}$	\boldsymbol{a}_{1}	$\boldsymbol{b}_{\mathbf{1}}$	$n_{\mathbf{1}}$
2	p_{2}	\boldsymbol{a}_{2}	\mathbf{b}_{2}	n_{2}
\cdot	\cdot	\cdot	\cdot	\cdot
\cdot	\cdot	\cdot	\cdot	\cdot
\dot{k}	\cdot	\cdot	\cdot	\cdot

The hypothesis to be tested is:

$$
\begin{equation*}
H_{0}: p_{1}=p_{2}=\ldots=p_{l} \tag{1.2}
\end{equation*}
$$

Usually the χ^{2}-test is applied to data of this kind. The class of alternative hypotheses for which this test is consistent is of a very

[^0]general character, comprising e.g., when k is constant, all hypotheses for which H_{0} is not satisfied.

Apart from general tests of this kind, specialized tests for smaller and more specific classes of alternative hypotheses are very useful.

The alternative hypothesis, which formed the original aim of this investigation, was the hypothesis of a trend of the p_{i}, defined by

$$
\begin{equation*}
\sum_{i<j}\left(p_{i}-p_{j}\right)=\sum_{i}(k+1-2 i) p_{i} \neq 0 \tag{1.3}
\end{equation*}
$$

This class of alternative hypotheses is, however, a special case of the class defined by

$$
\begin{equation*}
\theta \stackrel{\text { def }}{=} \sum_{i} g_{i} p_{i} \neq 0 \tag{1.4}
\end{equation*}
$$

where $g_{1}, g_{2}, \ldots, g_{k}$ are given numbers ("weights"). This consideration led to the following general formulation of the problem treated in this paper.

Consider, for $\nu=1,2, \ldots$, a sequence $\left\{T_{v}\right\}$ of tables like table 1 with $T_{\nu} \subset T_{\nu+1}$, i.e. $T_{\nu+1}$ originates from T_{ν} by adding new independent trials. Let T_{p} consist of k_{v} series, containing, for $i=1,2, \ldots, k_{v}, n_{i, v}$ trials, with probabilities $p_{i, p}$ of success, with $\boldsymbol{a}_{i, p}$ successes and $\boldsymbol{b}_{i, p}$ failures and with

$$
\begin{equation*}
\boldsymbol{t}_{1, v} \stackrel{\text { def }}{=} \sum_{i} \boldsymbol{a}_{i, v}, \quad \mathbf{t}_{2, v} \stackrel{\text { def }}{=} \sum_{i} \boldsymbol{b}_{i, v}, \quad n_{p} \stackrel{\text { def }}{=} \sum_{i} n_{i, v} . \tag{1.6}
\end{equation*}
$$

The problem under consideration is then to find a test for the series of hypotheses

$$
\begin{equation*}
H_{0, v}: p_{1, v}=p_{2, v}=\ldots=p_{k_{v}, v}, \tag{1.7}
\end{equation*}
$$

a test which is consistent, for $\nu \rightarrow \infty$ and $n_{\nu} \rightarrow \infty$, for the following class of alternative hypotheses. Let $g_{1, v}, g_{2, v}, \ldots, g_{k_{p}, v}$ be k_{v} freely chosen weights, satisfying, for convenience sake, the relations

$$
\begin{equation*}
\left.\sum_{i} g_{i, p}=0 ; \quad \sum_{i}\left|g_{i, v}\right|=1^{3}\right) \quad(\nu=1,2, \ldots) \tag{1.8}
\end{equation*}
$$

then we want the (twosided) test to be consistent exclusively for hypotheses with

$$
\begin{equation*}
\lim _{y \rightarrow \infty} \inf \left|\theta_{\nu}\right|>0 \quad\left(\theta_{\nu} \stackrel{\text { def }}{=} \sum_{i} g_{i, v} p_{i, v}\right) \tag{1.9}
\end{equation*}
$$

It will be proved that this problem can be solved by means of the series of statistics

$$
\begin{equation*}
\mathbf{W}_{v} \stackrel{d e f}{=} \sum_{i} n_{i, v}^{-1} g_{i, v} \boldsymbol{a}_{i, v} \tag{1.10}
\end{equation*}
$$

the maximum likelihood estimates of θ_{ν} if no restrictions are imposed on the $p_{i, v}$.

The results of this investigation are summarized in section 2 , the special case of a trend in the p_{i} is treated in section 3, the sections
${ }^{3}$) The second relation might be replaced by e.g. $\sum_{i} g_{i, \nu}^{2}=1$ without bringing about an essential change in the problem or its solution.
$4, \ldots, 7$ contain the proofs and the relations between this test and some other tests are discussed in section 8.

Remark on notation

The notation of the rest of this paper will be simplified by omitting, in general, the index y, because every symbol in (1.6), ..., (1.10) bears this index. Omitting it will, therefore, not lead to confusion, if it is understood, that all asymptotic relations, if not explicitly mentioned otherwise, are for $\nu \rightarrow \infty$. Since it is evidently necessary to let $n \rightarrow \infty$ when $v \rightarrow \infty$, these asymptotic relations may also be said to be valid for $n \rightarrow \infty$. The indices i and j will always be understood to take the values $1,2, \ldots, k$ (i.e. $1,2, \ldots, k_{v}$) if not explicitly mentioned otherwise. If no confusion is to be feared the \sum - and max-signs will be written without the index i.

2. Description of the test

To test the hypothesis H_{0}, given by (1.2), the statistic

$$
\begin{equation*}
\mathbf{W} \stackrel{\text { det }}{=} \sum n_{i}^{-1} g_{i} \boldsymbol{a}_{i} \tag{2.1}
\end{equation*}
$$

$$
\begin{equation*}
\sum g_{i}=0, \quad \sum\left|g_{i}\right|=1 \tag{with}
\end{equation*}
$$

is introduced. Under H_{0} and under the condition $t_{1} \stackrel{\text { def }}{=} \sum a_{i}=t_{1}, W$ will be proved to have the following mean and variance

$$
\begin{equation*}
E\left(\mathbf{W} \mid t_{1}, H_{0}\right)=0 \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\sigma^{2}\left(\mathbf{W} \mid t_{1}, H_{0}\right)=\{n(n-1)\}^{-1} t_{1} t_{2} \sum n_{i}^{-1} g_{i}^{2} \tag{2.4}
\end{equation*}
$$

Dropping the condition $\mathbf{t}_{1}=t_{1}, \sigma^{2}\left(\mathbf{W} \mid \mathbf{t}_{1}, H_{0}\right)$ becomes a random variable, which will be denoted by s^{2} :

$$
\begin{equation*}
\boldsymbol{s}^{2} \stackrel{\text { def }}{=}\{n(n-1)\}^{-1} \boldsymbol{t}_{1} \boldsymbol{t}_{2} \sum n_{i}^{-1} g_{i}^{2} \tag{2.5}
\end{equation*}
$$

The test statistic \mathbf{V} is now defined as follows

$$
\begin{equation*}
V \stackrel{\text { def }}{=} s^{-1} \mathrm{~W} \tag{2.6}
\end{equation*}
$$

where s is the positive root of \boldsymbol{s}^{2}.
The following onesided and twosided critical regions are used

$$
\left\{\begin{array}{l}
Z_{1}: V \geqq \xi_{\alpha} \tag{2.7}\\
Z_{2}: V \leqq-\xi_{\alpha} \\
Z_{3}:|V| \geqq \xi_{k \alpha}
\end{array}\right.
$$

where ξ_{ε} is the $(1-\varepsilon)$-quantile of the standard normal distribution, i.e.

$$
\begin{equation*}
(2 \pi)^{-1} \int_{\xi_{8}}^{\infty} e^{-i \frac{1}{2}} d u=\varepsilon \tag{2.8}
\end{equation*}
$$

The following properties will be proved.
If for $n \rightarrow \infty$ either the conditions

$$
\left\{\begin{array}{lll}
1 . & \left(\sum n_{i}^{-1} g_{i}^{2}\right)^{-3 r} n^{i r-1} \sum n_{i}^{1-r} g_{i}^{r}=O(1) & \text { for each } \\
2 . & \sum n_{i} p_{i} \rightarrow \infty, \sum n_{i} q_{i} \rightarrow \infty & \text { integer } r>2, \tag{2.9}
\end{array}\right.
$$

or the conditions

$$
\begin{cases}1 . & \left(\sum n_{i}^{-1} g_{i}^{2}\right)^{-1} \max \left(n_{i}^{-2} g_{i}^{2}\right)=\mathrm{o}(1) \tag{2.10}\\ 2 . & \left(\sum n_{i} p_{i}\right)^{-1}\left(\sum n_{i} q_{i}\right)=\mathrm{O}(1),\left(\sum n_{i} q_{i}\right)^{-1} \sum n_{i} p_{i}=\mathrm{O}(1),\end{cases}
$$

are satisfied, then
(2.11) $\lim \mathrm{P}\left[\mathbf{V} \geqq \xi_{\alpha} \mid H_{0}\right]=\lim \mathrm{P}\left[\mathbf{V} \leqq-\xi_{\alpha} \mid H_{0}\right]=\lim \mathrm{P}\left[|\mathbf{V}| \geqq \xi_{\text {t }} \mid H_{0}\right]=\alpha$ and the tests are consistent for the following classes of alternatives.

Let

$$
\begin{equation*}
\theta=\sum g_{i} p_{i} \tag{2.12}
\end{equation*}
$$

then the tests based on Z_{1} and Z_{2} respectively are consistent if

$$
\begin{equation*}
\lim \inf \theta>0 \tag{2.13}
\end{equation*}
$$

or

$$
\begin{equation*}
\lim \sup \theta<0 \tag{2.14}
\end{equation*}
$$

respectively. They are, on the other hand, not consistent, if

$$
\begin{equation*}
\lim \inf \theta<0 \tag{2.15}
\end{equation*}
$$

or

$$
\begin{equation*}
\lim \sup \theta>0 \tag{2.16}
\end{equation*}
$$

respectively and, if

$$
\begin{equation*}
\lim \inf \theta=0 \tag{2.17}
\end{equation*}
$$

or

$$
\begin{equation*}
\lim \sup \theta=0 \tag{2.18}
\end{equation*}
$$

respectively, they are not consistent either, if α is chosen sufficiently small and if (for both cases) the following condition holds
(2.19) $\quad \lim \sup \left(\sum n_{i} p_{i} \sum n_{i} q_{i} \sum n_{i}^{-1} g_{i}^{2}\right)^{-1} n^{2} \sum n_{i}^{-1} g_{i}^{2} p_{i} q_{i}<\infty$.

The test based on Z_{3} is consistent if

$$
\begin{equation*}
\lim \inf |\theta|>0 \tag{2.20}
\end{equation*}
$$

and not consistent if

$$
\begin{equation*}
\lim \inf |\theta|=0 \tag{2.21}
\end{equation*}
$$

provided that (2.19) holds and α is chosen sufficiently small.

Remarks

1. The test has been formulated above as an unconditional test, based on V. It may, however, also be interpreted as a conditional test, based on W and on the condition $t_{1}=t_{1}$, where t_{1} is the value found in the experiment. As will be proved in section 6 (theorem II), the conditional asymptotic distribution of W, under the condition $t_{1}=t_{1}$ is asymptotically normal; the conditional mean and variance are given by (2.3) and (2.4).
2. It seems to the authors that tests, involving samples of different sizes should satisfy the general principle that the set of alternatives for which the test is consistent does not depend on the ratios of the sample sizes, except, if necessary, for asymptotic relations on these ratios as e.g. their boundedness for $n \rightarrow \infty$. For the test under consideration this means that the g_{i} in (2.12) should not depend on the ratios $n_{j}^{-1} n_{j},\left(j \neq j^{\prime}\right)$. In section 8 an example of a related test (T. J. Terpstra [10]), not satisfying this rule, is given and its drawback, owing to this fact, is illustrated by an example. A small adjustment is, however, sufficient to avoid this difficulty.

On the other hand, as may be seen from (2.19), the authors have not succeeded completely in keeping the relations concerning consistency free from the n_{i}; (2.19) is, however, only a sufficient condition and it might be possible to eliminate the n_{i} completely from the consistency relations. Also the case, when (2.19) is not satisfied, has not yet been investigated. It may be pointed out, that (2.19) follows from (2.10.2) and is therefore not very restrictive. Nevertheless further work on these points seems desirable.
3. The power of the test for finite values of n has not been investigated as yet. It may be surmised, that for the classes of alternative hypotheses, for which the test is consistent, this power might be larger than that of the χ^{2}-test, the latter being consistent for a much wider class of alternatives. This has, however, not been proved as yet and on this point too further investigations seem worth while.
4. In practice it may often be convenient to multiply all weights g_{i} by the same function of k and $n_{1}, n_{2}, \ldots, n_{k}$. This has, of course, no influence on V, W and s being multiplied by this same function.

3. A trend as alternative hypothesis

Taking, in accordance with (2.2), the weights

$$
\begin{equation*}
g_{i, T}=2 K^{-1}(k+1-2 i) \quad(i=1,2, \ldots, k) \tag{3.1}
\end{equation*}
$$

for the ${ }^{-} g_{i}$, where $K=k^{2}$ if k is even and $K=k^{2}$-1 if k is odd, θ assumes the form

$$
\begin{equation*}
\theta_{T} \stackrel{\text { def }}{=} \sum g_{i, T} p_{i}=2 K^{-1} \sum_{i<j}\left(p_{i}-p_{j}\right) \tag{3.2}
\end{equation*}
$$

For W, s^{2} and V this gives, omitting the factor $2 K^{-1}$ (cf. remark 4):

$$
\begin{gather*}
\mathbf{W}_{T}=\sum n_{i}^{-1}(k+1-2 i) \boldsymbol{a}_{i}=\sum_{i<j}\left(n_{i} n_{j}\right)^{-1}\left(n_{j} \boldsymbol{a}_{i}-n_{i} \boldsymbol{a}_{j}\right), \tag{3.3}\\
\boldsymbol{s}_{T}^{2}=\{n(n-1)\}^{-1} \boldsymbol{t}_{\mathbf{1}} \boldsymbol{t}_{2} \sum n_{i}^{-1}(k+1-2 i)^{2}, \tag{3.4}\\
\boldsymbol{V}_{T}=\boldsymbol{s}_{\boldsymbol{T}}^{-1} \mathbf{W}_{T} . \tag{3.5}
\end{gather*}
$$

The two-sided test is now consistent if $\lim \inf \left|\theta_{T}\right|>0$, which may be taken as a definition of a trend of the p_{i}.

In two special cases considerable simplification occurs. First if $n_{i}=m$ for all i, the conditions (2.9.1) and (2.10.1) are automatically satisfied and \mathbf{W}_{T} reduces, omitting a factor m^{-1}, to
with

$$
\begin{equation*}
\mathbf{W}_{T}=\sum_{i<j}\left(a_{i}-a_{j}\right), \tag{3.6}
\end{equation*}
$$

$$
\begin{equation*}
s_{T}^{2}=\{3(n-1)\}^{-1} t_{1} t_{2}\left(k^{2}-1\right) \tag{3.7}
\end{equation*}
$$

which, if $m=1$, reduces to

$$
\begin{equation*}
s_{T}^{2}=3^{-1} \boldsymbol{t}_{1} \boldsymbol{t}_{2}(k+1) \tag{3.8}
\end{equation*}
$$

k being equal to n in that case.
Secondly, if k is bounded for $n \rightarrow \infty$, the conditions (2.9.1) and (2.10.1) respectively reduce to

$$
\begin{equation*}
n_{i}^{-1} n=O(1) \text { for } i \neq 2^{-1}(k+1) \tag{3.9}
\end{equation*}
$$

and

$$
\begin{equation*}
n_{i} \rightarrow \infty \text { for } i \neq 2^{-1}(k+1) \tag{3.10}
\end{equation*}
$$

respectively, no restrictions being imposed, if k is odd, on the n_{i} with $i=2^{-1}(k+1)$.

Remark 5. In section 8 it will be shown, that if $n_{i}=m$ for $i=1,2, \ldots, k$ and if the g_{i} are given by (3.1), the test may be interpreted as an application of Wicooxon's [12] two sample test. This means, that for $m=1$ and small values of t_{1} and t_{2} the exact tables of the distribution of WLcoxon's test statistic may be used to obtain an exact test for H_{0} against the alternative of a trend of the p_{i} as defined above.
4. The conditional mean and variance of \mathbf{W} under the hypothesis H_{0} This section contains the proof of (2.3) and (2.4).

Theorem I

If H_{0} is true the mean and variance of W under the condition $t_{1}=t_{1}$ are

$$
\begin{align*}
& E\left(\mathbb{W} \mid t_{1}, H_{0}\right)=0 \tag{4.1}\\
& \sigma^{2}\left(\mathbf{W} \mid t_{1}, H_{0}\right)=\{n(n-1)\}^{-1} t_{1} t_{2} \sum n_{i}^{-1} g_{i}^{2} . \tag{4.2}
\end{align*}
$$

Proof
The simultaneous distribution of $a_{1}, a_{2}, \ldots, a_{k}$ under the hypothesis H_{0}
and under the condition $t_{1}=t_{1}$ is a ($k-1$)dimensional hypergeometric distribution:

$$
\begin{equation*}
\mathrm{P}\left[a_{1}=a_{1}, \boldsymbol{a}_{2}=a_{2}, \ldots, \boldsymbol{a}_{k}=a_{k} \mid t_{1}, H_{0}\right]=\binom{n}{t_{1}}^{-1} \Pi\binom{n_{i}}{a_{i}} . \tag{4.3}
\end{equation*}
$$

From (4.3) it follows

$$
\begin{gather*}
E\left(\boldsymbol{a}_{i} \mid t_{1}, H_{0}\right)=n^{-1} n_{i} t_{1}, \tag{4.4}\\
\sigma^{2}\left(\boldsymbol{a}_{i} \mid t_{1}, H_{0}\right)=\left\{n^{2}(n-1)\right\}^{-1} n_{i}\left(n-n_{i}\right) t_{1} t_{2}, \tag{4.5}\\
\operatorname{cov}\left(\boldsymbol{a}_{i}, \boldsymbol{a}_{j} \mid t_{1}, H_{0}\right)=-\left\{n^{2}(n-1)\right\}^{-1} n_{i} n_{i} t_{1} t_{2} \quad i \neq j . \tag{4.6}
\end{gather*}
$$

Consequently

$$
\begin{align*}
& E\left(\mathbf{W} \mid t_{1}, H_{0}\right)=\sum n_{i}^{-1} g_{i} E\left(\boldsymbol{a}_{i} \mid t_{1}, H_{0}\right)=n^{-1} t_{1} \sum g_{i}=0 \quad(\operatorname{cf}(2.2)), \tag{4.7}\\
& \left\{\begin{aligned}
\sigma^{2}\left(\mathbf{W} \mid t_{1}, H_{0}\right) & =\sum n_{i}^{-2} g_{i}^{2} \sigma^{2}\left(\boldsymbol{a}_{i} \mid t_{1}, H_{0}\right)+\sum_{i \neq j}\left(n_{i} n_{j}\right)^{-1} g_{i} g_{j} \operatorname{cov}\left(\boldsymbol{a}_{i}, \boldsymbol{a}_{j} \mid t_{1}, H_{0}\right)= \\
& =\left\{n^{2}(n-1)\right\}^{-1} t_{1} t_{2}\left\{\sum n_{i}^{-1}\left(n-n_{i}\right) g_{i}^{2}-\sum_{i \neq F} g_{i} g_{j}\right\}= \\
& =\left\{n^{2}(n-1)\right\}^{-1} t_{1} t_{2}\left\{n \sum n_{i}^{-1} g_{i}^{2}-\left(\sum g_{i}\right)^{2}\right\}= \\
& =\{n(n-1)\}^{-1} t_{1} t_{2} \sum n_{i}^{-1} g_{i}^{2} . \quad(\operatorname{cf}(2.2 .))
\end{aligned}\right. \tag{4.8}
\end{align*}
$$

5. Lemma's

In this section some lemma's needed for the proofs of the theorems, are given.

Lemma I

If either condition (2.9.1) or condition (2.10.1) is satisfied then

$$
\begin{equation*}
\lim \sum n_{i}^{-1} g_{i}^{2}=0 \tag{5.1}
\end{equation*}
$$

Proof
From (2.2) it follows

$$
\sum n_{i}^{-1} g_{i}^{2} \leqq \max \left(n_{i}^{-1}\left|g_{i}\right|\right) \cdot \sum\left|g_{i}\right|=\max \left(n_{i}^{-1}\left|g_{i}\right|\right)
$$

Consequently

$$
\left\{\sum n_{i}^{-1} g_{i}^{2}\right\}^{-1} \max \left(n_{i}^{-2} g_{i}^{2}\right) \geqq \sum n_{i}^{-1} g_{i}^{2}
$$

Therefore if (2.10.1) is satisfied

$$
\begin{aligned}
0 \leqq \lim \inf \sum n_{i}^{-1} g_{i}^{2} & \leqq \lim \sup \sum n_{i}^{-1} g_{i}^{2} \leqq \\
& \leqq \lim \sup \left\{\sum n_{i}^{-1} g_{i}^{2}\right\}^{-1} \max \left(n_{i}^{-2} g_{i}^{2}\right)=0
\end{aligned}
$$

whence $\lim \sum n_{i}^{-1} g_{i}^{2}=0$.
On the other hand if r is even

$$
\begin{aligned}
\left\{\sum n_{i}^{-1} g_{i}^{2}\right\}^{-\ddagger r} n^{\sharp r-1} \sum n_{i}^{1-r} g_{i}^{\tau} & \geqq\left\{\sum n_{i}^{-1} g_{i}^{2}\right\}^{-t r} n^{i r-1} \max \left(n_{i}^{-r} g_{i}^{r}\right)= \\
& =n^{\frac{1 r-1}{}\left\{\left(\sum n_{i}^{-1} g_{i}^{2}\right)^{-1} \max \left(n_{i}^{-2} g_{i}^{2}\right)\right\}^{\ddagger r} .}
\end{aligned}
$$

13 Indagationes

Consequently (2.10.1) follows from (2.9.1) which completes the proof. ${ }^{4}$)
Lemma 11
If

$$
\begin{equation*}
0<\varepsilon<1 \tag{5.2}
\end{equation*}
$$

and

$$
\left\{\begin{array}{l}
\tau_{1}^{2}=\frac{\text { def }}{=}\left\{n(n-1\}^{-1}\left(\sum n_{i} p_{i} \sum n_{i} q_{i}-\varepsilon^{-1} n \sqrt{\sum n_{i} p_{i} q_{i}}+\varepsilon^{-1} \sum n_{i} p_{i} q_{i}\right) \sum n_{i}^{-1} g_{i}^{2},\right. \tag{5.3}\\
\tau_{2}^{2}=\frac{\text { def }}{}\left\{n (n - 1 \} ^ { - 1 } \left(\sum n_{i} p_{i} \sum n_{i} q_{i}+\varepsilon^{-t} n \sqrt{\left.\sum n_{i} p_{i} q_{i}+\varepsilon^{-1} \sum n_{i} p_{i} q_{i}\right) \sum n_{i}^{-1} g_{i}^{2},}\right.\right.
\end{array}\right.
$$

then

$$
\begin{equation*}
\tau_{1}^{2}<\mathbf{s}^{2}<\tau_{2}^{2} \text { except for a probability } \varepsilon . \tag{5.4}
\end{equation*}
$$

Proof
From the inequality of Bienaymé-Tschebycheff it follows
$\left|\mathbf{t}_{1}-\sum n_{i} p_{i}\right|=\left|\boldsymbol{t}_{2}-\sum n_{i} q_{i}\right|<\varepsilon^{-\frac{1}{2}} \sqrt{\sum n_{i} p_{i} q_{i}}$ except for a probability ε.
Consequently
(5.5) $n(n-1) \tau_{1}^{2}<t_{1} t_{2} \sum n_{i}^{-1} g_{i}^{2}<n(n-1) \tau_{2}^{2}$ except for a probability ε.

Lemma II follows from (5.5) and (2.5).
From lemma I and the definition of τ_{1}^{2} and τ_{2}^{2} follows
Lemma III

$$
\begin{equation*}
\lim \tau_{1}^{2}=\lim \tau_{2}^{2}=0 \tag{5.6}
\end{equation*}
$$

${ }^{4}$) (2.9.1) entails even

$$
\left(\sum n_{i}^{-1} g_{i}^{2}\right)^{-1} n \max \left(n_{i}^{-2} g_{i}^{2}\right)=\mathrm{O}(1)
$$

as is seen by raising both members to the power $2 r^{-1}$ and passing to the limit $r \rightarrow \infty$.

MATHEMATICS

A TEST FOR THE EQUALITY OF PROBABILITIES AGAINST A CLASS OF SPECIFIED ALTERNATIVE HYPOTHESES, INCLUDING TREND. II BY

CONSTANCE VAN EEDEN aNd J. HEMELRIJK (Mathematical Centre, Amsterdam)

(Communicated by Prof. D. van Dantzig at the meeting of January 29, 1955)
6. The conditional asymptotic distribution of \mathbf{W} under the hypothesis H_{0}

In this section we shall prove (2.11). For this proof we use the following theorem.

Theorem II
.If for $n \rightarrow \infty$ either the conditions

$$
\left\{\begin{array}{l}
\text { 1. }\left\{\sum n_{i}^{-1} g_{i}^{2}\right\}^{-ъ r} n^{\sharp r-1} \sum n_{i}^{1-r} g_{i}^{r}=\mathrm{O}(1) \text { for each integer } r>2 \tag{6.1}\\
\text { 2. } t_{1} \rightarrow \infty, t_{2} \rightarrow \infty
\end{array}\right.
$$

or the conditions

$$
\left\{\begin{array}{l}
\text { 1. }\left\{\sum n_{i}^{-1} g_{i}^{2}\right\}^{-1} \max \left(n_{i}^{-2} g_{i}^{2}\right)=o(1), \tag{6.2}\\
2 . \\
2 t_{1}^{-1} t_{2}=\mathrm{O}(1), \quad t_{2}^{-1} t_{1}=\mathrm{O}(1)
\end{array}\right.
$$

are satisfied the random variable

$$
\left\{\sigma\left(\mathbf{W} \mid t_{1}, H_{0}\right)\right\}^{-1} \mathbf{W}
$$

is, under the condition $\mathbf{t}_{1}=t_{1}$ and under the hypothesis H_{0}, for $n \rightarrow \infty$ asymptotically normally distributed with mean 0 and variance 1.

Proof
The proof is based on a theorem by A. Wald and J. Wolfowitz [11], improved by G. E. Noether [9] and simplified by W. Hoeffiding [5].

If $\mathbf{y}_{1}, \mathbf{y}_{2}, \ldots, \mathbf{y}_{n}$ are n independent random variables, where the values taken by these variables form a permutation of n numbers $c_{1}, c_{2}, \ldots, c_{n}$ and

$$
\begin{equation*}
\left.L \stackrel{\text { def }}{=} \sum_{\lambda} d_{\lambda} y_{\lambda},{ }^{5}\right) \tag{6.3}
\end{equation*}
$$

where $d_{1}, d_{2}, \ldots, d_{n}$ is a given row of numbers, the following theorem follows from the abovementioned theorems. If
${ }^{5}$) Unless explicitly stated otherwise λ and μ take the values $1,2, \ldots, n$.

1. all permutations of the values $c_{1}, c_{1}, \ldots, c_{n}$ assumed by
$\mathbf{y}_{1}, \mathbf{y}_{2}, \ldots, \mathbf{y}_{n}$ have the same probability,
2. the row $\left\{d_{\lambda}\right\}$ satisfies the condition ${ }^{6}$)
$\left\{M_{2}(d)\right\}^{-t r} M_{r}(d)=0(1)$ for $n \rightarrow \infty$ and each integer $r>2$,
3. the row $\left\{c_{k}\right\}$ satisfies the condition
$\left\{n M_{2}(c)\right\}^{-1} \max _{\lambda}\left(c_{\lambda}-\bar{c}\right)^{2}=o(1)$ for $n \rightarrow \infty$
then the random variable

$$
\{\sigma(L)\}^{-1}\{L-E(L)\}
$$

is, for $n \rightarrow \infty$, asymptotically normally distributed with mean 0 and variance 1 .

In order to apply this theorem to our problem we consider the n trials as n independent observations, one of each of n random variables $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \boldsymbol{x}_{n}$ where
(6.5) $\mathrm{P}\left[\mathrm{x}_{\lambda}=1\right]=p_{i}, \mathrm{P}\left[\mathrm{x}_{\lambda}=0\right]=q_{i}\left\{\begin{array}{l}n_{1}+n_{2}+\ldots+n_{i-1}<\lambda \leqq n_{1}+n_{2}+\ldots+n_{i} \\ i=1,2, \ldots, k ; \lambda=1,2, \ldots, n .\end{array}\right.$

Then

$$
\begin{equation*}
\boldsymbol{a}_{i}=\sum_{\lambda=n_{1}+\ldots+n_{i-1}+1}^{m_{1}+\ldots+n_{i}} \mathbf{x}_{\lambda} \quad(i=1,2, \ldots, k) . \tag{6.6}
\end{equation*}
$$

The theorem will be applied twice. First substitute \boldsymbol{x}_{λ} for $\boldsymbol{y}_{\lambda}(\lambda=1,2, \ldots, n)$ and $n_{i}^{-1} g_{i}$ for $d_{\lambda}\left(n_{1}+n_{2}+\ldots+n_{i-1}<\lambda \leqq n_{1}+n_{2}+\ldots+n_{i} ; i=1,2, \ldots, k\right.$; $\lambda=1,2, \ldots, n$) and let the row $\left\{c_{\lambda}\right\}$ consist of t_{1} times the number 1 and t_{2} times the number 0 .

Then

$$
\begin{equation*}
\boldsymbol{L}=\sum n_{i}^{-1} g_{i} \boldsymbol{a}_{i}=\mathbf{W}, \tag{6.7}
\end{equation*}
$$

and, given the independence of the trials, condition (6.4.1) is equivalent to H_{0} if $t_{1}=t_{1}$. Condition (6.4.2) reduces to (6.1.1) and (6.4.3) to

$$
\begin{equation*}
\left(n t_{1} t_{2}\right)^{-1} \max \left(t_{1}^{2}, t_{2}^{2}\right)=o(1), \tag{6.8}
\end{equation*}
$$

which is equivalent to (6.1.2). This proves the first part of theorem II.
Secondly, to arrive at the conditions (6.2), take $d_{1}=d_{2}=\ldots=d_{t_{1}}=1$ and $d_{i_{1}+1}=d_{t_{1}+2}=\ldots=d_{n}=0$ and substitute $n_{i}^{-1} g_{i}$ for $c_{\lambda}\left(n_{1}+n_{2}+\ldots+n_{i-1}\right.$ $\left.<\lambda \leqq n_{1}+n_{2}+\ldots+n_{i} ; i=1,2, \ldots, k ; \lambda=1,2, \ldots, n\right)$. It is easy to see that this leads to a random variable L, which has under condition (6.4.1) the same probability distribution as \boldsymbol{W} under H_{0}, given $\boldsymbol{t}_{1}=t_{1}$: Thus the
${ }^{6}$) For a row $w_{1}, w_{2}, \ldots, w_{n}, M_{r}(w)$ is defined by

$$
M_{r}(w) \stackrel{\text { def }}{=} n^{-1} \sum_{\lambda}\left(w_{\lambda}-\bar{w}\right)^{r},
$$

where

$$
\bar{w} \stackrel{\text { def }}{=} n^{-1} \sum_{\lambda} w_{\lambda} .
$$

asymptotic normality of L implies the conditional asymptotic normality of W. Condition (6.4.2) reduces in this case to
(6.9) $\left\{n\left(t_{1} t_{2}\right)^{\text {tr }}\right\}^{-1}\left\{t_{1} t_{2}^{r}+t_{2}\left(-t_{1}\right)^{r}\right\}=O(1)$ for each integer $r>2$,
which is equivalent to (6.2.2) and (6.4.3) reduces to (6.2.1). This proves the second part of the theorem.

The validity of (2.11) may now be proved as follows. According to the Borel-Cantelli lemma (cf. e.g. W. Feller [2], p. 155) condition (2.9.2) implies (6.1.2) except for a probability 0 and the condition (6.2.2). holds with probability 1 if (2.10.2) is true as may be seen from the strong law of large numbers (cf. e.g. [2] p. 156).

Consequently, if (2.9) or (2.10) are satisfied

$$
\begin{equation*}
\lim \mathrm{P}\left[W \geqq \xi_{\alpha} \sigma\left(W \mid t_{1}, H_{0}\right) \mid t_{1}, H_{0}\right]=\alpha \tag{6.10}
\end{equation*}
$$

From (6.10) and

$$
\left\{\begin{array}{r}
\mathrm{P}\left[\mathbf{V} \geqq \xi_{\alpha} \mid H_{0}\right]=\mathrm{P}\left[\mathbf{W} \geqq \xi_{\alpha} \boldsymbol{s} \mid H_{0}\right]= \tag{6.11}\\
=\sum_{t_{1}} \mathrm{P}\left[\boldsymbol{t}_{1}=t_{1} \mid H_{0}\right] .
\end{array}\right.
$$

follows

$$
\begin{equation*}
\lim \mathrm{P}\left[\mathbf{V} \geqq \xi_{\alpha} \mid H_{0}\right]=\alpha \tag{6.12}
\end{equation*}
$$

The other relations of (2.11) may be proved analogously.
7. The consistency of the test

Theorem III
If either the conditions (2.9) or the conditions (2.10) are satisfied the test consisting of rejecting H_{0} if and only if $\mathbf{V} \geqq \xi_{\alpha}$ is

1. consistent for the class of those alternative hypotheses for which

$$
\begin{equation*}
\lim \inf \theta>0 \tag{7.1}
\end{equation*}
$$

2. consistent for no alternative hypothesis of the class

$$
\begin{equation*}
\lim \inf \theta<0, \tag{7.2}
\end{equation*}
$$

and
3. consistent for no alternative hypothesis satisfying

$$
\left\{\begin{array}{l}
\lim \inf \theta=0 \\
\lim \sup \left\{\sum n_{i} p_{i} \sum n_{i} q_{i} \sum n_{i}^{-1} g_{i}^{2}\right\}^{-1} n^{2} \sum n_{i}^{-1} g_{i}^{2} p_{i} q_{i}<\infty \tag{7.3}
\end{array}\right.
$$

if \propto is sufficiently small.
Proof
Define

$$
\begin{equation*}
\sigma^{2} \stackrel{\text { def }}{=} \sigma^{2}(\mathbf{W} \mid H)=\sum n_{i}^{-1} g_{i}^{2} p_{i} q_{i} \tag{7.4}
\end{equation*}
$$

where H denotes the hypothesis $\left\{p_{1}, p_{2}, \ldots, p_{k k}\right\}$, then from (2.2) it follows

$$
\begin{equation*}
|\theta|=\left|\sum g_{i} p_{i}\right| \leqq \sum\left|g_{i}\right| p_{i} \leqq \sum\left|g_{i}\right|=1 \tag{7.5}
\end{equation*}
$$

and from lemma I

$$
\begin{equation*}
\lim \sigma^{2}=0 \tag{7.6}
\end{equation*}
$$

For those alternative hypotheses H for which

$$
\begin{equation*}
\lim \inf \theta>0 \tag{7.7}
\end{equation*}
$$

we have except for a probability ε (cf (5.4))

$$
\left\{\begin{align*}
& \mathrm{P}\left[\mathbf{V}<\xi_{\alpha} \mid H\right]=\mathrm{P}\left[\mathbf{W}<\xi_{\alpha} \boldsymbol{s} \mid H\right] \leqq \tag{7.8}\\
& \leqq \mathrm{P}\left[\mathbf{W}<\xi_{\alpha} \tau_{2} \mid H\right]=\mathrm{P}\left[\mathbf{W}-\theta<\xi_{\alpha} \tau_{2}-\theta \mid H\right]
\end{align*}\right.
$$

From lemma III and (7.7) it follows that $\xi_{\alpha} \tau_{2}-\theta$ is negative and bounded away from 0 for sufficiently large n; this leads, by means of the inequality of Bienaymé-Tschebycheff, to the relation

$$
\begin{equation*}
\mathrm{P}\left[\mathbf{W}-\theta<\xi_{\alpha} \tau_{2}-\theta \mid H\right] \leqq\left(\xi_{\alpha} \tau_{2}-\theta\right)^{-2} \sigma^{2} \rightarrow 0 \quad \text { (cf. (7.6)) } \tag{7.9}
\end{equation*}
$$

Consequently, ε being an arbitrary small positive number, the probability of not rejecting H_{0} if (7.7) is true can be made arbitrarily small by choosing n sufficiently large.

This proves the first part of theorem III.
If, on the other hand, H^{\prime} is a hypothesis with

$$
\begin{equation*}
\lim \inf \theta<0 \tag{7.10}
\end{equation*}
$$

there is a subsequence $\left\{\nu^{\prime}\right\}$ of the sequence $\nu=1,2, \ldots$, such that

$$
\begin{equation*}
\lim _{p^{\prime} \rightarrow \infty} \sup \theta<0 . \tag{7.11}
\end{equation*}
$$

For this subsequence we have, again using the lemmas I, II and III, except for a probability ε (cf. (5.4)):

$$
\left\{\begin{align*}
\mathrm{P}\left[\mathrm{~V} \geqq \xi_{\alpha} \mid H^{\prime}\right] & =\mathrm{P}\left[\mathrm{~W} \geqq \xi_{\alpha} s \mid H^{\prime}\right] \leqq \mathrm{P}\left[\mathrm{~W} \geqq \xi_{\alpha} \tau_{1} \mid H^{\prime}\right]= \tag{7.12}\\
& =\mathrm{P}\left[\mathrm{~W}-\theta \geqq \xi_{\alpha} \tau_{1}-\theta \mid H^{\prime}\right] \leqq\left(\xi_{\alpha} \tau_{1}-\theta\right)^{-2} \sigma^{2} \rightarrow 0
\end{align*}\right.
$$

for $\nu^{\prime} \rightarrow \infty$, because of (7.6) and (7.11). This proves the second part of the theorem.

Finally if ${ }^{7}$)

$$
\begin{equation*}
\lim \inf \theta=0 \tag{7.13}
\end{equation*}
$$

there is a subsequence $\left\{v^{\prime \prime}\right\}$ of the sequence $\nu=1,2, \ldots$, such that

$$
\begin{equation*}
\lim _{y u \rightarrow \infty} \theta=0 \tag{7.14}
\end{equation*}
$$

[^1]Then if

$$
\begin{equation*}
\lim \sup \tau_{1}^{-2} \sigma^{2}<\infty \tag{7.15}
\end{equation*}
$$

and

$$
\begin{equation*}
\xi_{\alpha}^{2}>\lim \sup \tau_{1}^{-2} \sigma^{2} \tag{7.16}
\end{equation*}
$$

we have, except for a probability ε

$$
\begin{equation*}
\lim _{\nu^{\prime \prime} \rightarrow \infty} \mathrm{Pup}\left[V \geqq \xi_{\alpha}\right] \leqq \limsup _{\nu^{\prime \prime} \rightarrow \infty} \mathrm{P}\left[\mathrm{~W} \geqq \xi_{\alpha} \tau_{1}\right] \leqq \limsup _{\nu^{\prime \prime} \rightarrow \infty}\left(\xi_{\alpha} \tau_{1}\right)^{-2} \sigma^{2}<1 \tag{7.17}
\end{equation*}
$$

The condition (7.15) is equivalent to

$$
\begin{equation*}
\lim \sup \left\{\sum n_{i} p_{i} \sum n_{i} q_{i} \sum n_{i}^{-1} g_{i}^{2}\right\}^{-1} n^{2} \sum n_{i}^{-1} g_{i}^{2} p_{i} q_{i}<\infty \tag{7.18}
\end{equation*}
$$

which proves the last part of theorem III.
Analogous theorems about the other onesided test and the twosided test follow easily. Thus the proof of the statements of section 2 is complete.

8. Relations to other tests

1. T. J. Terpstra [10] has developed a test against trend for groups of observations. This test could be applied to the data of table 1 as follows. Consider the n_{i} trials of the i-th series as independent observations of a random variable z_{i}, which takes the values 0 and 1 respectively with probabilities $q_{i}=1-p_{i}$ and p_{i} respectively ($i=1,2, \ldots, k$). Then H_{0} is identical with the hypothesis that $z_{1}, z_{2}, \ldots, z_{k}$ possess the same probability distribution and this is the null hypothesis for Terpstra's test. In general the z_{i} will not take the values 0 and 1 only and, as a matter of fact, Terpstra supposes the \boldsymbol{z}_{i} to have continuous distributions; i.e. he proves the asymptotic normality of his test statistic under this condition. His test statistic \boldsymbol{T} may now be defined as follows. Let $U_{i, j}$ denote Wilcoxon's test statistic for the i-th and j-th series of observations if $i<j$ and let $\left.\boldsymbol{U}_{i, j}=n_{i} n_{j}-\boldsymbol{U}_{j, i}{ }^{8}\right)$. Then, defining

$$
\begin{equation*}
\mathbf{W}_{i, j} \stackrel{\text { def }}{=} 2\left\{\boldsymbol{U}_{i, j}-E\left(\boldsymbol{U}_{i, j} \mid H_{0}\right)\right\}, \tag{8.1}
\end{equation*}
$$

T satisfies the relation

$$
\begin{equation*}
\mathbf{W}_{T}, \frac{\text { det }}{=} 2\left\{\boldsymbol{T}-E\left(\boldsymbol{T} \mid H_{0}\right)\right\}=\sum_{i<j} \mathbf{W}_{i, j} . \tag{8.2}
\end{equation*}
$$

For the case considered in this paper

$$
\begin{equation*}
\mathbf{W}_{i, j}=n_{i} \boldsymbol{a}_{i}-n_{i} \boldsymbol{a} \tag{8.3}
\end{equation*}
$$

and thus

$$
\begin{equation*}
W_{T^{\prime}}=\sum_{i<j}\left(n_{i} \boldsymbol{a}_{i}-n_{i} \boldsymbol{a}_{j}\right) . \tag{8.4}
\end{equation*}
$$

${ }^{8}$) For two samples $u_{1}, u_{2}, \ldots, u_{N}$ and $v_{1}, v_{2}, \ldots, v_{M}$ the value of Wmooxon's U is defined as the sum of the number of pairs $\left(u_{h}, v_{k}\right)$ with $u_{h}>v_{k}$ and half the number of pairs $\left(u_{h}, v_{k}\right)$ with $u_{h}=v_{k}(h=1,2, \ldots, N ; k=1,2, \ldots, M)$. In our case this gives:

$$
U_{i, j}=a_{i} b_{j}+\frac{1}{2}\left(a_{i} b_{i}+a_{j} b_{j}\right)
$$

Comparing $W_{T^{\prime}}$ with W (cf. (2.1)) it is found that $W_{T^{\prime}}=W$ if the following weights $g_{i, T^{\prime}}$ are substituted for the g_{i} :

$$
\left.\begin{array}{l}
g_{i, T^{\prime}}=\left\{\sum_{i}\left|D_{i}\right|\right\}^{-1} n_{i} D_{i} \tag{8.5}\\
D_{i} \stackrel{\text { def }}{=} \sum_{j>i} n_{j}-\sum_{j<i} n_{j}
\end{array}\right\} \quad(i=1,2, \ldots, k)
$$

The asymptotic normality, under the conditions (2.7) or (2.8), makes it possible to use these weights and θ becomes

$$
\begin{equation*}
\theta_{T^{\prime}}=\left\{\sum n_{i}\left|D_{i}\right|\right\}^{-1} \sum_{i<j} n_{i} n_{i}\left(p_{i}-p_{j}\right) . \tag{8.7}
\end{equation*}
$$

According to (2.13) and (2.14) the onesided critical region Z_{1} (cf. (2.7)) gives a consistent test if

$$
\begin{equation*}
\lim \inf \theta_{T^{\prime}}>0 \tag{8.8}
\end{equation*}
$$

and Z_{2}, if

$$
\begin{equation*}
\lim \sup \theta_{T^{\prime}}<0 \tag{8.9}
\end{equation*}
$$

This means, however, as has been stated in remark 2 in section 2, that the n_{i} have an undue influence on the consistency. This may be illustrated by a simple example. Let $k=3$ and $p_{1}=p_{3}$, but $p_{2}<p_{1}$. Then, if $n_{1}>n_{3}$, (8.7) gives

$$
\theta_{T^{\prime}}=\left\{2 n_{1}\left(n_{2}+n_{3}\right)\right\}^{-1} n_{2}\left(n_{1}-n_{3}\right)\left(p_{1}-p_{2}\right)
$$

and if $n_{1}<n_{3}$

$$
\theta_{T^{\prime}}=\left\{2 n_{3}\left(n_{1}+n_{2}\right)\right\}^{-1} n_{2}\left(n_{1}-n_{3}\right)\left(p_{1}-p_{2}\right)
$$

Thus the sign of θ_{T}, depends on whether $n_{1}>n_{3}$ or $n_{1}<n_{3}$ and, keeping the proportions $n_{i}^{-1} n_{i}$ constant for $n \rightarrow \infty$ for all $i \neq j$, (8.8) is satisfied in the first case and (8.9) in the second case. This means, that for such values of p_{i}, where no trend is present at all, a positive or a negative trend respectively might be statistically established at will by choosing $n_{1}=c n_{3}$ with $c>1$ or $c<1$ respectively.

This drawback of Terpstra's test can, however, be avoided by means of a small modification. As a matter of fact this has been done in section 3, by choosing the weigths (3.1). Expressing W_{T} (cf (3.3)) in the $W_{i, j}$ of (8.3) gives

$$
\begin{equation*}
\mathbf{W}_{T}=\sum_{i<j}\left(n_{i} n_{j}\right)^{-\mathbf{1}} \mathbf{W}_{i, j} . \tag{8.10}
\end{equation*}
$$

The $g_{i, r}$ being independent of the n_{i}, the classes of hypotheses for which this test is consistent, do not depend on the n_{i}. This adjustment of Terpstra's test is also useful for the general case considered in his paper. If $n_{i}=m$ for all i no adjustment is necessary. Another distributionfree test of a similar character, where such an adjustment might be desirable is the k sample test proposed by W. H. Kruskal [6].
2. The special case treated in section 3 can, if $n_{i}=m$ for all i, also be interpreted as an application of WHcoxon's [12] distributionfree test for the problem of two samples (cf. remark 5). Consider two samples A and B, which, taken together, contain m times the value $i(i=1,2, \ldots, k)$ and let \boldsymbol{a}_{i} and \boldsymbol{b}_{i} respectively be the number of observations i in sample A and B respectively. Then, if \mathbf{U} represents Wricoxon's statistic for these two samples, the relation

$$
\begin{equation*}
2 \boldsymbol{U}=m \mathbf{W}_{T}+t_{1} t_{2} \tag{8.11}
\end{equation*}
$$

holds, where W_{T} is defined by (3.6). It is easy to prove (cf. J. Hemelrijk [4]) that the hypothesis H_{0} is, under the condition $t_{1}=t_{1}$, equivalent with the hypothesis that sample A is a random sample taken without replacement from the two samples together. This means that Wrcoxon's test may be applied. ${ }^{9}$) The well known formulas for the mean and the variance of U (cf. e.g. W. H. Kruskal and W. A. Wallis [7]) under the null hypothesis lead again to (2.3) and (3.7).

For the case $n_{i}=m$ this test coincides with Terpstra's test treated above. If the n_{i} are unequal the same reasoning may be applied, again leading to Terpstra's test applied to the problem under investigation. The proposed modification of this test can in general not be interpreted in this way.

If $m=1$ exact tables for Wilcoxon's test are available (cf. e.g. H. B. Mann and D. R. Whitney [8]) and by means of these tables the test may thus be performed in an exact way as a test for two samples, one of which consists of the values of i which correspond with successes, while the other sample contains the rest of the numbers $1,2, \ldots, n$.
3. If $k=2$ we arrive at a 2×2-table and then all tests treated in this paper are identical. This includes the χ^{2}-test. The proper exact treatment has, for that case, been indicated by R. A. Fisher [3].

The authors want to thank Prof. Dr D. van Dantzig for his constructive and stimulating criticism.
${ }^{9}$) This result, derived in another way by A. Benard and Constance van Eeden, gave rise to the present investigation.

REFERENCES

1. Dantzig, D. van, On the consistency and power of Wilcoxon's two sample test, Proc. Kon. Ned. Akad, van Wet. A 54, l-8 (1951).
2. Feller, W., An introduction to probability theory and its applications (London, 1950).
3. Fisher, R. A., Statistical methods for Research workers (London, 1948).
4. Hemelrijk, J., Exemple d'application des méthodes non-paramétriques et un nouveau test pour l'égalité de plusieurs probabilités, Report SP 38 of the Mathematical Centre (Amsterdam, 1954).
5. Hoeffding, W., A combinatorial central limit theorem, Ann. Math. Stat. 22, 558-566 (1951).
6. Kruskal, W. H., A non-parametric test for the several sample problem, Ann. Math. Stat. 23, 525-539 (1952).
7. \qquad and W. A. Wamils, Use of ranks in one-criterion analysis of variance, J. Am. Stat. Ass. 47, 583-621 (1952).
8. Mann, H. B. and D. R. Whinex, On a test of whether one of two random variables is stochastically larger than the other, Ann. Math. Stat. 18, 50-60 (1947).
9. Noether, G. E., On a theorem by Wald and Wolfowitz, Ann. Math. Stat. 455-461 (1949).
10. Terpstra, T. J., The asymptotic normality and consistency of Kendall's test against trend when ties are present in one ranking, Proc. Kon. Ned. Akad. v. Wet. A 55, 327-333 (1952).
11. Wald, A. and J. Wolfowitz, Statistical tests based on permutations of the observations, Ann. Math. Stat. 15, 358-372 (1944).
12. Wilcoxon, F., Individual comparisons by ranking methods, Biometrics 1, 80-82 (1945).

[^0]: ${ }^{1}$) Report SP 39 of the Statistical Department of the Mathematical Centre.
 ${ }^{2}$) Random variables will be distinguished from numbers (e.g. from the values they take in the experiment) by printing them in bold type.

[^1]: ${ }^{7}$) This proof of the last part of theorem III is based on a method which may be found in D. van Dantzig [1].

