
KONINKL. NEDERL. AKADEMIE VAN WETENSCHAPPEN - AMSTERDAM 
Reprinted from Proceedings, Series A, 59, No. 3 and Indag. Math., 18, No. 3, 1956 

MATHEMATICS 

SLIPPAGE TESTS FOR A SET OF GAMMA-VARIATES 

BY 

R. DOORNBOS AND H.J. PRINS 1) 

(Communicated by Prof. D. VAN DANTzIG at the meeting of March 24, 1956) 

1. Summary 

In this paper a generalization is given of the significance tests for the 
largest and the smallest respectively of a set of estimated normal variances 
as suggested by W. G. COCHRAN (1941) and one of the present authors 
(cf. R. DooRNBos (1956)) respectively. These tests only deal with the 
case where the samples from which the variances are estimated all have 
the same size. 

The present paper gives a treatment which is also valid for different 
sample sizes. Further we consider the power function of the tests with 
respect to the alternative hypothesis that one of the variances has slipped· 
to the right or, in the case of the test for the smallest vari~nce, to the left. 

2. Introduction and description of the tests 

Suppose we have a set of random variables 

(2.1) 

distributed independently of one another according to gamma distribu
tions with parameters ix1, /31 ; •.. ; °'1c, f3i respectively; that is to say the 
density function of u, is 

(2.2) f (u.) = I'(~)/3f• uf•-1 e-";lfJ;, 0 ~ ui ~ oo, 

where°'• and /3i are real positive numbers. As is well known the distribu
tion of t=x2a2, where :x2 is distributed as a chi-square with v degrees 
of freedom, is a special case of a gamma distribution, with parameters 
cx=v/2 and f3=2a2• 

Now our problem is to find tests for the hypothesis 

(2.3) H0 : /31 = ... = f31c = {3, say, 

against the alternatives 

(2.4) ~ H1: /31 = • .. = /3i-1 = /3i+l = .. • = f31c = /3, 

( /3i = C.{3, Ci> 1, 

1 ) Report SP 49 of the Statistical Department of the Mathematical Centre. 
2) Random variables are denoted by symbols printed in bold type. 



330 

for one unknown value of i and ~;' 

(2.5) ~ H2: fJ1 = ... -=:_fJi-1 = fJ,+1 = ... = fJk = {3, 
( {J, - G;,{J, 0< Gi< 1, 

for one unknown value of i. 
For both tests we compute the ratios 

(2.6) X· = ..!!L (" 1 k) 1 Eu;,,' J = , ... , . 

Then, if we ate testing H0 against H1 , the following incomplete B-in
tegrals are determined: 

l d- = . 1 J1, x'",-1 (1 -x)A:-a,-1 d.r; 
i B(°'i,A -°'i) . 

X· 

= I-lxdcxi, ~·-cx1), (j = 1, ... , k), 

(2.7) 

where A = !ex.. Next we define the test statistic d by 

(2.8) 

If we reject H0 when d takes a value d~s/k, the level of significance 
lies between c and c - l&/2 as will be shown in section 4. 

If all °'• have the same value, d corresponds to the smallest ratio x 
and our test reduces to CocHRAN's test. 

Testing H0 against H 2 requires computation of the integrals 

(2.9) 
) 

e. = 1 Jx; :i;'"r1 (1-x)A-o:,-i dx = I -d 
1 B(°'i,A -°'i) i 

0 

= Ixi (cxi, A-cxi). 

We reject H0 if 

(2.10) 

The level of significance is again a number between c and s-s2/2. 

3. An optimum property of the tests if cx1 = ... = °'k 
D. R. TRUAX (1953) proved an optimum property of CocHRAN's test. 

In exactly the same way one can prove that our tests are optimal in the 
following sense if °'1 = . . . = °'k· Let D0 be the decision that H0 is true and 
let D11 be the decision that H0 is false and that fJ; = max ({Ji, ... , {Jk}. Then, 
if d=dm, i.e. if dm is the smallest of di, ... , dk the procedure 

(3.1) ~ if d ~ L. select D1m, 

{ if d > L. select D0, 
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where L. is a constant determined by the condition that D0 should be 
selected with probability 1- s if H0 is 'true, maximizes the probability 
of making the correct decision if the ·hypothesis H 1 is true. 

When the hypothesis H 2 is true the analogous optimum property holds 
for our second test. In both cases sfk is an approximation of the critical 
value of d and e. 

4. Proofs of the results stated in 2 

To obtain the joint distribution of Xi, ... , xk-l as given by (2.6) and 
of U=u1+ ... +uk we put 

) 

U1 = X1 U, 

~-1 = Xk-1 U, 

uk-1 = U (l-x1 ... -xk-1)-

(4.1) 

The Jacobian of this transformation becomes Uk-land the joint distribu
tion of x 1, ... , xk-l and U is found to be given by the density function 

(4.2) l y(:x;, ... ,xk-1> U) = 
- I'(A) a:,-1 "'k-1-l ( - - )"'k-1 UA-le,-U/{J 
- I'(ix1) ... I'(cxk) X1 •.• xk-1 1 X1··· xk-1 I'(A)f3A ' 

where A= !Xi+ ... + °'k· 
Thus we see, as is well known that ·u has also a gamma distribution, 

with parameters ,x1 + ... + °'k = A and fJ and moreover that the joint 
distribution of x1, ... , xk-l is given by 

(4.3) h (X X ) - I' (A) x"'1 - 1 x"'k-1-1 (1-x x )"'k-1 
1' •• •• lc-1 - I'( ) I'( ) 1 • • • k-1 1 "' - k-1 • 

°'1 • ·, °'k 

But the same derivation gives us the general result 

4.4 _ I'(A) a,-1 9<,-1 _ _ . "'.:+1+ ... +¾-l l
p(x1, ... ,xi)= 

( ) - I'( ) I'( ·)I'(. + + )X1 ... X, (1 X1 ... x,) , 
CX1 .. , °'i °'i+ 1 .. • CXk 

(i = 1, ... ,k-1), 

if we consider instead of u1, ... , uk the i + 1 variables u1, ... , ~i and 
ui+l + . . . + uk which are also independent of one another and which have 
gamma distributions with parameters <Xi, ••• , ,xi, °'i+l + ... + °'k and {J. 

We consider now a set of k real numbers y1, ... , y7, (O~g:,.~ l} and the 
probabilities defined by 

r P, = p [x, ~ y,.], 

P,,i = P [.xi ~ Yi and xi ~Yi], (i =I= i) 

(4.5) q, = P [x,. > Yi] 

q,.,i = P [x, > Yi and xi> Y;],' (i =I= j) 
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all computed under H0• If we denote by P the probability that at least 
one of the ratios x, does not exceed the corresponding value g;, we have 

(4.6) p = Ep,-EPi.i+EPi,i.t •·· + (- l)k-l Pi.2 ..... k, 

where the rth summation is extended over all p's with r subscripts; 

hence the rth sum has(!) terms (cf. M. FREOHET (1940), or W. FELLER 

(1950), chapter 4). 
For Q, the probability that at least one of the xi exceeds gi, we have 

(4.7) Q = E q, - E qi,i + E qi,i.l ... + ( -1 )k-l ql,2, ... ,k· 

It follows from BONFERRONI's inequality (cf. M. FREOHET (1940), or 
W. FELLER (1950), chapter 4) that 

(4.8) 

and 

(4.9) 

In the latter part of this section we shall prove the inequalities 

(4.10) 

and 

{4.11) qi,i ~ qi qi. 

If we now determine the numbers Ui,s so that all Pi are equal to s/k, 
or according to (4.4) 

(4.12) P [x;, ~ U;,,,] = Ju;,, (.x;,, A-.xi) = s/k, 

then we get from (4.8) and (4.10) 

or 

or for kG,.2 

(4.13) 

if P. is defined by 

(4.14) 

s-(k- l)s2/2k~P.~s, 

P, = P [min (x;-Ui,,) ~ O]. 

In the same way we get 

( 4. 15) 

if the numbers Gi,• are determined so as to make all qi equal to s/k and 
if Q,, is the probability that at least one of the ratios xi exceeds the 
corresponding value a •.•. 

As the procedure described in section 2 to test H0 against the sets of 
alternatives H2 and H1 respectively gives us the probabilities Ps and 
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Qs respectively of rejecting H0 when H0 is true, these probabilities lie 
between the bounds stated there. 

We now proceed to prove the inequalities (4.10) and (4.11). First it is 
shown that (4.10) and (4.11) are equivalent. We have 

and consequently 

(4.16) 

Further 

(4.17) 

Pi= 1 - qi and P; = 1 - qi 

From (4.16) and (4.17) we obtain 

(4.18) 

which proves the equivalence of (4.10) and (4.11). Thus it is sufficient 
to prove (4.10) 1) and we need only consider values g;, and Yi such that 
g.+g;~ 1, for when g.+g;> 1, q;,_;= 0 and so (4.11) and (4.10) are obviously 
true. 

It is easily seen that (4.10) is equivalent with 

(4.19) 

or 

(4.20) 

From (4.4) it follows that the left hand member L(gi, Y;) of (4.20) equals 

where 

(4.21) 

flJfli 

ff x<:1- 1 x<:1- 1 (1-x- -x-)A-<>;-e<;-l dx- dx-
1 i i 1 i 1 co 0 

flJ 

f x11-I ( 1-x;)A-<>;-l dx; 
0 

G = __ r_('--A~-_"'i-'-'·) __ 
I'(°'i) I'(A -°';, -°'i) . 

1 ) The following proof, which is substantially simpler than another one which 
was developed by the authors, has been found by H. KESTEN, assistant of the 
Statistical Department, as a special case of the proof of the more general inequality 

P,,; ....• 1 ~ PiP; ••• Pi· 
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Similarly the right ha;nd member R(g;,, Yi) of ( 4.20) is found to be equal to 

(4.22) 
G _u,_o ___ ----=-1--------,------

J x7r 1 (l -xi)A-°'s-1 dx1 
D; 

Dt/Cl-o;) 
;;;; 0 J v"',- 1 (I-v)A-0<,-0<rl dt,. 

0 

So it follows from (4.21) and (4.22) that (4.20) holds. 

5. The power of the tests 

In this section we shall derive upper and lower bounds for the probabil
ities of making a correct decision, following the procedure described in 
section 3, under the 'hypotheses H1 and H2• 

In the firs£ case, i.e. when H1 is true, we assume that /3;, is the para
meter which has slipped to the right, i.e. /3;,= O;,{3, 0;,> 1. Then we prove 
that Q;,, the probability of making the correct decision lies between the 
limits 

( 5.1) { 1-JBj (ix;,, A-ix;,)} (1-s) ~ Q;, ~ {1-IB, (ix;,, A-ix;,)}, 

where 

(5.2) B - G,.e 
i - C;,-(0;,-I)G;,,.' 

where G;,,. is determined so as to make 

(5.3) 10 . (ix;,, A-ix;,)= 1-s/k. ... 
When O;, becomes large Q;, converges to the upper bound given by the 

right hand member of (5.1). 
When H 2 is true and /3i has slipped to the left, i.e. {3i-ci {3, 0~ci< 1 

the following limits can be derived for Pi, the probability of making the 
correct decision in this case. 

(5.4) 

where 

(5 5) b- = Yi.• 
• 1 c1+(I-c;)Yi.• 

and Yi.. is determined from 

(5.6) 

Again for small values of ci 

pi~ 1b. (ix1, A-ixi). 
' 

In order to prove (5.1) we may assume without loss of generality that 
i = 1 and then we put u1/01 = v1, thus v1 has a gamma distribution with 
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parameters /Xi and /J. The probability Q1 of making the correct decision is 

Q1=P[d1=min di and d1<e/k] 

~P[d1 <e/k and d2 >e/k ... and dic>e/k] 

=P[dI<e/k]-P[(dI<e/k andd2 <e/k); ... ; or (dI<e/k and dk<e/k)]. 

Thus the following inequality holds 
k 

(5.7) P [dI < e/k]- LP [dI < e/k and di< e/k] ~QI~ P [dI < e/k]. 
i-2 

We have 

(of. (5.2)). 

The distribution of vif(vI + u2+ ... + uk) is the distribution of xI under 
H0 and therefore known. In fact 

(5.8) 

Further we have 

P [dI < e/k and d; < e/k] 

P[ Vi B d Uj G ] 
= v1+u2+ ... +uk > I an v1+ ... +uk+(01-l)v1 > 1·• 

(5.9) 
-;;;,.P[ vi > BI and u; >G1 .]-;;;,. 

V1+u2+ ... +uk V1+ ... +uk ' 

(according to (4.11)) 

-;;;,_ p [ V1 > B1] . p [ u; > G; ,] 
Vi +u2 + ... +uk Vi+ ... +uk " 

= [l-IB, (1Xi, A-1XI)] e/k. 

Substituting (5.8) and (5.9) into (5.7) we get 

{ [l-IB (1Xi, A-<Xi)] (1-e) -;;;,. [l-IB (1Xi, A-1X1)] (l-(k-1) e/k) 
( 5 10) ) 1 1 

. ? -;;,.QI-;;;,_ [l-IB,(1Xi,A-1X1)], 

which proves (5.1). When 0 1 is large P[d;<e/k] will for j,I= 1 be much 
smaller than e/k and therefore in that case Q1 converges to its upper bound. 

The inequalities (5.4) oan be derived in the same way. 

6. Tables and nomograms 

To obtain the values d; and e; as defined by (2. 7) and (2.9) and to evaluate 
the power functions (5.4) and (5.5) we need suitable t,ables or nomograms 
of the incomplete B function. 
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When all .x. are equal, the smallest di corresponds to the largest ratio 
X; and the smallest ei corresponds to the smallest ratio x.. Further the 
critical values Gi.• of xi when testing the largest ratio and Ui.• for testing 
the smallest ratio are then all equal: 

G •.• = G. (i = I, ... , k), 

u •.• = g. (i = I, ... ,k). 

Therefore in this case it suffices to have tables with these critical 
values with entries k and the common parameter value °'· These tables 
may be found in C. EISENHART, M. W. HASTAY and W. A. WALLIS (1947) 
(s= 0.05 and 0.01) for the first test and in R. DOORNBOS (1956) (e= 0.05) 
for the second one. 

When unequal values among the °'• occur the minimum d value may 
be found in most cases by means of PEARSON's tables of the incomplete 
function (K. PEARSON (1934)). 

The smallest e value, however, will, when it lies in the neighbourhood 
of e/k and k is not very small, correspond to such a small ratio x that 
PEARSON's tables are not suitable for our purpose. In this case and also 
if the parametervalues A - °'i are larger than 50, the nomograms of 
H. 0. HARTLEY and E. R. FITCH (1951) may be used to obtain an 
approximation to the e-values. 

To demonstrate the use of these charts we consider the following, 
:fictitious, example. Suppose we have a group of ten machines turning out 
the same product, and we measure some property t on each specimen. 
Suppose we are interested in :finding out whether one of the machines 
produces the product more regularly than the other ones do. 

From the ith machine we have ni observations tii (j = I, ... , n.). For 
each machine the sum ui of squared deviations from the mean value is 
computed: 

where 

n1 

U- = °"' (t .. -t. )2• 1, ,£., 'l1 'l • ., 

i=l 

I "1 

t- = - "'t •. n. £., ii• 
i=l 

Assuming that the tii are independent observations from a normal 
distribution N(µi, ai), ui is an observation from a gamma distribution 
with parameters °'•=(ni-1)/2 and f3i=2a;. 

Fictitions u-values are given in table 6.1. 
Clearly machine no 5 will give the smallest e value. So we must evaluate 

e = 10.028 (7,63) = 1-10.972 (63,7). 

From the chart we find that 10.972 (63,7) ~ 0.996. Thus e is smaller than 
0.05/10 and therefore we can reject the hypothesis that all a, are equal 



Machine 1 2 

Number of 
observations 10 15 

°'• . 4.5 7 

U;, 45.9 109.6 

U· 
:r=-' 0.051 0.121 

Eu; 

3 

21 

10 

112.8 

0.124 
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TABLE 6.1 

4 5 6 

23 15 11 

11 7 5 

142.0 25.7 123.0 

0.157 0.028 0.136 

7 8 9 10 I total 

31 15 3 I 6 150 

15 7 1 2.5 70 

182.0 106.4 12.8 46.5 906.7 

0.201 0.117 0.014 0.051 1.000 

at the level of significance 0.05 and it may be concluded that the fifth 
machine is the most accurate one. 
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