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1. The object of the present paper is to prove (cf. theorem 1) by means 
of three lemmas that an arbitrary time-discrete stochastic process over a 
sequence of arbitrary sets (in particular: within one arbitrary set) is 
equivalent to a stationary MARKOV chain in the corresponding set of all 
finite paths. This result was anticipated by R. P. FEYNMAN [3] who, 
however, did not prove his result rigorously. 

In a previous paper [l], one of us proved, i.a., a generalization of 
W ALD's fundamental identity [7] to stationary MARKOV chains with 
discrete time parameter in arbitrary sets, and a partial generalization of 
the same to arbitrary time-discrete stochastic processes. The present 
paper removes a restriction on the generality, so that our result (theorem 2) 
includes also KEMPERMAN's theorem [5] as a special case. 

2. Let {Ei} be a sequence of non-empty sets, on each of which a 
a-field 1 ) a(Ei) of subsets of Ei, which contains Ei, is defined; i runs through 
the set N of all natural numbers 2). E 0 is a set consisting of one point :n:0 

only, and a(E0 ) consists of the empty set, denoted by 0, and E 0 • We define 

The sets 
x<nl=Xo X X1 X xx,. with xi E a(E;,), i=O, 1, ... , n, 

1 ) A a-field of sets is a system of subsets of a given set, containing with any 
one of them its complement, and with any sequence of them its union. 

2 ) Zero is considered to be a natural number. 
3 ) The symbols V~, 3~ before a statement d(x) depending on x, stand for: 

d (x) holds for all x ES, and for at least one x ES respectively. The symbol def 

denotes an equality defining the left hand member. 
4 ) If X 1, X 2, ... , Xn are sets, then 

X 1 X X 2 X ••. X Xn def Ens {(x1,x2 , ... ,x,.) I x1 EX1, x2 EX2, ... ,x,.EX,.}, 

where Ens {x Jd(x)} (and in the same way Ens {xES I d(x)} and Ens{/ (x) I d(x)}) 
denotes the set of all x (or all x ES, or all/ (x) respectively) for which the statement 
d(x) is true. Thus F,. is the set of all "paths" of "length" n. 

6) I.e. F w is the set of all paths of finite length. 

SA 
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generate a a-field on F.,, which will be denoted by a,.. Then we have 

Lemma 1: 

is a a-field. 

Proof: 

def {oo aw= Ens U A,,.!V;'; An Ea,,.} 
0 

If Ak E aw for all natural k, then Ak= UAk,n for all k, and Ak,n E an, for 
n 

all k and n, hence 

as uAkn Ea,. for all n. 
k • 

Furthermore we have for each I' E aw: 

Hence: 

F w-I'= UFv-u I'n= u{n(Fv- I'n)}= U(Fv- I'v) E a,m 
V ft V 

as F.,- I'., Ea., for all n. Hence aw is a a-field. 

3. We introduce the following notations: 
If n= (x1, x2, ••• , x,.), then n is called a "path" of "length" l(n) =n, and 

) def ) x(n =xu,,> ( = x,. 

is its "endpoint"; 

._F(n) def (Xi, X2, ••• Xl(n)-1), 

its first "derivative" (initial segment), and 

._Fk(n)def..F{P-1(n)} for all k with 1 < k<n (..F0(n)=n), 

so that 

Furthermore 

1s called the "empty path" (l(n0) = 0). Moreover 
def 

ny=(Xi, x2, ••• , Xzcn>, y) 

is the path obtained from n by direct "prolongation" with y, so that 

x(ny)=y ; ..F(ny)=n. 

Finally for all n E F w and all A Ea,,, 

E(n, A) def Ens {x E Ezc,.>+ilnx EA} 
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is the set of all endpoints of paths belonging to A, which are direct pro­
longations of n. We shall prove some of the properties of these sets: 

1) V!"' E(n, 0) = 0, which is trivial. 

2) V!"' V"J' E(n, A)=E(n,A ~ Fz<:n>+1), as nx EA 1s equivalent to 
nx EA~ Fl(n)+1• 
3) If A is an m-dimensional product set: A=X0 x X1 x x Xm, 
X, E a(E.,), then 

E(n, A)=O if n ¢ X 0 x X 1 x ... Xm-1 and 

E(n, A)=Xm=Xz(n)+l if n EXo X X1 X ••• xm-1 (so that l(n)=m-1), 

so that we have for any countably additive set function V(X), defined 
on a(Em): 

3a) V{S(n, A)}= I;0 xx1 ... Xm-l V(Xm) 7), 

if A is the product set X0 x X1 x ... Xm, as V(O)=0. 
Furthermore: 

4) vj<nJ+l E(n, FZ(n)+1-A)=EZ(n)+1-E(n, A), as 

E(n, Fz<nl+l -A)= Ens {x EEZ<,.>+11 nx ¢A }=E Z<n>+l-Ens {x EEzc,.i+il nx EA}, 

and 

5) If V! I',. E a,. then E(n, u I',.)= uE(n, I'n), as 

E(n, U I',.) =Ens {x E Ezc,.>+1 I 3!nx E I'n}= U Ens {x E Eun>+ilnx EI',.}. 

6) From 1), 4) and 5) it follows that the analogue of 5) for intersections 
instead of unions also holds, and that {E(n, A,)} is a dissection 8) of 
E(n, A) if {A,} is a dissection of A. 
7) From 3), 4) and 5) it follows that the class of all A E <1z<nJ+1 for which 
E(n, A) E a(Ez<n>+1), is a a-field which contains the (l(n) + 1)-dimensional 
product sets. As <1un>+1 is the smallest a-field which contains these product 
sets, it follows that this class is identical with az(nJ+1• Hence 

V F., V"Z(n)+l ~( A) (E ) n A ,!;;!, n, E a Z(n)+l , whence by 2) 

8) V;w V"]' E(n, A) E a(Ez(nl+1). 
Finally we shall prove 

Lemma 2: 

If, for all natural n, for every X E a(En+1), F(n, X) is a a,.-measurable 
function of n E Fri, which, for all n E Fn, is countably additive in X Ea(E,.+1), 
then F{n, E(n, A)}, for every A E aw, is aro-measurable in n E Fro, and, for 
all n E F .,, countably additive in A Ea.,. 

7 ) va: def~ 1 ifxEX 
J.x=? 0 if x f/=X, so that for n= (x1, x 2, ••• ,x,,) 

I" =I'"'-~ I"'n X1 XX, •.. X X 71 X1 Xa • • • X 71 • 

8) A sequence of sets {A,} (v = 1, 2, ... ) is called a dissection of A, if U A, = A 
and A, ~ Aµ = 0 if v ;f= µ. 
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Proof: 

Let n and m be two arbitrary natural numbers. We shall prove that 
F{n, E(n, A)}, for every A E am, is a,.-measurable in n E~F,.. If A is an 
m-dimensional product set: A= X0 x X1 x . . . x Xm, Xi E a(Ei) for 
i=O, 1, ... , m, then we have by 3a) 

F{n, E(n, A)}=I,;0 xx1x ... xXm-l F (n, Xm), 

which, as a product of a,.-measurable functionsi again is a,.-measurable. 
If furthermore F{n, E(n, A)} is a,.-measurable for some A E am, then 

F{n, E(n, Fm-A)}=on.m-i F{n, E,.+1-E(n, A)}= 

= on,m-1 [F(n, E,.+1)-F{n, E(n, A)}], 9
) 

as a sum of a,.-measurable functions, is also an-measurable. And if {Av} is 
a dissection of A E am, with Av E am, for all natural v, then 

F{n, E(n, A)}=F{n, uE(n, A.)}= !F{n, E(n, Av)}, 

by 6) and 8). Therefore, if, for all natural v, F{n, E(n, A,)} is an-measurable 
inn E F,., then F{n, E(n, A)} is a,.-measurable too. It follows that the class 
of all A E am for which F{n, E(n, A)} is a,.-measurable in n E F,., is a 
a-field which contains the m-dimensional product sets. Hence this class is 
a,,., (using the same argument as in 7)). Therefore we have for every pair 
of natural numbers n and m, and for all A E am: F{n, E(n, A)} is a,.~ 
measurable inn E F,.. It is now easy to see-that the same holds for all 
A Ea., by using 2) and our result with m=n+ 1. Hence 

V~V;f Ens {n E F.,JF{n, E(n, A)}< a}= 

= U Ens {n E FvJF{n, E(n, A)}< a} Ea.,, 10) 
V 

as we have for all natural v: 

Ens {n E F,,JF{n, E(n, A)}< a} Ea,. 

Hence for all A Ea., F{n, E(n, A)} is a.,-measuraole in n E F.,. 
The countable additivity follows immediately from 6) and 8). 

4. 
{Ei}: 

We assume a stochastic process {x,.} 11) to be given on the sequence 

&{xl(n)+l E XJ(xi, X2, ... , Xz(n)) =n} def P;, 
where P; is a given function, defined for all n E F., and all X E a(Euni+i) 
which, for all n E F .,, is a probability distribution 12) over the sets 
X E a(ElCnl+i) and, for all natural n and all XE a(E,.+1), is a a,.-measurable 

9) oa,b is the Kronecker symbol. 
10) R denotes the set of all real numbers. The argument given here for real 

valued functions holds also for complex valued functions. 
11) Random variables are printed in bold type. 
12) A set function G(A) defined on a a-field of subsets of a set Q is a probability 

distribution if it is countably additive in A and non-negative with G(Q) = I. 
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function of n E F,.. P; is the probability that a wandering point, having 
passed through n, arrives at the next step somewhere in X. We shall now 
extend the definition of this process to F w· To this end we define 13) a 
generalized (E, E') Markov matrix as a function M; of an element n of a 
set E and an element X of a a-field a(E') of subsets of a set E' (which 
contains E'), such that 
1) for each XE a(E'), M; is measurable with respect to a a-field a(E) 
of subsets of E (E E a(E)); 
2) for each n EE, M; is a probability distribution over the sets X Ea(E'). 

If E and E' coincide we shall assume that a(E) and a(E') also are 
identical. 

Furthermore we define: 

( 4.1) V Fw yaw Q" defpn 
n A A= E(n,A) • 

It is easy to prove now that Q~ is a generalized ( F w, F .,) MARKOV matrix 
by using lemma 2 and the properties of E(n, A). We shall prove more 
generally that this result holds also for the n-fold convolution of Q~: 

Lemma 3: 

The relations 

(4.2) 
Q n def I" 

(O)A= A 

Q ndeff Q n QT 
(m)A = (m--'l)dT A 

define for all natural ma generalized (F w, F .,) MARKOV matrix, withQ(l)~ =Q;:. 

Proof: 

If m = 0, the statement of the lemma is trivial. Let us assume that for 
some integer m > 1 Q(m-ll~ is a generalized (Fw, Fw) MARKOV matrix. The 
countable additivity of Q(m-u~ ensures for every A E O'w the existence of 
Q<m>~, as Q~, by its definition (4.1) and by lemma 2, is a.,-measurable and 
bounded. Furthermore it is trivial that Q<m>~ is (finitely) additive, and 
from known theorems 15) it follows immediately that Q(m>;: is countably 
additive, since Q~ is. Moreover it is trivial that Q(m>~ > 0 and that 
Q(m>;w = 1. 

Finally the integral J Q(m-U;T Q~, being a limit of aw-measurable functions 
(the approximating sums are finite sums of aw-measurable functions, hence 
aw-measurable), again is aw-measurable. This completes the proof of the 
lemma. 

5. We shall now prove that the newly defined quantities Q,n>~ satisfy 
the CHAPMAN-KOLMOGOROV equation: 

13) Cf [l] § 8. 
14) When the domain of integration is not mentioned, the integrations are to 

be extended over the whole space F w• 
15) Cf e.g. [l] § 8. 
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Theorem 1: 

The relation 

(5.1) 

holds for all :rr; E F w, all A E <Yw, and for every pair of natural numbers n and m. 

Proof: 

For m=O (5.1) holds for all n; which follows immediately from the 
definition of Q<o>;. We assume now that, for some integer m 0 > 1 and for 
all n, (5.1) holds with m=m0-l. Then we have', by using (4.2) and inter­
changing integrations : 

f Q(n),;: Q(m,); = f Q(n);-r {J Q(m,-1):a Q~} = . 
= f { f Q(n);.. Q<m,-1):,,} Q~ = f Q<n+m,,-1):a Q~ = Q(n+mo>:i • 

The interchange of integrations is now justified by the existence of 
f Qcn>;-r Q<mo-1>~ and off Qcmo-lld: Q~, and by the boundedness of the result, 
according to [l], lemma 4 16). Hence (5.1) holds for all n if m=m0 which 
completes the proof of the theorem. 

From this theorem it follows that on F w a stationary MARKOV chain 
{1tn}, with transition probabilities Q<n>;, can be defined: 

(5.2) 

and 

(5.3) 

whenever O ::S n1 < ... < nk; n > 0, and if (ni, n2, ... , nk) 1s a set of 
mutual consistent points of F w, i.e. if 

Jm(n)=ni, 

for all i and j with i < j, and n1-ni=m. 

16 ) This lemma states that in the repeated integral f Fdx f Ra11 / 11, the order of 
E 1 E, 

the integration may be reversed: 

(I) f Fdxf Ravf11 = f {f FwRa 11} /
11

, 
E 1 E, E, E 1 

if both the integrals HA = f J FJdx JR"'J,1 and h"' = f JR"'ldv J/11 1, exist for all A ea (E2 ) 

E1 Ea 

and for all x e E 1 respectively, and if one of the members of (I) is absolutely con­
vergent. I.e. if either 

f Hdv J/11J < oo or f JFldo: h"' < oo. 
E, E, 

(E1 and E 2 are sets on each of which a a-field a (Ei) (i = 1, 2) is defined, FA is a 
countably additive set function defined on a (E1), Rif is a generalized (E1, E 2) 

MARKOV matrix and /11 is a a (E2)-measurable function of y e E 2. The absolute value 
function JFJ,1 of a countably additive set function F, defined on a a-field, is de-

def 
00 

fined by JFJ,1 = sup { ~ JF A,,I }, where the supremum is taken over all possible 
•=1 

dissections of A. 



383 

Theorem 1 ensures now the consistency of the definitions (5.2) and 
(5.3) 17). 

6. In the sequel we shall need repeatedly the following 

Lemma 4: 

If g" and h" are a,,,-measurable functions defined for all 'JT, E Fw, and if 
for all 'JT, E F w: 

then 

(6.1) 

holds for all 'JT, E F w· 

Proof: 

By (4.1) .we have for all 'JT, E F,,,, and all I' E <lw 

Q; = F"z(n.I') = f 
Ez(n)+l 

where the identity I1<n,r> = I;'" follows immediately from the definition 
of E('JT,, I'). Hence: 

f Q:. gf<,) h' = f {f ~., 1:} gf(T) h', 
El(n+l) 

Now both the integrals 

J P;., ½' = Q~, and J t'a: I gf<•> h" I = I g" h""' I 
El(n)+l 

exist, so that we may, according to lemma 4 in [l], interchange integrations 
unless the resulting integral is divergent. Hence 

f Q"' J(T) h" - f p" f -r""' -~(T) h' - f p" " h""' - "'f n"' h"'"' d, g - do: .ld, Y~ - do: g - g r do, • 
Ez(n)+l Ez(n)+l Ez(n)+l 

Applying this derivation again, now with g"'= 1 we get: 

f ~"' h""' = f Q;, h". 
Ez(n)+l 

Hence: 

JQ" J(T) h" = "JQ" h" dT g g d, • 

The integral in the right hand member is absolutely convergent, and 
therefore the derivation of our result is justified. 

Corollary: 

Under the same conditions we have 

(6.2) 

if the integral in the right hand member is absolutely convergent. In 

17) Cf [6]. 
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particular, taking h"= 1 for all n E F"' (for this choice of h", the condition 
of lemma 4 is certainly satisfied): 

(6.3) f Q "' J(-r) f Q "' <1 
(n)d-r Y~ = (n-l)da (J , 

7. We shall now define a collective matrix 18) for this stochastic 
process. If the wandering point is in x(n), having passed through ..F(n), 
we assume that there is a probability A"' that it will be "absorbed", and 
that in this case there· is a probability 1-U"' that some definite event, 
called a "catastrophe" <t', will occur. If no absorption takes place in x(n) 
(probability B"= 1-A"') the probability of <(I is 1-T"'. We now shall 
determine the conditional probability D';,_, that the wandering point, 
having passed through n, without being absorbed on the way, will be 
absorbed somewhere in A, without being absorbed previously and without 
a catastrophe having happened previously. For this purpose we define 

l(nl 
{l' def II BJv(n) 

v=O 

Z(n) 

V"' def II pJv(n) 

v-o 

n def An {JJ(n) 
lX - ' 

I.e. {J"' is the probability that the wandering point will not be absorbed in 
x(n) (nor previously), lX"' is the probability that the wandering point will 
be absorbed in x(n), but not previously. In the first case there is a pro­
bability y,, that <(I will occur in x(n) and has not occurred before. In the 
latter case this probability equals W". It is easy to see now that D';,_ must 
satisfy the integral equation 

(7.1) 

as the two terms in the right hand member represent the probabilities of 
the following two events: 
I) The event, of which D~ is the probability, takes place in n, and 

II) This event takes place in some point of F w, which can be reached 
from n. 

A second expression for D';,_ is obtained by remarking that the event, of 
which D';,_ is the probability, can only take place in n, or in a point of F"' 
which can be reached from n in a finite number of steps: 

00 00 

(7.2) D"'a = l J Q(n):, lX-r w· I~= 1 f Q(n)~ lX-r w-r. 
n=O n=O A 

18) In the sequel we shall not use the interpretation of the quantities A", B", 
T" and U"'. We mention these interpretations in connection with [l], where they are 
used repeatedly. For the method of collective marks and its applications to time 
discrete stochastic processes cf also [2] and [5]. 



385 

8. We now take U" = 1 for all n E F"' (hence W" = V J<n>; that means 
that CC can only occur if the wandering point is absorbed) and allow T" to 
take arbitrary complex values, subject only to the following conditions: 
For all n E F"' a real positive number T" exists, such that for some {}, 
independent of n, with O < {} < 1, the relations 

(8.1) 

and 

(8.2) yFw {J" f Q" B"' T"' < fJ" 
" dr: 0 = 

are satisfied. We have now: 

Lemma 5: 

The conditions (8.1) and (8.2) entail the absolute convergence of (7.2), and 
in this case (7.1) is satisfied by (7.2). 

Proof: 

If n > 1, we have, applying lemma 4, its corollary and theorem 1, 

if this last integral is convergent. Proceeding in the same way, now using 
(6.2) and (8.2), we have moreover, if n > 2 

fQ n]/Jal T7"1 =fQ "/JJ(a)I yJ(a)I Bal Tai< 
(n-l)da I' (n-l)da = 

Hence by induction we have for all n > I, all n E F w and all A E aw 

so that the result is bounded indeed. Hence we have for the series in (7.2) 

Substituting this series into the right hand member of (7.1) we get 

00 00 

"yJ<n> l" + f Q" "'f Q ,:J a vJ<a> la - " vJ<n> I"+ "'fQ" fQ "' <1vJ<a> ..a -
0/, A dr: £., (n)da 0/, A -0/, A £., dr: (n)daO/, J.A-

n=O n=O 

00 00 

- " yJ<n> l" + ,,_, f Q " a yJ<a> la - ,,_, f Q " a vJ<a> la - D" 
- 0/, A £., (n+l)daO/, A - £., (n)da 0/, A - A• 

n=O n=O 

19 ) I.e. IT"I ~ f} To, unless ff" = 0. 
20 ) As !DAI ~ FA for some positive valued countably additive set function 

FA implies ID"IA ~ FA· ID"IA denotes for every n s F w the absolute value function 
of the countably additive set function DA. 
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The interchange of integration and summation is allowed because 21) 

1) each·term of the series in the second member exists absolutely by (8.3), 
2) the series in the first member converges for every n E F"' by (8.4), 
3) the upper bound (8.4) is an integrable function, which may easily 
be verified. 

As to the interchange of integrations in the second member: by using 
(8.3) it can be shown easily that the conditions of lemma 4 in [l] are 
satisfied. 

9. We now pass to the generalization of WALD's fundamental identity: 

Theorem 2: 

If T" satisfies the conditions of lemma 5, if U"= 1 and if 

(9.1) 3Dp yFw R" T"' f Qn f" < R"' f" 22) 
fo n I' 0 d,: 0 = I' 0 

then for all complex valued aw-measurable functions f", satisfying 

(9.2) 

the relations 

(9.3) 

and 

(9.4) 

In;" f" = pJ<n> yJ<n> f" 

are equivalent for all n E Fw-F0• 

Proof: 

We shall need the following two propositions 

I) f I D" Id,: I f" I < OO • 

Proof: 
00 

f I D"' Id,: I f" I < f { Z f Q(n)~a (X a I V (<") I 1:,,} If" I , 
n=O 

and (8.4) shows that the series between brackets is bounded uniformly 
in A. By a classical argument it may be shown that we may interchange 
summation and integration, provided that the resulting series converges 
absolutely and that each ofitstermsexistsabsolutely. Now, by an argument 
analogous to the one we used for the derivation of (8.3), we get 

21) Cf e.g. [4], 15.2.31 and 15.2.311. 
22) !Jp is the set of all positive valued aw-measurable functions. 
23) P is the set of all positive numbers. 
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so that summation and integration may be interchanged. Hence: 

(9.5) 

Our second proposition is a direct consequence of the first: 
00 

II) f n:-,: f' = LI Q(n)=-,: IXT yJ<-c> f'. 
n=O 

We now proceed to the proof of the theorem. If (9.3) holds, then we have 
by (7.1): 

pJ<n> yJ<n> r = IX" yJ(n) r + I {f Q;-,: n:u} t". 
Using now (8.4), (8.2) and I) one sees that the conditions of [l], lemma 4 
are satisfied, therefore, by (9.3) and lemma 4: 

pJ<n> yJ<n> f" = IX" yJ<n) f" +IQ:-,: In;" t" = IX" yJ<n) f" + fJ" V" I Q;T t' 
whence (9.4), as pJ<n> -IX"= (J". 

If (9.4) is true we have, as IX-c=fJJ<-c>_(J'": 

IQ " 1: yJ(-c) !-,: = I Q " pJ(T) yJ(T) !-,: - IQ " fJ"' yJ(T} f" 
(n}dT IX (n}dT (n}dT ' 

for all n > I, i.e., applying (6.2) in the first term and (9.4): 

= fQ(n-l)~ufJ" V" fQ~-cf'-f Q(n)~-cfJ'" yJ(-r:) (' = 

I " t:f1 J(cr) f" f Q " fJ"' yJ(T) /T K" K" = Q(n-l)dcr I' V - (n)dT = (n-1) - (n), 

Where K " def f Q " {J,. yJ<-c> f,. H b II) <n> = (nld-c • ence y 

00 

In:-,: t = I Q<o>~ .. rx .. vJ<-r:> t + I (K~-11 - K~1) = 
n=l 

" yJ<n> f" K" 1· K" = a + <OJ - 1m (nl • 
n-->-oo 

Repeating once more the argument,, used in the derivation of (8.3) shows: 

Hence 

In: .. t = rx" yJ<n> f" + I Qco,:-. (J'' yJ(T) f' = pJ<n> yJ<n) /". 

Hence (9.3) holds for all n E F w• This completes the proof of the theorem. 

24) This theorem passes into Kemperman's theorem (5, p. 14], if we make the 
following substitutions: 

Let E,; be the real axis for all i > O; let {x.,} be a process by independent increases 
n 

(i.e. a process with x., = L Yk• where {yk} is a set of independent isodistributed 
k=O 

random variables). If we take furthermore j", and/~ to be of theformelz and et,ai,, 
respectively our f D'If,-,:/'< passes into Kemperman's r.,(t) and we get 

00 

Lr.,(t)e-1"'op(t)-n = I, 
n=O 

where p (t) is the characteristic function of y.,. 
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