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Significance of the smallest of a set of estimated normal 
variances 1) 

by R. Doornbos 

Samenvatting 
Een toets voor de kleinste van een aantal geschatte varianties van normale 

verdelingen. 

Stel wij hebben k onafhankelijke steekproeven, ieder van dezelfde uitgebreidheid 
n, afkomstig uit normale verdelingen: 

Xn, • · ·, X1n 

Wij toetsen de hypothese dat de varianties van de k normale verdelingen geliik 
zijn tegen het alternatief, dat de steekproef met de kleinste variantie afkomstig is 
uit een verdeling die een kleinere variantie heeft dan de andere verdelingen. 

De geschatte varianties zijn: 

n 

n 

s;2 = E (x;; - x;.)2/(n - 1), (i = I, ... , k), 
i=I 

waarin X;. = E x;;/n het gemiddelde van de ie steekproef is. De kleinste onder 
i=I 

de s;2 noemen wij Smin2• De toetsingsgrootheid is nu 

k 

a= S,n;n
2

/ E s;2. 
i=I 

In dit artikel wordt de waarschijnlijkheidsverdeling van deze toetsingsgrootheid 
afgeleid, benevens een tabel van kritieke waarden behorende bij een onbetrouw
baarheidsdrempel liggende tussen 0,05 en 0,04875. 

1. Introduction 

In some cases a test for the equality of the variances of a set of normal 
distributions, which is powerful especially against the alternative that one of 
the variances is smaller than the others, the latter being equal or not, might 
be useful. When, for instance, one has to select out of a set of machines or 

1 ) Report SP 45 of the Statistical Department of the Mathematical Centre, Amsterdam. 
Head of the department: Prof. Dr D. van Dantzig. 
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out of several processes, the one with the smallest variability of produced pro
duct, we need such a test, to decide whether the smallest variance is significantly 
smaller than the other ones. 

The test given here, which meets this condition, is analogous to the test 
concerning the largest variance, developed by W. G. Cochran (1941) • 
and also described in C. E i s e n h a rt, M. W. H a s t a y and W. A. 
W a 11 is (1947), where more extensive tables of critical values are given. 
Like Cochran we only deal with the case where the samples all have 
the same size. 

2. Description of the test 

Suppose we have k groups of random variables 1 ) 

~11, • • •, ~ln 

(r) 

~kl>•• ••~kn• 

completely independent of one another and normally distributed with common 
variance a2 and with means which may differ from group to group but not 
within the groups. The variance estimates 

n 

(2) s2 = E (xiJ-x;,)2/(n- 1), (i = 1, ... , k) 
- i=l - -

" where ~i. = E ~;J/n, are then distributed independently as 'K2a2/v, '&_2 h,;iving v 
i=l 

degrees of freedom ( v = n - I ) • We define 

The test-statistic ~ is the smallest of the ratios ~;:The critical region consists 
of small values of a. 

In table r we give the lower 5% points for the distribution of ~. i.e. the 
critical values of~ for the test. The significance level is not exactly equal to 
0,05, but lies between 0,04875 and 0,05. 

3. An optimum property of the test 

D. R. T r u a x ( r 9 5 3) proved the following optimum property of C o c h
r an' s test. We assume that the variances of the k populations under con-

1) Random variables are denoted by underlined symbols, 
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TABLE I. Approximated lower 5 percent points of~• number of variances k, degrees of freedom v. 

'~I 2 3 4 5 6 

2 I 0.00154 0.02500 0.06083 0.09430 0.12275 0.14663 

3 I 0.03278 1)1 0.00837 0.02489 0.04262 0.05892 0.07331 

4 I 0.0 4964 I 0.00418 0.01401 0.02546 0.03647 0.04647 

5 I 0.0 4444 I 0.00251 0.00916 0.01736 0.02550 0.03306 

6 I 0.0 4241 I 0.00167 0.00653 0.01280 0.01917 0.02518 

7 I 0.0 4 145 I o.oorr9 0.00493 0.00992 0.01512 0.02008 

8 I 0.0 5941 I 0.0 8895 0.00387 0.00799 0.01234 0.01654 

9 I 0.0 6645 I 0.0 8696 0.00314 0.00661 o.oro33 0.01395 

IO I 0.0 6461 I 0.0 8557 0.00261 0.00558 0.00882 0.01200 

12 I 0.0 6259 I 0.0 8380 0.00189 0.00418 0.00673 0.00926 

rs I 0.0 6129 I 0.0 8238 0.00128 0.00294 0.00484 0.00676 

20 I 0.06530 I 0.0 8 132 0.0 8781 0.00188 0.00318 0.00453 

1) 0.0 8278 stands for 0.000278, etc. 

sideration are al (i = I, ... , k). We say that the variance of the population 
has ,,slipped to the right" if a1

2 = ... = ai-1
2 = ai+i2 = ... = ak2 = a 2 and 

al= ;\2a2, where A> r. Let D0 be the decision that all k variances are equal, 
and let D1 be the decision that D0 is false and a/ = max (ai2, ... , ak2) for 
j = I, ... , k. We want to find a statistical procedure which will select one 
of the k + I decisions D0, Di, ... , Dk and which has the following properties: 

a) When all variances are equal, D0 should be selected with probability 
r - ex, where ex is a small positive number fixed prior to the experiment; 

b) the procedure is symmetric, that is the probability of selecting Di when 
a;2 has slipped to the right is the same for all i when A has the same value in 
all cases; 

c) the procedure is invariant if all the observations are multiplied by the 
same constant; and 

d) the procedure is invariant if some constant bi is added to all the ob
servations in the i th population. 

Then the procedure: 
k 

if max s;2/ .E s;2>La select Dm, 
i=l, ... ,k i=l 

k 

if max s;2/ .E s;2<La select D0, 

i=I, ... ,k i=I 

where L"' 1s a constant determined by property a) and sm2 = max s?, maxi-
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mizes the probability of making the correct decision when one of the variances 
has slipped to the right, subject to the restrictions a), b ), c) and d). 

With some slight alterations the proof of .T r u ax applies also to our test, 
which maximizes therefore the probability of making a correct decision when 
one of the variances has "slipped to the left". · 

4. The distribution of ~ 

If we denote by Pr(a) the probability that r of the ratios ~i (specified in 
advance) do not exceed the value a, then the probability that a does not 
exceed a is given by ' 

This formula follows immediately from a wellknown theorem in probability 
theory, the proof of which can be found for instance in W. Fe 11 er (1950) 
(Chapter 4, formula (r.5)). 

Equation (4) contains all the probabilities P1, •.. , Pk and is therefore 
rather unsuitable for the computation of significance levels of ~- Therefore 
we use only the first term of (4) and determine the approximate critical 
value aa from 

(5) 

To investigate the accuracy of this approximation we need the following 
inequalities: 

(6) 

(7) 

P2(a)< {P1(a)}2 (o<a<1), 

(;) P1(a)-(:) P2 (a)< p(a} < (;) P1 (a). 
Formula ( 6) will be derived in the appendix. The second inequality is known 
as one of the inequalities ofB on ferro n i (cf.Fe 11 er (1950), (Chapter 4, 
formula (6.7), for the case m = 1). Like (4), formula (7) is rather simple to 
prove. We may illustrate this for the case k = 3. In the general case we consider 
three possible events Ai, A2 and A3, which, as the outcome of an experiment, 
may occur separately or together. In figure 1 the possible outcomes of the 
experiment are sketched as regions in the corresponding sample space. 

From this we read directly that 

(8) P[A1] + P[A2] + P[A3]- P[A1 and A2]- P[A1 and A3]-

- P[A2 and A3] < P[A1 or A2 or A3] < P[A1] + P[A2] + P[A3], 

because the domains corresponding to the three members of (8) respectively are 
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A, 

]I 

Figure 1. Unions and intersections of three events. 

I + II + III + IV + V + VI, 
I+ II + III + IV + V + VI + VII and 
I+ II+ III + 2.IV + 2.V + 2.VI + 3.VII, 

respectively. Applying (8) to our case, where A1 stands for the event ~1 < a 
and so on, we get immediately (7 ). 

Combining now ( 6) and ( 7) we get 

(9) kP1 (a)-½k(k-r){P1 (a)}2 <p(a)<kP1 (a). 

Substituting (5) into ( 9) gives us 

oc ~ oc 
k - - l.k (k - r) -< p (a )< k -. k 2 k2- a - k' 

or 

(IO) 

or for 

(II) 

that is, lower 5 percent levels of ~ determined from (5) will correspond to 
0.4875 < p < 0.05. These approximate levels are given in table r. 
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5. Computation of the tabulated values 

Cochran (1941) has shown that the probability Q1 (a) that a specified 
one of the ratios ~; exceeds a is equal to 

I 

(12) Q1 (a) = J xvfZ-I (1 - xt(k-I)/2-I /B(v/2, v (k- 1 )/2). 
a 

a 

(13) P1 (a) = J xvf2
- 1 (1 -xY(k-I)/2-I/B (v/2, v (k- 1)/2) = 

0 

= Ia (v/2, v(k- 1)/2). 

For this incomplete beta-function the following expansion follows easily 

(14) Pi(a) = av/2 (vk/2 - r) E (v(k- 1.)/2 - 1) _v_. (- a)i, 1 ) 

V/2 j=O J 'V + 2) 

Now aa must be determined from 

aa-v/2 = ~ (vk/2 - l) E (v(k- 1.)/2 - l) _v_. (- a)i. 
IX v/2 i=O J v+21 

We approximated aa successively by av a2, ••• in the following way 

-v/2 _ ~ (vk/2 - I) 
a1 - I , IX 'V 2 

-v/2 _ ~ (vk/2 - I)~ -(v(k- 1)/2- 1) _v ~ 
a2 - / l a1, 

IX y2 l v+2 

-v/2 _ k (vk/2 - l) ) (v(k - I )/2 - I) 'V + a3 - - 1- --a2 IX v/2 1 v+2 

+ (v(k- 1)/2- 1) _v_ a22 ~. 

2 'V + 4 ) 
etc. 
Within the limits of the table we constructed the values of aa are small and 
therefore the convergence is rather fast. In fact we found that the fourth 
approximation gave sufficient accuracy. 

The 2.5, 1 and 0,5 percentage points of the incomplete beta-function are 
tabulated by C. M. Thompson (1941), so for IX=o.05 and k=2,5 and 
ro we could check our calculations by reading the values directly form these 

1) When v (k - 1)/2 is an integer this expansion breaks off atj = v (k - 1)/2 - I, 
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tables. For v = 1 we used the reversed expansion given by C. M. Thom p
s on (1941 ), p. 159. 

6. Appendix 

It is shown first that the inequality ( 6) is equivalent with 

(15) 

where Q2 (a) and Q1 (a) respectively stand for the probabilities that a pair and 
one of the ratios ~; (specified in advance) respectively exceed a. We have 

and consequently 

(16) 

Further the equality 

(17) 

holds, both sides being equal to the probability that one of a pair of specified 
. ratios a; exceeds and the other does not exceed a. From ( 16) and ( 17) we 
obtain 

(18) 

which proves the equivalence of the inequalities ( 6) and ( 15 ) . 
The sum of all<!; being equal to 1 (cf. (3)), Q2 (a) = o if a>½. Thus for 

a > ½ equation ( 15) is obviously true and therefore ( 6) must also hold. To 
point out the validity of ( r 5) for all values of a between o and 1, C o c h r a n 
( 1941) says that when it is given that one of the ~i is large this diminishes the 
probability of the other ai (j :f=i) being large. 

The following counterexample 1 ) shows however that this is not true in all 
cases, although it is true, as will be shown later, for the distributions under 
consideration. 

Suppose the variables !v ~2 and !a can take the values 1 and 2 respectively 
with probabilities p and 1 - p respectively. Defining 

J:\ = ~;/(~1 + ~2 + X3) (i = I,2,3), 

and C being some real number,¼< C <½we obtain 

1 ) This counterexample was constructed by H. K e st e n, assistant of the Statistical Dept. 
of the Mathematical Centre, Amsterdam. 
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P[,:l:1 <C]=p (1-p2) 

P [ ;):'1 < C and 12 < C] = p2 ( 1 - p ). 

Consequently 
P[,:l:1 < C and 12 < C] > {P[,}'.1 < C]}2, 

if¼ < C < ½ and r > p > ½ ( VS - r ). 

Therefore it is necessary to derive ( 6) explicitely for the case a<½- The 
following proof was found in co-operation with the Department of Pure 
Mathematics of the Mathematical Centre.1 ) 

C o c h r a n showed that the simultaneous distribution of a given pair ~1 

and ~2 of the ratios ~i is given by 

f (a1,a2) = C1. (a1a2l/2-1 (1 -a1-a2Y(l,-2)/2-1, 

where 
cl-l = B(v/2, v(k- r)/2) B(v/2, v(k-2)/2). 

So, for a < ½ we have 
a a 

(19) P2(a)=C1 f f (x1 x2Y12- 1 (r-x1 -x2 t(k-Z)f~
1 dx1 dx2• 

0 0 

We put 
v/2 = s, v(k- 2)/2 = t, B(s,t)/B(s, s + t)= C2, 

and 

a a a 

= C2 { J xs-i (1 -x)'+t-1 dx}2- ff (x1 x2)5-1 (r - x1 - x2Y-1 dx1 dx2 = <p(a). 
0 0 0 

We shall prove that there exists a point a0 with o <a< l, such that <p(a) 
is steadily increasing for o < a < aa and steadily decreasing for aa < a < ½. 
The relation ( 6) will then be proved completely. 

We note that on account of the logarithmic convexity of the I'-function we 
have 

C2 = B (s, t)/B (s, s + t) = I' (t) I' (2s + t)/I' (s + t) I' (s + t) > r. 

Differentiating <p (a) with respect to a we get 
a 

<p'(a) = 2C2as-l (r -ay+t-l f xs-1(1 -x)5+1- 1 dx 
a 0 

- 2 f (ax)'- 1 (r - a- xl-1 dx. 
0 

1 ) It was published before by the Dept. of Pure Mathematics of the Mathematical Centre as 
,.Report Z.W. 1954-013, An inequality involving Beta-functions, by R. Doornbos, 
H. J. A. D up arc, C. G. Lek k erk erk er and W. Pere mans." 
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By applying the substitution x = u (1 - a) in the last integral we get 

a 

<p' (a)= zas-t (1 - ay+t-1 {C2J xs-l (1 - xy+t-1 
0 

a/(1-a) 

- f us-I (1 -u)t-1 du}= zas-l (1 -ay+t-1<p1(a), say. 
0 

Next differentiating <p1 (a) we find 

l ( a )s-t (l - 2a)1
-

1 

<p
1
'(a)=C2 as-l (1-ay+t-1 ____ -- ---

( 1 - a )2 1 - a I - a , 

= as-I (1 ~ ar(s+t) {C2 (I - a)2(s+t)-I_ (1 - zatl} = 
= as-I (1 - ar(s+t) , <fJ2(a), say. 

Clearly 

(20) 

{<p1(0)=0 I I 

)<p1 (½) <C2J xs-I (1-xy+t-I dx-f xs-I (1-x)t-Idx= 

) 0 0 l = C2 B (s, s + t) - B (s, t) = o 

<fJ2(0) = C2 - I > o, <fJ2 (½) > o. 

Further we have <p2 (a) = o if and only if 

l - za = C2 l/(I-I) ( l - a) { 2(s+l)-l }!(t-t) 

1 = C2 (1 - a)2•+1 

in the case t =:j::. 1, 

in the case t = 1, 

Since for fixed real rx =:j::. I the function f(x) = xoc is either a convex or a 
concave function for x > o, it follows that <p2 (a) = o for at most two values of a. 

Since <p2 (a) is the derivative of <p1 (a), apart from a positive factor for a =:j::. o, 
it follows from the above result and the relations (20) that <p1 (a) is equal to 
zero for a = o, positive for small values of a, negative for a = ½ and that 
<p1(a) has at most two extrema in the interval (o, ½). Hence <p1 (a) has 
exactly two extrema and is exactly once equal to zero (at a0, say) in the 
interval o < a < ½, Moreover <p1 (a) is positive for o < a < a0 and negative 
for a0 <a<½. The function <p1(a) being the derivative of <p(a), apart 
from a positive factor (for a =:j::. o ), the proof is completed. 
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