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1. Introduction 

The problem treated in this paper concernn the maximum likelihood 
estimation of partially or completely ordered probabilities. 

Consider k independent series of independent trials, each trial resulting 
in a success or a failure. The i-th series consists of ni trials with ai 2) 

successes and bi= ni-a• failures; ni is the (unknown) probability of a 
success for each trial of the i-th series (i= 1, 2, ... , k) and ni, n2, ••• , nk 

satisfy the inequalities 

(1.1} 

where 

(i, j = I, 2, ... , k), 

l l. cxi.i = - cxi.i• 
(1.2) 2. cxi.i = 0 for m 0 pairs of values (i, j) with i < j, 

3. cxi.i = 1 for m1 pairs of values (i, j) with i < j, 

(1.3) 

and, if i<h<j then 

(1.4) cxi.i = 1 if cxu = cxh.i = 1 (transitivity). 

In section 2 and 3 methods will be described by means of which the 
maximum likelihood estimates of ni, n2, ••• , nk may be found, i.e. the 
values of x1, x2, ••• , xk which maximize 

k 

( 1. 5} L = L ( Xi, x2, ••• , xk) def L { ai lg xi + bi lg ( 1 - xi)} 
i=l 

in the domain 

( 1.6) D. ,.1 • 1 - , 

~

CX· ·(X·-X·) :::,;; 0 

. 0 ;:£;xi;;;;; 1 
(i, j = I, 2, ... ,k). 

1) Report SP 50 of the Statistical Department of the Mathematical Centre. 
2) Random variables will be distinguished from numbers (e.g. from the value 

they take in an experiment) by printing their symbols in bold type. 
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Unless explicitely stated otherwise L will only be considered in this domain 
D; the maximum likelihood estimates will throughout this paper be 
denoted by Pv p2, ••• , Pk, the point in D where L assumes its maximum. 

Let further 

(1.7) 

and 

(1.8) f, = ~ (i = 1, 2, ... ,k). 

Further the restrictions n, ~ :n:, (i.e. ex,,;= 1) satisfying 

(1.9) cxi,h °'h,i = 0 for each h between i and i 
will be denoted by R1, R2, ••• , R,. Each R1,. thus corresponds with one 
pair (i, j), i.e. R1,. denotes the relation n,~:n:;, satisfying (1.9); this pair 
(i, j) will be denoted by (i,., j1,.). Because of the transitivity relations 
(1.4) the system R1, R2, .•• , R, is equivalent to (1.1). 

In section 4 some examples will be given. 

Remarks: 

1. Every set of restrictions R1, R2, ••• , R, represents a convex domain. 
2. It will be clear that partially or completely ordered probabilities 

can always be numbered in such a way that they satisfy (1.1). 
3. If m0 =0 then (1.1) is equivalent to 

(1.10) 

This special case has been solved independently by MIRIAM AYER, 
H. D. BRUNK, G. M. EWING, W. T. REID, EDWARD SILVERMAN [2] and 
the present author [l ]. 

2. The maximum likelihood estimates of :n:1, :n:2, ••• , :n:k 

In this section the following theorem will be proved. 

Theorem I: L possesses a unique maximum and if p;, p;, ... , p~ are 
the maximum likelihood estimates of :n:i, :n:2, ••• , :n;k under the restrictions 
Rv ... , R1.-1> R;.+1, ... , R, then the maximum likelihood estimates p1, p2, ••• , Pk 
under the restrictions Ri, R2, ••• , R. satisfy the relations 

(2.1) 
~

I. Pi=P: (i= 1,2, ... ,k) if P{;. ~Pi;., 
2 if 

, , 
· Pi;.= P;;_ Pi;. > Pi;.• 

Proof: The R;. have not been arranged in a special order. Therefore 
we may, without any loss of generality, take A=s. 

The uniqueness of the maximum of L will be proved by induction. 
Ifs= 0 then it is well known that L possesses for any k a unique maximum 
and 

(2.2) 

Further s=O if k= 1; therefore L possesses a unique maximum and (2.2) 
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holds for k= l. Now suppose that it has been proved that L possesses 
a unique maximum for the following two cases: 

(2.3) 
~ 1. k series of trials with s - 1 restrictions 

· ( 2. k - 1 series of trials with s - 1 or less restrictions, 

where k ~ 2, s ~ 1 and consider a case with k series of trials ands restrictions. 
Then it follows from (2.3.1) that L possesses a unique maximum under 
the restrictions R1, R2, ••• , R

8
_ 1 i.e. there exists exactly one point 

p;, p~, ... , pf. satisfying these restrictions and maximizing L. 
Now the following two cases may be distinguished. 
l. p; ;;;,. p,~ ; then p;, p~, ... , p~ satisfy all restrictions R1, R2, ••• , R •. • • 

Therefore in this case L possesses a unique maximum under the restrictions 
Rv R2, ••• , R. and 

(2.4) p,. = p; (i = 1, 2, ... ,k). 

2. p;, > p1,; then (2 .1. 2) may be proved as follows. Consider a fixed 
point x1, x2, ••• , xk in D with xi <xi. It will be clear that such points 
exist. Then if • • 

(2.5) 

we have 

(2.6) 

~ x. (,8) def ( 1 - ,8) x, + ,8 p; 
( 0;;;,. ,8;;;,. 1, 

(i= 1,2, ... ,k), 

X,(O)=x,;, X.(l) =p; (i= 1,2, ... ,k) 

and for each ,8 with o;;;.,a;;;. 1, X 1(,8), X 2(,8), ... , Xk(,8) is a point satisfying 
the restrictions R1, R2, ••• , Rs-v but not necessarily R. (cf. remark 1 
in the foregoing section). Therefore if 

(2.7) 

then 

(2.8) 

x· x· 
,8 def 1,- '• 
o= , , 

x;, -x;, +Pi, -P;, 

~ L o <Po< 1, 

( 2. x •. (.Bo) = xi, (,Bo), 

i.e. X 1{,80), X 2(,80), ••• , X,.(,80) is a point satisfying the restrictions 

i.e. a point in D. 
Further L{X1({3), X2{{3), ... , Xk(/3)} is for fixed values of x1, x2, ••• , xk a 

function of ,8, say g({3), and from (1.5) and (2.5) it follows that 

(2.9) d2g(p) = ~ ( ~ _ .) 2 -n;{X,(p)}2+2a,X,(P)-a, 
ap2 ,-=1 P, x, {X.(P)}2{I-X.(p)}2 . 

Further we have 

) 

< 0 for all {3 if O < a;, < n;,, 

(2.10) -n,{X.({3)}2+ 2a,X.({3)-a. = -n, {X, ({3)}2 if ~ = 0, 
= - n, { 1-X, (/3) }2 if a, = n, 
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and from (2.9) and (2.10) it follows, p{ -x. being #- 0 for at least one 
value of i (viz. for i=i. or/and i=j.), that 

(2.11) d2J.l) < 0. 

Further we have 

(2.12) 

for each{) with 0~/J< l and from (2.6), (2.11) and (2.12) it follows that 
g(f)) is an increasing function off) in the interval 0~f)~ l. 

Thus for each point Xi, x2, ••• , xk in D with x. < X; , D contains a point , . 
x 1, x 2, ... , xk with 

(2.13) { 
1. X;, = X;,, 

2. L(X1, X 2, ••• ,Xk) > L(xv x2, ••• ,xk), 

i.e. L{xi, x2, ••• , xk) attains its maximum under the restrictions R1,R2, ••• ,R. 
for xi = x,. Substituting this into {1.5) the two terms with i=i. and . ,, 
i = j. are reduced to one term of the form 

(a.,+ a;.) lg x., + (b._ + b;,) lg (I -x.). 

This means that the two series of trials in question are to be pooled. 
The uniqueness of the maximum of L under these restrictions then 
follows from (2.3.2). 

By applying theorem I repeatedly and using the well known solution 
of the problem for the case that s=0 a solution may be obtained. This 
may, however, lead to a rather complicated procedure, which can often 
be simplified by applying the special theorems mentioned in the following 
section. 

3. Some special theorems 

Theorem II: If 0<,i.i(f, - /;) ~ 0 for each pair of values (i, j) then 

(3.1) Pi=/. (i=l,2, ... ,k). 

Proof: This follows immediately from the fact that in this case the 
maximum of L in D coincides with the maximum of L in the domain: 
0~xi~I (i=l, 2, ... , k). The theorem also follows from theorem I. 

The following theorem will be immediately clear. 

Theorem III: If i1, i2, ••• , i, is a set of values satisfying 

(3.2) (Xi.ii = (Xi,i:. = ... = (X•·•• = 0 for each i #- i1 , i 2, ••• , i, 

then the maximum likelihood estimates of ni,, ni:., ... , n •• are those values 
of X;,, xi,, ... , x;, which maximize Lit+ Li,+ . . . + L.. in the domain 

(3.3) D': 'l,h• 1'h' 'l,h 'l,h' = ' 

i
(X• · (X· -X- ) < 0 

0 ~xi,.~ I 
(h,h' = 1,2, ... ,v). 

For the proof of the theorems IV and V we need the following lemma. 
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Lemma I: If Xi, x2, ••• , xk is any point in D such that for some pair 
of values (i, j) 

1. xi< xi, 

(3.4) 
2. ti~/; 
3. tXh,i ~ tXh,i for each h < j, 

4. tXi, h ~ tX;, h for each h > i, 

then a number x exists satisfying 

l 
l. Xi, x2, ••• , xk is also a point in D if x is substituted for 

(3.5) xi and X;, 

2. L.(x) + L; (x) > Li (xi) + Li (x;). 

Proof: 

The following cases may be distinguished 

(3.6) 

(3.7) 

(3.8) 

xi< X; ~ fi; then take x = X;, 

fi ~xi< xi; then take x = xi, 

x ,< fi < x;; then take x = fi• 

It may easily be proved that this number x satisfies (3.5.2). For (3.6) 
e.g. we have 

(3.9) 

and 

(3.10) 

From (3.10) follows 

(3.11) 

and (3.5.2) follows from (3.9) and (3.11). 
For the cases (3.7) and (3.8) it may be provPd in a similar way by 

means of (3.4.2) that L satisfies (3.5.2). 
In order to prove that this number x satisfies (3.5.1) it is sufficient to 

prove that 

)

l. ah_.(xh-x) ~o 
2. IXi.h (x - xh) ~ 0 

3. IXh.i (xh - x) ~ 0 

4. IX;,h (x - xh) ~ 0 

(3.12) 

for each h < i, 

for each h > i, 

for each h < j, 

for each h > j. 

From the fact that x satisfies 

(3.13) 

and the fact that Xi, x2, ••• , xk is a point in D it follows that 

(3.14) 
~ 1. ah.,(xh-x) ~ ah_.(xh-xi) ~ 0 for each h < i, 

~ 2. iX;,h(x-xh) ~ rxi.h(x1-xh) ~ 0 for each h > j. 
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Further it follows from (3.4.3) and (3.4.4) that 

I 1. °'•h(x-xh) =tX,h(x-xh) for each h > i with tX,·h= 1, 
(3.15) . ,. . . . 

2. °'h,;(xh-x) = °'h,i(xh-x) for each h < J with °'h.i = 1 

and (3.12) follows from (3.14) and (3.15). 

Theorem IV: If for some pair of values (i, j) with i<j 

(3.16) °'i.i(fi-f;) > 0 

and 

(3.17) 

then 

(3.18) 

(

1. 

2. 
3. 

°'i,h = °'h.i = 0 for each h between i and i, 
°'h.i = °'h,i 

°'i,h = °'i,h 

for each h < i, 
for each h > j, 

P, = P;• 

Proof: From (3.16) and (3.17) it follows that 

(

1. /;, > /;, 
2. °'h.i = °'h.i for each h < ~' 
3. °'i.h = °'i.h for each h > i. 

(3.19) 

Now suppose that x1, x2, ... , xk is a point in D with 

(3.20) X,; < X;. 

From lemma I, (3.19) and (3.20) it follows then that a number x exists 
such that Xi, ... , x,_1, x, x,+1, ... , X;_1, x, X;+i, .•. , x; is a point in D and 

(3.21) L, (x) + L; (x) > Ldx,) + L; (x;). 

Thus for each point x1 , x2, ••• , xk in D with x, < X; a point x;, x~, ... , x{ in 
D exists with 

(3.22) 
1 

, , 
~ • X;, = X;, 

( 2. L(x;, x~, ... ,x;) > L(xi, x2 , •••• xk), 

i.e. L attains its maximum for x,=x; and (3.18) then follows from the 
uniqueness of this maximum. 

Remarks: 

4. This theorem is also related to theorem I. If R;. represents the 
restriction n;, ~ n; it follows from (3.22) that L attains its maximum 
under the restrictions R1, ..• , R;._1, R;.+1, ... , R8 for xi~ X;, giving p{ ~ p1; 
from (2.1) then follows: Pi=P;· 

5. If m0 = 0, i.e. if the probabilities n1, n2, ... , nk satisfy the inequalities 

(3.23) 

then each pair of values (i, j) with j = i + I satisfies (3.17). Therefore we 
have in this case 

(3.24) p, = PHI for each i with f, > IHI· 
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From theorem IV it follows that if there is a pair of values (i, j) satis
fying (3.16) and (3.17) then the problem may be reduced to the case of 
k-1 series of trials with s - l ( or less) restrictions by substituting xi= x1 
into L (x1, x2, ... , xk), i.e. by pooling the i-th and j-th series of trials. , 

.Theorem V: If (i, j) is a pair of values satisfying 

(3.25) f. ~ f; 
and 

(3.26) 
(

1. IX;,,;=0, 

2. °'h,i ~ °'h.i for each h < i, 

3. °'•,h 6 °'i,h for each h > j, 
then 

(3.27) 

Proof: Suppose Xi, x2, ... , xk is a point in D with 

(3.28) X;, > X;, 

From lemma I, (3.25), (3.26) and (3.28) it follows then in the same way 
as in theorem IV that for each point x1, x2, .•• , xk in D with x, > x1 a point 
x;, x~, ... , x~ in D exists with 

(3.29) 
~ 1. x; = x;, 
( 2. L(x;, x~, ... ,x~) > L(xi, x2 , ... ,xk)· 

Now D also contains points with x, < xi and therefore L attains its 
maximum for x, ~ x1; (3.27) then follows from the uniqueness of the 
maximum. 

By means of theorem Va new restriction may be introduced. This is 
sometimes useful as may be seen from example 2 of section 4. 

Theorem VI: If (i, j) is a pair of values with 

(3.30) °'i.i = 0, 

if D' is the sub-domain of D where X;, ~xi and if p;, p~, ... , p~ is the point 
where L assumes its maximum in D' then 

(3.31) ~ 
1 ' ' , 'f ' ' • P1=P1,P2=P2,···,Pk=P1, I P;,<P;, 
2. Pi 6 Pi if p{ = p;. 

Proof: 

First consider the case that p{ <p;. For this case it may be proved 
that Pi< Pi, by showing that P; 6 p1 leads to a contradiction. Because if 
p, 6 Pi then it may be proved in the same way as in theorem I that L 
attains its maximum in D' for X;,=Xi, i.e. then we have p{ = p;. Thus 
P; < Pi if p; < p; and from the uniqueness of the maximum of L then 
follows 

(3.32) 
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Now consider the case that p; =p1, i.e. the case that L attains its maximum 
in D' for x,=x1; then L attains its maximum in D for xi~x1, i.e. Pi~Pi· 

Thus if the maximum likelihood estimates of :71:i, :n:2, ••• , :n:k in D' are 
known then the problem is solved by means of theorem VI if p; < p; 
(cf. (3.31.1)) or the new restriction :n:1 ;;;;; :n:i may be introduced if p; =p; 
(cf. (3.31.2)). 

Remark: 

6. Theorem V is related to theorem VI. Taking in theorem V for D' 
the subdomain of D where x1 ;;;;; X;, it follows from (3.29) that p1=p{. 
From (3.31.2) then follows: pi;;;;;Pi. 

In general it is much more simple to apply the theorems II - V than 
I or VI. In some situations however II - V are not applicable and then 
I or VI have to be used. This will be illustrated in the examples of the 
following section. 

4. Examples 

Example 1 (complete ordering; theorems II and IV): 
Suppose k = 4, m0 = 0 (:n:1 ;;;;; :n:2 ;;;;; :n:3 ;;;;; :n:4 ) and 

1~ 1 2 3 4 

(4.1) 
4 3 10 8 

ni 10 5 30 15 

ti 0,4 0,6 0,33 0,53. 

From (4.1) and (3.24) it follows that 

(4.2) P2=Pa 

and the problem is reduced to the case of k- 1 = 3 series of trials by pooling 
the second and third series of trials: 

1~ 1 2( +3) 4 

(4.3) 
4 13 8 

ni 10 35 15 

t: 0,4 0,37 0,53. 

From (4.3) and (3.24) it then follows that 

(4.4) P1=P2 

and the problem is reduced to the case of k- 2 = 2 series of trials with 

) . 1 ( + 2+3) 4 
II 17 8 a. 

(4.5) n; 45 15 

t: 0,38 0,53. 
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From (4.5), (4.2), (4.4) and theorem II then follows 

(4.6) Pt=P2 =p3 =0,38, p4 =0,53. 

Example 2 (incomplete ordering; theorems II, IV and V): 
Suppose k=5, m1 =6, m0 =4 

I 2 3 4 5 

(4.7) 
7 13 15 2 12 

ni IO 20 30 5 15 F Ii 0,7 0,65 0,5 0,4 0,8 
and 

(4.8) IX1,2 = IX1,3 = IX2,4 = IX3,5 = l. 

Then the pair of values i=2, f =4 satisfies (3.16) and (3.17). Therefore 
we have 

(4.9) 

and the problem is reduced to the case of k- I= 4 series of trials with 
m{=4, m~=2, 

1~ I 2( +4) 3 5 

(4.IO) 
7 15 15 12 

n: IO 25 30 15 • 
1; 0,7 0,6 0.5 0,8 

and 

(4.ll) iX{.2 = IX~.S = IX~,5 = l. 

For these 4 series of trials the pair i = 3, j = 2 and the pair i = 2, j = 5 
satisfy (3.25) and (3.26). From theorem V then follows that L attains 
its maximum. for 

(4.12) 

and from (4.9), (4.IO) and (4.12) follows 

(4.13) p1 =p3 =0,55, p2 =p4 =0,6, p5 =0,8. 

Exam.pie 3 (incomplete ordering; theorem I or VI): 
Suppose k = 4, m0 = rl½ = 3, 

1~ I 2 3 4 

(4.14) 
7 18 13 10 

ni IO 30 20 25 

Ii 0,7 0,6 0,65 0,4 
and 

(4.15) IXl,!2 = IX1, 4 = IX3, 4 = }. 

For this case the theorems II-V cannot be applied and we use therefore 
theorem I. 
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Take i1 = I and j1 = I (i.e. omit the restriction :rti ~n4), then p;, p~, p~, p~ 
are those values of Xi, x2, x3, x4 which maximize L in the domain 

(4.16) 
~ X1 ~ X2, X3 ~ X4, 

( 0 ~ x, ~ I (i = 1, 2, 3, 4). 

From theorem III and IV then follows 

(4.17) p; = p~ = 0,63, p~ = p~ = 0,51 

and from theorem I and {4.17) (cf. (2.1.2)) 

(4.18) 

In this way the problem is reduced to the case of k-1 = 3 series of trials 
with 

1~ 3 1 ( +4) 2 

(4.19) 
13 17 18 

n, 20 35 30 

t: 0,65 0,49 0,6 
and 

(4.20) IX;. 1 = iX;,2 = 1. 

From (4.18), (4.19) and (4.20) follows 

(4.21) 

This problem may also be solved by means of theorem VI as follows. 
If we take i = 2, j = 3 then D' is the domain 

(4.22) 
~ X1 ~ X2 ~ X3 ~ X4, 

(O~x,~l (i=l,2,3,4). 

The estimates p;, p~, p;, p~ then follow from (3.24): 

(4.23) p; = p~ = p; = p~ = 0,56. 

From theorem VI and (4.23) then follows (cf. (3.31.2)) 

(4.24) 

Introducing the restriction n3 ~n2 the problem is reduced to the case 
of 4 series of trials with (4.14) and 

(4.25) 

Then the pair i = 3, j = 1 and the pair i = 4, j = 2 satisfy (3.25) and (3.26). 
From theorem V then follows that L attains its maximum for 

(4.26) 

and from (4.14), (4.26) and (3.24) then follows 

{4.27) p1 =p3 =p4 =0,55, p2 =0,6. 
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Example 4 (incomplete ordering; theorem VI) : 
Suppose k=8, m0 =13, 7ni.=15, 

i: 1 2 3 4 5 6 7 8 

(4.22) 
8 22 13 . 25 20 21 32 2 

ni 10 40 20 50 30 50 50 5 

ti 0,8 0,55 0,65 0,5 0,67 0,42 0,64 0,4 

and 

(4,23) °'1.~ = °'1,4 = °'s,4 = °'4,5 = °'s,o = °'s,8 = °'7,8 = 1. 

For this case the theorems II-V cannot be applied and we use therefore 
theorem VI. 

Taking for {i, j) the pair i = 6, j = 7 the estimates p;, p~, ... , p~ are the 
values of x 1, x 2, ••• , x 8 which maximize L in the domain 

(4.24) D': ~ X1~X2, X1~~4, X3~X4~X5~Xs~X7~x8, 

( 0~xi~l. (i=l, 2, ... , 8). 

These estimates may be found as· follows. From theorem IV follows 

(4.25) 

Thus the problem of finding p;, p~, ... , p~ is reduced to the case of k-2=6 
series of trials with m~ = 5, m; = 10, 

'I, 1 2 3 4 5 ( +6) 7 ( +8) 
I 8 22 13 25 41 34 

(4.26) ai 
I 10 40 20 50 80 55 n, 

ti 0,8 0,55 0,65 0,5 0,51 0,62 

and 

(4.27) ocL2 = oc;,4 = oc;,4 = °'~.s = °'~.7 = 1. 

To these 6 series of trials we apply theorem I, taking for RJ. the restriction 
n1 ~n4• Then we find by means of the theorems II, III and IV in a similar 
way as in example 3 

(4.28) 

In this way the problem of finding p;, p~, ... , p~ is reduced to the case 
of k-3=5 series with m~=2, m~=8, 

i 3 1 ( +4) 2 5( +6) 7 ( +8) 
fl 13 33 22 41 34 

(4.29) a. 
n~ 20 60 40 80 55 • 
1;' 0,65 0,55 0,55 0,51 0,62 

and 

(4.30) oc;, 1 = oc;,2 = oc;.s = oc;, 7 = 1. 
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From theorem IV then follows 

(4.31) 

and the problem is reduced to the case of k- 4 = 4 series of trials with 
m;=2, m';=4 

f 
l ( +3+4) 2 5( +6) 7 ( +8) 

Ill 46 22 41 34 
(4.32) 

a-

n~ 80 40 80 55 

ft 0,58 0,55 0,51 0,62 
and 

(4.33) ix~'.2 = °'~
1

.5 = °'~7 = l, 

From theorem V then follows 

(4.34) 

and from (3.24), (4.25), (4.28) and (4.31) 

(4.35) p; = p~ = p~ = p; = p~ = 0,54, p~ = 0,55, p; = p~ = 0,62. 

From theorem VI and (4.35) it follows, p~ being smaller than p; (cf. 
(3.31.1)) 

(4.36) Pi= p{ (i = 1,2, ... , 8). 

The method used in this example for finding the estimates Pi, p2, ••• , p8 is 
not the only possible way. The problem may also be solved by exclusively 
applying theorem I, taking any of the restrictions Ri, R2, ... , R8 for 
R;. or by exclusively applying theorem VI, taking for i and j any of the 
pairs of values (i, j) with °'i,i = 0. 

Remark: 
7. The indicated procedure may be generalized to several cases of 

ordered parameters of other probability distributions, e.g. parameters of 
Poisson distributions and means of normally distributed variables with 
known variances. This generalization and the properties of the estimates 
are being investigated. 

The author wants to express her thanks to Prof. Dr. J. HEMELRIJK, 

who suggested the problem, for his guidance during the investigation 
and to Prof. Dr. D. VAN DANTZIG for his constructive remarks which 
helped to give the paper its final form. 
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