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I. Introduction 

The problem treated in this paper concerns the maximum likelihood 
estimation of a finite partially or completely ordered set of parameters 
of probability distributions. A special case of this problem, the maximum 
likelihood estimation of a finite ordered set of probabilities, has been 
treated in [2]. 

The problem will be formulated in section 2; in section 4 and 5 methods 
will be given by means of which the estimates may be found. For the 
proofs of the theorems we need some lemma's which will be proved in 
section 3; in section 6 the consistency of the estimates will be investigated 
and in section 7 some examples will be given. 

2. The problem 

Consider k independent random variables x1, x2, ... , xk 2): and n; inde-
pendent observations xu, Xu, ... , x •. .,.. of x, (i= 1, 2, ... , k). Assume that 
the distribution of x, contains one unknown parameter 0, (i= 1, 2, ... , k) 
and that its distribution function is 

(2.1) (i = 1, 2, ... ,k). 

Two types of restrictions are imposed on the parameters 01, 02, ••• , Ok. 
First let I, be a closed interval such that Fix, I y) is a distribution 
function for each value of y EI, (i= 1, 2, ... , k). By means of the choice 
of I, restdctions of the type c, ~ Oi ~ d, may be imposed. The second 
type of restrictions consists of a partial or complete ordering of the para­
meters, which may be described as follows. Let (X;,,c1 (i, i = 1, 2, ... , k) be 
numbers satisfying the conditions 

(2.2) ~ ~: ::::: ~i-~he intersection I, r\ 11 contains at most one point, 
( 3. (X;, 1 = 0, + 1 or -1 in all other cases; 

1 ) Report SP 52 of the Statistical Department of the Mathematical Centre, 
Amsterdam. ~ 

2) Random variables will be distinguished from· numbers (e.g. from· the values 
they take in an experiment) by printing their symbols in bold type. 
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°'i,i = I if °'i,h = °'h,; = I for any h. 

The restrictions imposed on 01, 02, ..• , 0k are then 

(2.4) 
~ I. °'i,i (0i - 0i) ~ 0 

? 2. 0i E Ii 
(i,f= 1,2, ... ,k) 

and it will be supposed that the parameters 01, 02, ••• , 0k are numbered 
in such a way that 

(2.5) °'i.i6 0 for each pair of values (i, j). 

No other restrictions on 01, 02, ••• , 0k are admitted, such that all points 
y1, y2, ••• , 'Yk of the Cartesian product 

def k 
(2.6) G = IT Ii, 

i=l 

satisfying 

(2.7) 

belong to the parameterspace, which thus is a convex subdomain of G. 
This subdomain will be denoted by D. 
Let 

(2.8) 

then 

(2.9) 

P· 
? 2. 

°'i.i = 0 for r0 pairs of values (i, j) with i < j, 
°'i.i = I for r1 pairs of values (i, j) with i < j, 

Let further fi(xi J 0i) denote the density function of xi if xi possesses a 
continuous probability distribution and P[x, = x, J 0.] if xi possesses a 
discrete probability distribution and let 

(2.10) 

Then the maximum likelihood estimates of 0i, 02, ••• , 0k are the values of 
Yi, y2, ••• , 'Yk which maximize Lin the domain D. Unless explicitely stated 
otherwise L will only be considered in this domain D; the maximum likeli­
hood estimates will throughout this paper be denoted by ti_, t2, ••• , tk. 

Further the restrictions 0.-;;;,0i (i.e. °'i.i= 1) satisfying 

(2.11) °'i,h · °'h,; = 0 for each h between i and j 

will be denoted by R1, R2, ••• , R •. Each R, thus corresponds with one pair 
(i, j); this pair will be denoted by (i,., j,.). 



,, 
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Because of the transitivity relations (2.3) the system R1 , R2, ••• , R. 
is equivalent to (2.4.1) and uniquely determined by (2.4.1). The restric­
tions Ri, R2, ••• , R. will be called the essential restrictions. 

Remark 1 : H. D. BRUNK [l] described a method by means of which 
the estimates of 01 , 02, ••• , Ok may be found if the distribution of x, belongs 
to the "exponential family" (i= 1, 2, ... , k) and if moreover I, is the set 
of all values of yforwbich F.(x. j y) is a distribution function (i= 1, 2, ... , k). 
His method however leads to more complicated computations than ours. 

3. Lemma's 

Definition: A function <p(y) of a variable y will be called strictly 
unimodal in an interval J if there exists a value y* E J such that 

(3.1) <p(y) < <p(y') < <p(y*) 

for each pair of values (y, y') E J with 

(3.2) 

and for each pair of values (y, y') E J with 

(3.3) y*<y'<y. 

It follows at once from this definition that a strictly unimodal function 
<p(y) is bounded in every closed subdomain of J not containing y*. 

Now let <p,.(J;,.) be a strictly unimodal function of y,. in the interval 
J,.('x= 1, 2, ... , K) and let further 

(3.4) 

then it will be clear that <l>(?Ji, y2, ••• , Yx) possesses a unique maximum in 

{3.5) 

in the poiI}t (y;, y;, ... , Yk), where <p,.(y!) is the maximum of <p,. in 
J,. (u= 1, 2, ... , K). 

We now define a function V as follows. 

Let y~, y~, ... , y~ be a given point in I' with y~=l=y! for at least one value 
of u and let 

(3.6) 
~ y" (/3) def ( 1 _ /3) y~ + /3 y! 

?o~p~1. 
(u = 1, 2, ... ,K), 

Then {Y1({3), Y2(/3), ... , Y x(/3)} is a point in I' and V is defined by 

(3.7) 



131 

Lemma I: V({J) is a monotone increasing function of fJ in the interval 
O~/J~ 1. 

Proof: Consider a value of u with 

(3.8) y~ = y! 
then 

(3.9) Y,.({J) = y! for each fJ with O ~ fJ ~ 1. 

Thus in this case we have 

(3.10) <p,.(~)=<p,.{Y,.(/J)}=<p,.(y!) for each fJ with O~/J~l. 

Now consider a value of u with 

(3.11) 

then it follows from the fact that <p,.(y,.) is, in the interval J,., a strictly 
unimodal function of y,. and attains its maximum in J,. for y,.=y!, that 

(3.12) <p,. (y~) < <p,. { Y" (/J1)} < <p,. { y" (/J2)} < <p,. (y!) 

for each pair of values (/Ji, /J2) with O < /J1 < /J2 < 1. 
From (3.4) and the fact that there exists at least one value of u with 
(3.11) it follows then that 

(3.13) 

for each pair of values (/Ji, /J2) with O < /J1 < /J2 < 1. 

Lemma II: If 0 is a closed convex subdomain of I', not containing the 
point (yf, yt, ... , y~:), then <J>(y11 y2, ••• , YK) attains its maximum in 0 only 
in one or more points on its boundary. 

Proof: Consider any inner point y~,yg, ... ,y'J. of O and let Y,.({J) be 
defined by (3.6) (u= 1, 2, ... , K). Then, 0 being a closed convex domain 
not containing the point (yf, yt, •.. , y'.);:) there exists a value of fJ in the 
interval 0</J < 1, say /30 , such that {Y1(/30), Y2(/30), ••• , Y K(/J0)} is a border 
point of 0. Further it follows from Lemma I that 

(3.14) 

Thus for each inner point (yt yg, ... , y']d of 0 there exists a border point 
(Yi, Y2, ... , Y K) of 0 with a larger value of <J>. Moreover <J> is bounded 
in 0, because the point (yf, y;, ... , Yi:) is not contained in 0. Thus <J> 
has a maximum in 0, which can evidently only be attained in border 
points. 

4. The rnaximum likelihood estimates of 811 82 , ••• , 8k 

Let M be a subset of the numbers 1, 2, ... , k; let further 

(4.1) 
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(4.2) LM (z) def IL, (z) z E IM. 
ieM 

Throughout this paper it will be supposed that the following condition 
is satisfied. 

( 4.3) Condition: For each M with IM =I= 0 the function LM(z) is strictly 
unimodal in the interval IM· 

Now let M, (v= 1, 2, ... , N) be subsets of the numbers 1, 2, ... , k with 

(4.4) 

N 

l. UM,= {l, 2, ... ,k}, 

2. M,, n M •• = 0 for each pair of values vi, v2 = 1, 2, ... , N 
with V1 =/= V2, 

3. IM =I= 0 for each v = 1, 2, ... ,N, 
• 

where 

(4.5) IM def n I;, (v = 1, 2, ... ,N). 
v iEM

11 

Let further (cf. (2.6)) 

(4.6) 

and 

(4.7) LM (z.)def I L;,(z.) z,EIM (v= 1,2, ... ,N). 
v iEMv " 

Then for all points in GN L(y1, y2, ••. , Yk) reduces to a function of N 
variables zt, z2, ... , zN; we denote this function by L'(zt, z2, ••• , zN) and thus 
have 

(4.8) 
N 

L'(zt,z2,···,zN) = ILM,(z.), 
•~l 

which is according to (4.3), a sum of strictly unimodal functions. 

Theorem I: L possesses a unique maximum in D. 

Proof: This theorem will be proved by induction. 
LetM1, M 2 , ••• , MN be an arbitrary set of subsets of the numbers 1, 2, ... , k 
satisfying (4.4) and let 

(4.9) 

wheres denotes the number of essential restrictions defining D and where 
GN is defined by (4.6). Then DN.s is convex and: 

for N =k we have IM, =I. (v= 1, 2, ... , N), thus Gk=G and Dk_.=D 

for s=O we have D=G thus DN.o=G:,, 
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We shall say that the function L'(Zi, Z:i, •.• , zN) can be monotonously 
traced to its maximum in DN,s if 

(4.10) 

l. L'(Zi, z2 , ••• , zN) possesses a unique maximum in DN,., 
2. every point of lJN.• can oe connected with the point in DN.• 

where L' assumes its maximum by means of a broken line, 
consisting of a finite number of segments, in DN.• such that 
L' increases monotonously along this line. (Such a line will 
be . called a trace.) 

For s=O L'(Zi, z2, ••• , zN) has this property for every set M 1, M 2 , .•• , MN 
satisfying (4.4) and every N. This follows from the fact that L' is the 
sum of strictly unimodal functions and that DN.o is the Cartesian product 
of the intervals IM, (v= 1, 2, ... , N) so that lemma I may be applied. 

Let us now suppose that it has been proved that L' can be monoton­
ously traced to its maximum for all values of s ~ s0 for every set 
Mv M 2, ••• , MN satisfying (4.4) and for every N. We then prove that 
the same holds for s0 + 1 essential restrictions. 

Consider, for a given set M 1 , M2, ••• , MN, satisfying (4.4), a domain 
DN.so+l and the domain DN.'•o which is obtained by omitting one of the 
essential restrictions defining JJ,.,.,.+i· Let this be the restriction RJ..: 
0i;.~0;J..• Then clearly 

(4.11) 

Now L' has a unique maximum in DN.s., attained in (say) the point T. 
We first consider the case that T is outside DN,s.+1· Then an arbitrary 
point P of DN.s,+1 with Z;J.. <zi,. can be connected with T by means of a 
trace in DN,so and this trace must contain at least one border point of 
DN,s,+1 with zi., =Z;.,, because within DN,s,+l we have: Z;J. <Z;J. and outside 
DN,s,+1: ziJ.>z;J.• The first of these points when following the trace will 
be denoted by U; then L' assumes a larger value in U than in P. Now 
U lies in a domain DN'.••'' where N' =N -1 and s~~s0 and L' can thus 
monotonously be traced from U to its unique maximum in DN'.••' by means 
of a trace within DN,.,

0
,. The trace from P to U in DN.s,+1 and from U to 

the.maximum of L' in DN'.••' together form a trace from P to the maximum 
of L' in DN,s,+1· 

Consider next the case where T is a point of DN,s,+1• Then L' attains 
a unique maximum in DN.s,+1 in T. If the maximum of L' in GN is attained 
in this point T then, according to Lemma I, L' can be monotonously 
traced to its maximum from every point of DN,s,+1 by means of a straight 
line, connecting this point with T. If T is not the point where L' assumes 
its maximum in GN then it follows from Lemma II that T is a border 
point of DN,s,+1 where at least two z, from Zi, Z:i, ... , zN corresponding to 
an essential restriction for DN,s,+1 are equal. Let this pair be 

(4.12) 



then we consider the domain DiJ.,. which is obtained from DN,so+i by 
omitting the restriction R,,: (Ji ~ 0; from the essential restrictions defining 

µ, µ, 

DN,s.+i· The maximum of L' in D'zv, •• then exists and the point where it 
is attained is a point of D~ .•• with z.,, ~z1,,. The rest of the proof for this 
case is then the same as for the first case considered. 
Thus L' can be monotonously traced to its maximum in every DN,,; thus, 
taking N = k, L can be monotonously traced to its maximum in D. 

Remark 2: For s=0 and N =k we have DN,,=G. Thus L attains a 
unique maximum in G in a point which will be denoted by v1, v2, •.• , Vt.• 

Theorem II: If t{, t~, ... , tf. are the values of y1, y2, ... , Yk which 
maximize L in G anJ, under the restrictions Ri, ... , R;,._1 , R;,.+i, ... , R, then 

(4.13) 
~ 1. ti= t; (i = l, 2, ... ,k) if t;;,. ~ t;;,., 
, 2. ti;,. = ti;,. if t;J,. > t;J,. • 

Proof: The R;,. have not been arranged in a special order, thus we may 
take without any loss of generality A= s. First consider the case that 
t;.~t;,; then t{, t~, ... , tf. satisfy all restrictions Ri_, R2, ... , R,;\ thus in this 
case we have 

(4.14) ti=t; (i= l, 2, ... , k). 

If t; >t,'. then (4.13.2) may be proved as follows. The domain defined 
8 8 

by the essential restrictions R1 , R,2 , ••• , R,_1 will be denoted by D'. Then 
for each point (y1, y2, ••. , Yk) in D with y. < Y,· there exists a trace in D' 

8 8 

from the point (y1, y2, ... , Yk) to the point (t{, t~, ... , tf.) and this trace 
contains a point (y{, y~, ... , y~) with 

(4.15) 

Thus, if t; > t; , then L(y1 , y2 , ••• , yk) attains its maximum in D for '!Ii = y1. ; 
8 8 8 8 

(4.13.2) then follows from the uniqueness of this maximum. 

Remark 3: 

If 

( 4.16) 

and 

(4.17) 

then 

(4.18) 

(i = I, ... ,k) 

def m def 
a,= zxi_,,, b.=n.-a. (i = 1, 2, ... ,k) 

y-1 

k 

L (Y1, Y2, ···,Yk) = 2 {ai 1n Yi+bi 1n (1-yi) }. 
i-1 

In [2] it has been proved that, if Ji is the interval (0,1), this function L 
satisfies the following condition. 
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(4.19) Condition: If (Yi, y1, ..• , yk) and (y;, y;, ... ,y;) are any two 
points in G with y, =fay~ for at least one value of i and if 

Y.(/3)=(1-f3)y.+f3y~ (i=l,2, ... ,k), 

then L{Y1(/3), Y2(/3), ... , Yk(/3)} is a strictly uninwdal function of /3 in the 
interval O ~ /3 ~ 1. 

This condition is stronger than condition (4.3) and the theorems I 
and II of this paper have been proved in (2] by using condition {4.19). 

Further if condition (4.19) is satisfied then theorem I of this paper 
may be proved in a more simple way then we did in [2] as follows. 
Consider any two points (y1, y2, .•• , '!lk) and (y;, y;, ... , y;) in D with 
y. =fay; for at least one value of i and 

(4.20) 

Then it follows from condition ( 4.19) that there exists a point 
(Y1, Y2, ... , Y1c) in D with 

(4.21) 

Thus L possesses a unique maximum in D. 

The maximum likelihood estimates of 01, 02, •.• , 0k may always be found 
by applying theorem II repeatedly. This follows from the fact that 
L'(Zi, ¾, ... , zN) is a sum of strictly unimodal functions and that DN,a 

is a convex subdomain of the Cartesian product of the intervals IM 
V 

(v= 1, 2, ... , N) for each set Mi, M2, ••• , MN and each N. 
This leads however to a rather complicated procedure which may often 

be simplified by using one of the theorems of the following section. 

5. Some special theorems 

The theorems III-VI in this section may be proved in precisely the 
same way as the theorems II-V in [2]. 

Theorem III: If ix.,;(v.-v;)~O for each pair of values (i,j) then 

(5._l) t.=v. (i=l,2, ... ,k). 

Theorem IV: If li, l2, ••• , lm is a set of values satisfying 

(5.2) ix •• 1,,=IX •. z.= ... =IX•.lm =0 for each i=fal1 , l2, ••• , lm 

then the maximum likeliho9d estimates of 01,,, 0z,, ••• , 0,,,,,. are the values of 
'!/1,,, Yz., ... , Yim which maximize L1,, +L,,, + ... +L1m in the domain 

(5.3) D 
~

IXi,i(Yi-Yi) ~ 0 
I I (i, j = l1, l2 , •••• lm)• 

Yi E i 

Theorem V: If for some pair of values (i, j) with i <j 

ix.,; (v.-v;) > 0 
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and 

(

I. (Xi,h = (Xh,i = 0 for each h between i and j, 
(5.5) 2. (Xh.i = (Xh,i for each h < i, 

3. (X,.h = (Xi.h for each h > j, 
fhen 

(5.6) 

Theorem VI: If (i, j) is a pair of values satisfying 

(5.7) 

and 

(5.8) 

then 

(5.9) 

(

I. (Xi,i = 0, 

2. (Xh,i ~ (Xh,i for each h < i, 
3. (Xi.h G (Xi,h for each h > j, 

Theorem VII: If (i, j) is a pair of values with 

(5.10) 

if D' is the subdomain of D where y.~Yi and if (t{, t~, ... , t/c) is the 'point 
where L assume its maximum in D' then 

(5.11) 
~ I. ti = t~, t2 = t~, ·:., t,, = t; if t; < t;, 
? 2. t. G t1 if t{ = t;. 

Proof: The proof of this theorem differs from the one given for theorem 
VI in [2] only in the form of the trace from a point in D' to the maximum 
of Lin D. This trace which is a straight line in [2], need not be straight 
now (cf. the proof of theorem II of the present paper). 

(To be continued) 
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6. The consistency of the estimates 
In this section the consistency of the estimates will be investigated. 

The method used stems from a paper by A. WALD [3], but is modified 
by condition (4.3), which does not occur in his paper. 

Let, for fi(xil0i) > 0, 

(6.1) 

then 

n, n, 

(i,= 1, 2,: ... ,k), 

(6.2) Li (Yi)= L Ui (xi.r I Yi, Oi) + L In fdxi,y I 0;) (i = 1, 2, ... , k) 
y=l y=l 

and the maximum likelihood estimates of 0i, 02, ••• , Ok are the values of 
k ni 

?/i, y2, ••• , Yk which maximize I I g.(x •. ,, I Yi, 0i) in the domain D, the 
i:::1. y=l 

last term in (6.2) being constant. 
Further 

(6.3) Yi(x. I 0i, 0.)=0 for each xi (i= 1, 2, ... , k) 

and from condition (4.3) it follows that g;(Xi I Y;, 0.) is, for each x., a 
strictly unimodal function of Yi in the interval Ji(i= 1, 2, ... , k). 

Let I,;, (i=l,2, ... ,k) be the interval ci~y.~d, (with ci<di) and let 
'Y/1 , 'Y/2, ••• , 'YJk be k numbers satisfying 

(6.4) { 0<'Y/;~ min (0i -ci, d;, -0i) if 0i is an innerpoint of Ii, 
0<rJi-;;;,.di -ci if 0;, is a borderpoint of Ii. 

Let further Ji('Y/i) denote the set of all values Yi EI. satisfying 

(6.5) !Yi -0il ~'Y/i (i= 1, 2, ... , k). 

In the following it will be supposed that the following condition is 
satisfied. 

(6.6) Condition: There exist k values 'f/i, 'Yj2, ... , 'Y/k satisfying (6.4) such that 

l 1. <ff {gi (x. I Yi, 0,) IO;} < O, for each y. EI, (rJ;) with Yi =fa 0; 
a2{g;,(x.ly.,O.) IO;,} < oo 

2. [t.i' {gi(x.jy;,,Bi) IOi}J2 (i = 1, 2, ... 'k). 
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Some of the conditions mentioned in W ALD's paper [3] are in our 
case sufficient for (6.6.1) and may therefore be useful for the application 
of our theorems. These conditions may be stated as follows. 

Lemma III: If condition (4.3) is satisfied, if 'Y/i satisfies (6.4) and if 

~ I. 6" {In ti (x; I Yi) I 0i} < oo for each Y; E ld'Y/i) with Yi-:/= Oi, 
(
6

. 
7
) ( 2. -oo < 6" {In ti (xi I 0i) I 0i} < oo 

then 

(6.8) 6" {gi(xiJYi• 0i) l0i} < 0 for each Yi E Ji ('Y/i) with Yi i' O;. 

Proof: Consider any Yi E Ji('Y/i), then 6" {In /;(xilYi) JO;}< oo. Clearly 
6" {g;(xiJYi, 0;) jO,} < 0 if 6" {In /;(x, IYi) l0i} = -oo. 

Now consider the case that df{ln /;(xijY;),JOi} > -oo; then 

(6.9) 

and from (6.9) it follows that 

~ 6" {gi (xi I Yi, 0i) j Oi} ~ In 6" { eYi (xi I Yi, 0i) J Oi} = 

J = In f ;:~:::~:~ dFi(xi j0i) ~ In 1 = 0. 
t J1 <x1 I 01)>0 

(6.10) 

Further 

(6.11) 

if and only if a value c exists such that 

(6.12) 

Thus lemma III is proved if we show that such a value c does not exist. 
This may be proved as follows. Suppose there exists a value c satis­

fying (6.12), then it follows from (6.9) that JcJ <oo and further we have 

(6.13) P [f;(xilYi)=ect;(xij0i)j0,;]=1. 

From 

(6.14) 

it then follows that c = 0. 
Further if 

( 6.15) 

then it follows from (6.3) and the fact that gi(xilYi, Oi) is, for each xi, a 
strictly unimodal function of Yi in the interval Ii that 

(6.16) P [gi(xijy;, Oi) > OjOi] = 1 for each y; between Yi and Oi, 

i.e. 
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and this is in contradiction with 

(6.18) 

Thus th.ere does not exist a vabie e satisfying (6.12). 
Now let (cf. section 4) M,, ('11= I, 2, ... , N) be N subsets of the numbers 

1, 2, ... , k with 

N 

{

I. UM,,= {I, 2, ... ,k}. 
•-1 

2. M,
1 
() M,. =fa O for each pair ('Pi, '112) with '111 =fa '112, 

3. 0, = 0i for each pair i, i EM.,, for any value of 'II 

(6.19) 

and let ly be defined by (4.5); then ly =fa0 (P= 1, 2, ... , N). ,, " 
The value of 0i for i EM,, will be denoted by 0; ('11= 1, 2, ... , N). 
From theorem I it then follows that 

N n, 
(6.20) L'(z,_,z2, ••• ,zN)-L'(0;,0;, ... ,0;,,) = ! 1 !u,(x,,,,Jz.,,0;) 

P-1 iEM y-1 

possesses a unique maximum in (cf. (4.6)) 

(6.21) 

say in the point (zf, Z:, ... , z1). Let further 

(6.22) ,def • N 'YJ,,=mmn, ('11= 1,2, ... , ) 
iEM,, 

and 

(6.23) 

Then the following lemma holds 

Lemma IV: If 
(6.24) lim ni = oo for each i = I, 2, ... , k, 

n--.oo 

then 

(6.25) limP,[j,<-0;j ;:;ie for each 'Pj0;,0;, ... ,0;,] = 1 for each e> 0 
n-+oo 

for each set M1, M2, ••• , MN satisfying (6.19) and each N. 

Proof: Let 

(6.26) 
i 1. (3. (z,,) def ti {g. (xi I z,,, 0;) I o;} 
~ 2. ~i (z,,) def a2 { g, (xi I z,,, 0;) I 0;} 

i E M,,('11 = I, 2, ... ,N) 

and let further e1 be a positive number satisfying 

(6.27) 
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Then 

l l. 0;+ei Ely and 0;-el Ely if 0; is an innerpoint of ly, 
" " . (6.28) 

2. 0;+ei Ely or 0;-ei Ely if 0; is a borderpoint of ly. • • • 
Now let S be a subset of the numbers 1, 2, ... , N such that 

(6.29) 

then 

(6.30) 

l l. 0;+e1 Ely,, for 'I' ES, 

2. 0;+e1¢IM for vrpS, 
" 

z,, ~ 0; for v <f=S. 
Further it follows from (6.6.1), for v ES, that 

.. , 
(6.31) @" { I I gdxi.,, I 0;+e1, 0;) I 0;} = I n; /J, (0;+ e1) < 0 

iEMv ,,=1 iEIM,, 

and from (6.31) and Bienayme's inequality then follows 

~ nA(O;+s1) .. , 
Pc_ I I u. (xi.,, I 0;+e1, 0;) ~ o I 0;1 ~ /;" p. (o' + )J2 

.eM,, ,,-1 ni • v 81 
iEM,, (6.32) 

Thus 

Further it follows from (6.3), (6.30) and the fact that 

is a strictly unimodal function of z,. in the interval IM,, (v= 1, 2, ... , N) 
(cf. condition (4.3)) that 

) 

z: ~ 0;+ei(v= 1, 2, ... ,N) if 
.. , 

I Iu,(xi,,,10;+e1,0;) < 0 for each vES. 
ieM,, ,,_1 

(6.34) 

Thus (cf. 6.33)) 

P * 0' .c h 10' 0' 0'] "' "' 6i(o;+s1) (6.35) [z,, - • ~ e1 .1or eac v 1, 2, ••• , N ~ 1- "" "" [P 
0

, )]2 • 
veS iE'.M,, n, i ( ,,+ 81 



205 

From (6.6.2), (6.24) and (6.35) then follows 

(6.36) lim P [z:-0; ~ e for each 'JI I 0;, 0~, ... , 0~] = I for 'each e> 0. 

In an analogous way it may be proved that 

(6.37) limP[,Z:-0; ~-e for each v10;,0;, ... ,0~]= I for each e>0. 
1'➔00 

If we take N =k in lemma IV then (6.25) reduces to (cf. remark 2 
section 4) 

(6.38) limP[lv,-0il ~e for each i l0v02, ... ,0k]= I for each e>0. 
1'➔00 

Theorem VIII: If ti is the maximum likelihood estimat,e, of 0, 
(i= I, 2, ... , k) under the restrictions R1, R2, ••• , R8 and if 

(6.39) limn;,= oo for each i = I, 2, ... , k, 
n-+OO 

then 

(6.40) lim}P[lt,-0,1 ~e for each il01,02, ... ,0k] = I for each e>0. 
1'➔00 

Proof: This theorem:will be proved by induction. 
Consider the function L'(Zi, z2, ••• , zN) -L'(0;, 0~, ... , 0~) (cf. (6.20)). 

From theorem I it follows that this function possesses a unique maximum 
in DN,8 (cf. (4.9)), say in the point (w<f,w1>, ... ,ww). 

From lemma IV then follows (for s = 0) 

(6.41) liin'~P[lwt0>-0;1 ~e for each vj0;,0~, ... ,0~]=I for each e>0 
1'➔00 

for each set M1, M2, ••• , MN satisfying (6.19) and each N. 
Now suppose that it has been proved that 

(6.42) lim P [lwt81 -0;1 ~ e for each v 10;,0~, ... ,0~] = I for each .e> 0 
n--..oo 

for each s~s0, each set M1, M2, ••• , MN satisfying (6.19) and each N. 
Then it will be proved that 

(6.43) lim P [1wt•0+1>-0;1 ~ e for each v 10;,0~, ... ,0~] = I for each e> 0 
?t~ 

for each set· Mv M2, ... , MN, satisfying (6.19) and each N. 
Consider, for a given set M1, M2, ••• , MN satisfying (6.19), a domain 

DN,s,+1 and the domain DN,s, which is obtained by omitting one of the 
essential restrictions defining DN.s,+1· Let this be the restriction: 0,A~0;;,• 
Then the following two cases may be distinguished. 

I. 0i;. < 0;A; then a positive value e1 exists satisfying 

N 
(6.44) DN,:s, (') IJ JMP(e1) C DN,s,+1• 

P=l 

Further we have, for each e1 satisfying (6.44), 

(6.45) wt•0 +1>=w<•;> (v= I, 2, ... ,N) if lwt••>-0;1 ~Bi for each 'JI= I, 2, ... ,N. 
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From (6.42) and (6.45) then follows 

(6.46) ! ~ p [jwi••+1>-0;1 ~ 81 for each ,, ro;, 0~, ... , &~} = l 

and from 

for each ei satisfying (6.44) 

(6.46) follows 

(6.47) limP[lwi•0 +u_0;1 ~e for each PIO;,o~, ... ,O;,]=l for each e>O. 
n--+00 

2. 0;,A=OiA; then we have for each e>O 

,, P [lwtBo+u_0;1 ~ e for each 11I0;,0~ •... ,0i]= 

=P [wi~> < wj;•> Io;, 0~, ... , &~]-

(6.48) ·P[lwi•0>-0;1 ~e for each Plw1~1 <wjf;O;,o~, ... ,O;,] 
+P [wJ1°>;;?;; wJ;•> 10;,0~, ... ,O;,] · 

-P[lw<a0+1>-0'I ;s;;e for each 'Jllw<8o+ll-w<s0 +1>·0' 0' 0'] " " - •A - iA • 1> 2• ... , N , 

because if wf•f <w};•> then the maximum under s0 restrictions coincides 
with the maximum under s0 + 1 restrictions and if wf~•>;;?;;wit then 
(according to theorem II) w!Bo+ll =w(so+l) •.t 7,t • 

Further w<s0 +1> wfa,+tl' w<s.+u are under the condition w!Bo+ 1>=w<s0 +1> 1 , 2 , • • •, N , •,i i,,t , 

the values of Zi., Zz, ... , ZN which maximize L' (Zi., Z2, ••• ' ZN) - L' co;, 0~, ... ' 0~) 
in a domain DN,.

80
, where N' =N -1 and s~~s0 - l. Thus from (6.42) 

it follows that 

ClimP[jw<30+1>-0'j ;s;;e for each 11lwI'•+1>=w<s0 +ll,(j' 0' O']=l (6.49) jn--+OO ' " • - , A 1,t ,, 1> 2••••• N, 

( for each e > 0. 

Thus if 

(6.50) 

and if An, Bn and Jin respectively denote the events 

fwt1o>-&;I ~ e for each 'JI 

and 

respectively then it :liollows from (6.42) 

(6.5il) Jim P [An Io;, 0~, ... , 0;,1 = I 
n--+OO 

and from (6.48) and {6.49) 

1 ;;?;; limp~= lim {P [B~ I 0;, i,;, ... , O~} · 
:::::: n,-►00 'n,-),,00 

.p [An I Bn; fJ;,JJJ~, ... ,fJ~}+P [.Bn 10;, 0~, , .. ,ff;,]}= 

(6-52) = lim {P [An and Bn 10{, 0~, ... ,0~] +P [Bn IO{, 0~, ... ,0~]};;?;; 
n--+00 

;;?;; lim P [An I 0{, 0~, ... ,0~J= 1. 
n-+OO 



Thus 
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7. Examples 
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lim P,.=l. 
........ 00 

In this section some examples will be given where the conditions (4.3) 
and (6.6) are satisfied. 

Example 1 
Let xi possess a normal distribution with mean 0i and known variance 

ai (i= 1, 2, ... , k). Then 

(7.1) 

... 
~ (Xi, y -yi)2 

Li(Y;,)= -½n,ln2naf-½ y=l a'? 

' 
(i= 1, 2, ... , k). 

From (7.1) it follows that L;,(Y;,) is a strictly unimodal function of y, in 
the interval ( -oo, + oo) and attains its maximum in this interval for 

(7.2} 

Thus L,(y,) is a strictly unimodal function of 'JJ;, in each closed subinterval 
I;, of the interval ( -oo, +oo) and if I, is the interval (c;,, d;,) then L,{y,) 
attains its maximum in J,. for 

l 
mi ~f c, ~ m, ~ d,,, 

Y;,= ci if m, < ci, (i= I, 2, ... ,k) 
d, if mi> d •. 

(7.3) 

Further if M is a subset of the numbers 1, 2, ... , k then (cf. (4.2)) 

(7.4) 

and from (7.4) it follows easily that LM(z) is a strictly unimodal function 
of z in the interval ( -oo, +oo). Thus L satisfies condition (4.3). 

Further_ LM(z) attains its maximum in the interval ( -oo, +oo) for 

(7.5) def ( "'n;)-1 "'n;m;, z=mM= £.. - £.. -2 • 
iEMai iEM (Ji 

Now let M consist of the numbers hi, h2, ... , hµ, then if a;=a2 for each 
i EM 

(7.6) 

where 

(7.7) 
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and where xM,y (y= 1, 2, ... , nM)denote the pooled samples ofxh1, x¾, ... ,x,.µ. 

Thus if L attains its maximum for Yh = yh
2 
= ... = Yh then the samples of 

. 1 µ 

xh, xh, ... , xh are to be pooled if of=a2 for each i EM. 
1 1 µ 

Further 

(7. 8) . ( · I . 0_> = <Y, -0.) (2x. -y.-0.> 
g. x. y., • 2 2 

ail 
(i=l,2, ... ,k). 

Thus 

(7.9) 

and 

(7.10) a2{gi(x.1y.,0.>10;,} _ 4or 
[C{g,(x£1yi,0;,)l0;,}]2 (y;,-0i)2 

(i=l,2, ... ,k). 

From (7.9) and (7.10) it follows that condition (6.6) is satisfied if 

(7.11) (i= 1, 2, ... , k). 

Remark 4: From (7.4) and (7.5) it follows that the estimates of 
01, 02, ••. , 0~ may also be found by means of the method described above 
if the af are unknown and of/<r; is known for each pair of values 
i, j= 1, 2, ... , k. Then if 

(7.12) 
. 2 

rr_~a;, (" 1 2 k) 
.ll..- 2 '1,= ' ' ••• , 

al 

the maximum likelihood estimate of a; is 

(7.13) (i=l,2, ... ,k). 

The procedure will now be illustrated by means of the following example. 
Two preparations A and B, known to stimulate the growth of hogs, 

are added in _two concentrations each to the food of, four groups of hogs. 
Let these four additions be denoted by A1, A2, B1 and B2• It is known 
that B1 is at least as good as A1 (notation A1-< B1) and that in the same 
sense A1-< _A2 and Bi::5, B2• No decisive knowledge however is available 
concerning the ordering of A 2 and B2• The growths of the hogs during 
a certain period are then the four samples. 

The fictitious numerical example given below concerns this partial 
ordering, but has been made a little more complicated by the introduction 
of unequal variances and of restrictions on the possible values of each 
0;, separately: 



Let 

i 

X;,,y 

(7.14) 
n;, 

2 x,,,, 
)'•1 

and (cf.(2.8)) 

(7.15) 

n, 
m, 
(J~ • 
I;, 
V;, 

I 

20!) 

Ai I A2 I 
1 2 I 

-0,40 1,43 
2,56 1,86 
0,25 0,06 
2,87 0,07 

1,14 
0,29 
2,57 
0,85 
1,21 

5,28 9,48 

4 9 

1,32 1,05 

2 4 

(-oo,l) (-oo,+oo) 

1 1,05 

~I. r0 =2,r1 =4, 

( 2. °'1.2=°'1.s=<Xs,4= I. 

Bi B2 

3 4 

-0,70 0,29 
2,61 0 
0,79 1,31 
0,86 0,15 
0,14- 2,53 

1,86 

3,70 6,14 

5 6 

0,74 1,02 

5 1 

(½, + oo) (- oo, + oo) 

0,74 1,02 

From (7.14) and (7.15) it follows that the pairs i=3, i=2 and i=4,i=2 
satisfy (5.7) and (5.8). Thus according to theorem VIL attains its maximum 
in D for 

(7.16) 'Y1;;;,_y3;;;,_y4;;;,_y2, 

From (7.14), (7.16) and theorem V then follows 

(7.17) t1 =t3, 

i.e. L attains its maximum in D for 

(7.18) Yi =ys;;;,_y4;;;,_y2. 

From (7.14), (7.18) and (7.5) then follows 

i 1 3 4 2 

n;, 

2 X;,,y 5,28 3,70 6,14 9,48 
y-1 

(7.19) n, 4 5 6 9 

mM, 1,13 1,13 1,02 1,05 

er. 2 5 1 4 

IM • (½, 1) (½, 1) (- oo, + oo) (- oo, + oo) 

VM, 1 1 1,02 1,05 
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From (7.19) and theorem III then follows 

(7.20) 

Example 2. Let xi possess a Poisson distribution with parameter 
Oi (0<6i<oo; i= I, 2, ... , k). 
Then 

.. , .. , 
(7.21) Li(Yi)=-n;y,.+ Ix._,,Iny,.- zlnx.,,,! (i=l,2, ... ,k); 

Y=l y=l 

thus 

{ 

J." defl~ 

dL ( ) 
>0 .1or 0 ;;;;;yi<m,.=- kx.,,,, 

i Yi ni y=I 

dyi =0 for y.=m,., · 
<0 for Yi> m,.. 

(7.22) 

From ~7.22) it follows that L.(y;,) is a stri-0tly unimodal function of y,. 
in the interval (0, oo) (i= I, 2, ... , k). 

Further if M consists of the numbers h1, h2, ••• , hµ then 

"M "M 

(7.23) LM(z)=-nMz+ zxM,,,Inz- zlnxM,,,!, 
y=l y=l 

where nM is defined by (7.7) and where xM,,, (y= I, 2, ... , nM) denote 
the pooled samples of xh

1
, x,.,, ... , xhµ• Thus L satisfies condition (4.3) 

and if L attains its maximum for Yhi = Yh, = ... = y,.µ then the samples 

of x,.,, x,.,, ... , x,. are to be pooled. 
µ 

Further 

(7.24) 

thus 

(7 .25) 

and 

(7.26) (i=l,2, ... ,k). 

From (7.25) and (7.26) it may easily be proved that condition (6.6) 
is satisfied. 

A practical situation of ordered parameters of Poisson distributions 
might occur if several toxicants are to be investigated as to their killing 
power for certain kinds of bacteria. If the toxicants are added in different 
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concentrations to cultures of bacteria, knowledge may be available 
leading to a partial or complete ordering of the expected values of the 
number of survivors in the different experiments. 

It may easily be verified that the conditions (4.3) and (6.6) are e.g. 
also satisfied if xi possesses 
I. a normal distribution with known mean µi and variance Oi 

(i= 1, 2, ... , k), 
2. an exponential distribution with parameter 0i (i= I, 2, ... , k), 
3. a rectangular distribution between O and Oi (i=l, 2, ... , le), 
4. a normal distribution with mean 0i and known variance for 

i = "ti, ~' ... , lg and a Poisson distribution with parameter 0, for 
i ,t= "ti, l2, ••• , lg. 
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