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1. Introduction

The problem treated in this paper concerns the maximum likelihood
estimation of a finite partially or completely ordered set of parameters
of probability distributions. A special case of this problem, the maximum
likelihood estimation of a finite ordered set of probabilities, has been
treated in [2]. ‘

The problem will be formulated in section 2; in section 4 and 5 methods
will be given by means of which the estimates may be found. For the
proofs of the theorems we need some lemma’s which will be proved in
section 3; in section 6 the consistency of the estimates will be investigated
and in section 7 some examples will be given.

2. The problem

Consider % independent random variables x,, X,, ..., X; %) and n; inde-
pendent observations ;j, %, ..., in, Of X, (1=1,2, ..., k). Assume that
the distribution of x; contains one unknown parameter §, (:=1, 2, ..., k)
and that its distribution function is

(2.1)  Fi@|0) EP[x s%]6]  G=1,2,....h).

Two types of restrictions are imposed on the parameters 0, 0,, ..., 0.
First let I; be a closed interval such that F,(z; |y) is a distribution
function for each value of y € I; (=1, 2, ..., k). By means of the choice
of I, restrictions of the type ¢;<6,<d; may be imposed. The second
type of restrictions consists of a partial or complete ordering of the para-
meters, which may be described as follows. Let «;; (¢,7=1, 2, ..., k) be

numbers satisfying the conditions

1. o, =—u,
(2.2) 2. o;;=0 if the intersection I; N I; contains at most one point,
3. &,;=0,+1 or —1 in all other cases]

1) Report SP 52 of the Statistical Department of the Mathematical Centre,
Amsterdam. e

2) Random variables will be distinguished from  numbers (e.g. from the values
they take in an experiment) by printing their symbols in bold type.
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and
(2.3) o ;=11if &, ;= &, ;=1 for any h.
The restrictions imposed on 0,, 0,, ..., 0, are then

Lo oo;(0,—6;) =0

(24) 2. 6el

(t,7=1,2,...,k)
and it will be supposed that the parameters 6, 0,, ..., 6, are numbered
in such a way that

(2.5) %;;= 0 for each pair of values (3, §).

No other restrictions on 0, 0,, ..., 6, are admitted, such that all points
Y1, Yoy ---» Yy Of the Cartesian product

k
(2.6) ¢ =11 1,
i=1
satisfying
(2.7) %iWi—y) =0 (4,7=012,..,k)

belong to the parameterspace, which thus is a convex subdomain of @.
This subdomain will be denoted by D.

Let
- o= 0 for r, pairs of values (¢,7) with ¢ <7,
(2.8) 2. o;;=1 for r, pairs of values (s,5) with ¢ <7,
then

k
(2.9) %+H=Q)

Let further f;(z; | 6;) denote the density function of x; if x; possesses a
continuous probability distribution and P[x;=u=; |6,] if x;, possesses a
digscrete probability distribution and let

1. Ly=L(y) < zllnfi(wi.ylyi) (G=1,2,..,k,

(2.10) .
B def
2. L=L(i’h:yz:-~-=?/k)=._zlLi(?/i)-
Then the maximum likelihood estimates of 6,, 0,, ..., 6, are the values of

Y1> Yz ---» Y, Which maximize L in the domain D. Unless explicitely stated
otherwise L will only be considered in this domain D; the maximum likeli-
hood estimates will throughout this paper be denoted by ¢4, ..., &.
Further the restrictions 6,<0; (i.e. o;;=1) satisfying

(2.11) o 0,;=0 for each % between ¢ and j

will be denoted by Ry, R,, ..., R,. Each R, thus corresponds with one pair
(¢, 7); this pair will be denoted by (i;, 7).
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Because of the fransitivity relations (2.3) the system B, R, ..., B,
is equivalent to (2.4.1) and uniquely determined by (2.4.1). The restric-
tions R, R,, ..., R, will be called the essential restrictions.

Remark 1: H. D. Bruwk [1] described a method by means of which
the estimates of 8y, 85, ..., 0, may be found if the distribution of x; belongs
to the “exponential family’”” (i=1, 2, ..., k) and if moreover I, is the sef
of all values of y for which F(x; | y) is a distribution function (t=1,2, ..., k).
His method however leads to more complicated computations than ours.

3. Lemma’s

Definition: A function (y) of a wariable y will be called strictly
unimodal in an interval J if there exists a value y* €J such that

(3.1) () <o(y) <ely™)
for each pair of values (y,y’) € J with
(3.2) y<y'<y*
and for each pair of values (y,y') €J with
(3.3) y* <y <y.
It follows at once from this definition that a strictly unimodal function
¢(y) is bounded in every closed subdomain of J not containing y*.

Now let ¢.(y,) be a strictly unimodal function of g, in the interval -
Jx=1,2,..., K) and let further

K
(3.4) @ Y+, ¥) = 3 Pt

then it will be clear that D(yy, ¥s, ..., ¥z) possesses a unique maximum in

K
(3.5) rEiyJ,
x=1
in the point (v, v:, ..., y%), where @/ (y}) is the maximum of ¢, in

J,(x=1,2, ..., K).

We now define a function V as follows.

Let 43, 43, ..., y% be a given point in I" with y3+y} for at least one value
of » and let

Yu(ﬂ)i_ef(l_ﬂ) y2+ﬂy: (7‘=1:2"":K):

(3.6) Ves=.

Then {Y,(8), Ys(B), ..., Y(B)} is a point in I" and V is defined by
(3.7) VIO ED{Y,(8), Y (B),.... Y (B)}-
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Lemma I: V(B) is a monctone increasing function of § in the interval
0=p<1.

Proof: Consider a value of » with

(3.8) v=19
then
(3.9) Y, (f)=y; for each B with 0=8<1.

Thus in this case we have

(3.10) 240 =AY (P)} = p.(y;) for each B with 0=p=<1.
Now consider a value of » with
3.1y Y # Yus

then it follows from the fact that ¢, (y,) is, in the interval J,, a strictly
unimodal function of y, and attains its maximum in J, for y,=y*, that

(3.12) P (0) < @ { Y, (1)} < 2 { Y (B2} < 9. (43)

for each pair of values (8,, f,) with 0< pi<By<l.
From (3.4) and the fact that there exists at least one value of % with
(3.11) it follows then that

(3.13) V(0)< V()< V()< V(1)
for each pair of values (f;, f;) with 0<f;<fy<1.

Lemma II: IfC is a closed convex subdomain of I', not containing the
point (YF, vz, ..., y%), then @Yy, Yo, ..., Yg) attains its maximum in C only
in one or more poinis on its boundary.

Proof: Consider any inner point %3, 43, ..., 4% of C and let Y,(5) be
defined by (3.6) (x=1, 2, ..., K). Then, C being a closed convex domain
not containing the point (yf, 93, ..., ¥%) there exists a value of 8 in the
interval 0<f <1, say f,, such that {¥Y,(8)), Ya(Be), ..., Y (o)} is a border
point of C. Further it follows from Lemma I that

(3'14) @{Yl(ﬁo): Ya(ﬂo), re YK(,BO)} >¢(y§): yg: esey ?/%)

Thus for each inner point (%9, 43, ..., ¥%) of C there exists a border point
(Y1, Yy, ..., Yg) of C with a larger value of @. Moreover @ is bounded
in C, because the point (yf, 95, ..., ¥%) is not contained in C. Thus @
has a maximum in C, which can evidently only be attained in border
points.

4. The maximum likelihood estimates of 0, 0,, ..., 0,
Let M be a subset of the numbers 1, 2, ..., k; let further
(4.1) IyE NI

ieM
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and if 7,0

(4.2) Ly@¥ SLi zely.
ieM

Throughout this paper it will be supposed that the following condition
is satisfied.

(4.3) Condition: For each M with I w0 the function Ly (2) is strictly
unimodal in the interval I,,.

Now let M, (v=1, 2, ..., N) be subsets of the numbers 1, 2, ..., k with

N
1. UM, ={12,..k,

y=1
(4.4) 2. M,nM, =0 for each pair of values »,v,=1,2,...,N
with »; 5 »,,
3. Iy, #0 for each v=1,2,..., N,

where ;
(4.5) I,¥NI1 @=1,2..N).
v seM,

Let further (cf. (2.6))

def )
(4.8) O =TT L,

v=1
and
(4.7) Ly )2 3 Liz) zely@=1,2,..,N).
v i€, v

Then for all points in Gy L(yy, ¥s, ---, Yr) reduces to a function of N
variables 2, z,, ..., 2y; We denote this function by L'(z, 2,, ..., 2y) and thus
have

. N
(4.8) L' (2,2, ..., 2y) = 2 Ly (2,),

which is according to (4.3), a sum of strictly unimodal functions.
Theorem I: L possesses a unique maximum in D.

Proof: This theorem will be proved by induction.
Let My, M,, ..., M be an arbitrary set of subsets of the numbers 1, 2, ..., k
satisfying (4.4) and let

(4.9) Dy, E DN Gy,

where s denotes the number of essential restrictions defining D and where
Gy is defined by (4.6). Then D, , is convex and:

for N=Fk we have IM,,:I:: (»=1,2,...,N), thus G;,=G and D, ,=D
for s=0 we have D=0 thus D, (=Gy.



133

We shall say that the function L'(z, 2, ..., 2y) can be monotonously
traced to its maximum in Dy, if

1. L'(z, 2y, ..., 2y) possesses a unique maximum in Dy,
every point of 1)y , can be connected with the point in Dy,
where L’ assumes its maximum by means of a broken line,
consisting of a finite number of segments, in Dy , such that
L’ increases monotonously along this line. (Such a line will
be called a trace.)

(4.10)

For s=0 L'(z, 2y, ..., 2y) has this property for every set M;, M,, ..., M
satisfying (4.4) and every N. This follows from the fact that L’ is the
sum of strictly unimodal functions and that D, , is the Cartesian product
of the intervals I, (v=1,2, ..., N) so that lemma I may be applied.

Let us now suppose that it has been proved that L’ can be monoton-
ously traced to its maximum for all values of s=<s, for every set
M, M,, ..., M, satisfying (4.4) and for every N. We then prove that
the same holds for s,+ 1 essential restrictions.

Consider, for a given set M;, M,, ..., My, satisfying (4.4), a domain
Dy, 1 and the domain Dy, which is obtained by omitting one of the
essential restrictions defining Dy, .,. Let this be the restriction R;:
0;,=0;,. Then clearly

K7 Rt

(4.11) Dy, 5041 C Dy,

Now L’ has a unique maximum in Dy, attained in (say) the point 7.
We first consider the case that 7' is outside Dy , 4. Then an arbitrary
point P of Dy, .4 with 2, <z; can be connected with T by means of a
trace in Dy , and this trace must contain at least one border point of
Dy, o1 With 2z, =2;,, because within Dy, ., we have: z;<z; and outside
Dy, g1t #,>7%;,. The first of these points when following the trace will
be denoted by U; then L’ sussumes a larger value in U than in P. Now
U lies in a domain Dy, ,,, where N'=N—1 and s;<s, and L’ can thus
monotonously be traced from U to its unique maximum in Dy, ., by means
of a trace within Dy, ,,. The trace from P to U in Dy, .; and from U to
the maximum of L' in Dy, ,, together form a trace from P to the maximum
of L' in Dy, .;.

Consider next the case where T' is a point of Dy ,.;. Then L' attains
a unique maximum in Dy ; ., in 7. If the maximum of L’ in Gy is attained
in this point 7' then, according to Lemma I, L’ can be monotonously
traced to its maximum from every point of Dy , ., by means of a straight
line, connecting this point with T'. If 7' is not the point where L’ assumes
its maximum in G, then it follows from Lemma II that 7' is a border
point of Dy .., where at least two 2, from z, 2,, ..., 2y corresponding to
an essential restriction for Dy, .; are equal. Let this pair be

(4.12) z =2

T ?



then we consider the domain Dy, which is obtained from Dy, ., by
omitting the restriction R ,: 6; <6, from the essential restrictions defining
Dy ,+1- The maximum of L’ in Dy, then exists and the point where it
is attained is a point of Dy , with z; 2%, . The rest of the proof for this
case is then the same as for the first case considered.

Thus L’ can be monotonously traced to its maximum in every Dy ,; thus,
taking N=£k, L can be monotonously traced to its maximum in D.

Remark 2: For s=0 and N=k we have Dy ,=G. Thus L attains a
unique maximum in ¢ in a point which will be denoted by vy, v,, ..., v;.

Theorem II: If i,%,...,% are the values of ¥y, ¥s, ..., ¥y, which
maximize L in G and under the restrictions Ry, ..., Ry 5, R; .4, ..., R, then

1. =t (E=1,2,..,k iff <
r 2. t’il Ed t,‘l if t;l > tj}» .

71’

(4.13)

Proof: The R, have not been arranged in a special order, thus we may
take without any loss of generality A=s. First consider the case that
t;, =t ; then i, 4;, ..., f; satisfy all restrictions Ry, R,, ..., R,;| thus in this

case we have

(4.14) L=t (=1,2,...,k).

If # >t then (4.13.2) may be proved as follows. The domain defined
by the essential restrictions R, R,, ..., B, ; will be denoted by D’. Then
for each point (3, ¥y, ---, %) in D with y; <y, there exists a trace in D’

from the point (¥, ¥s, ..., %) to the point (¢, 4, ..., %) and this trace
contains a point (y;, ¥,, ..., ¥x) with

1 4 =9,
(4.15) g ) i’ R 7
. (yl: Ya» :yk) > (yb Yoo - > :‘/k)

Thus, if # > , then L(yy, ¥, ..., ¥y) attains its maximum in D fory;, =y, ;
(4.13.2) then follows from the uniqueness of this maximum.

Remark 3:

If
(4.16) Plx;=1]=0;,, P[x,=01=1-6;, (=1,..,k)
and

def
(4.17) G= D iy, b;En,—a, (=12..k

y=1
then
x

(4'18) L(?/p?/z,---»?/k) - Z}{a@myﬁ‘bﬂn(l‘%)}

In [2] it has been proved that, if 7, is the interval (0,1), this function L
satisfies the following condition.
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(4.19) Condition: If (¥, Yy, ---, Y) ond (Y1, Ys, -, Y1) are any fwo
points tn G with y,+y; for at least one value of i and if '

Yz(ﬁ)':(l'—ﬁ) y’l,+ﬁy1l‘ (i=1’2:--"k):

then L{Y(B), Yo(B), ..., Yi(B)} is a strictlly unimodal function of f in the
interval 0<F<1.

This condition is stronger than condition (4.3) and the theorems I
and II of this paper have been proved in [2] by using condition (4.19).

Further if condition (4.19) is satisfied then theorem I of this paper
may be proved in a more simple way then we did in [2] as follows.
Consider any two points (¥, ¥a, -.-, ¥) and (¥1, ¥s ---» Yo) in D with

¥:;#Yy; for at least one value of ¢ and

(4.20) L (Y Yo > Yp) = L (yll’ y;’ ’ylg)

Then it follows from condition (4.19) that there exists a point
(Yy, Y, ..., Yp) in D with

(4.21) L(Yy, Yy, ooos Yi) > LYy, Yas o5 Ya)-

Thus L possesses a unique maximum in D.

The maximum likelihood estimates of 6;, 6,, ..., 6, may always be found
by applying theorem II repeatedly. This follows from the fact that
L'(z, 2, ..., 2y) is a sum of strictly unimodal functions and that Dy,
is a convex subdomain of the Cartesian product of the intervals I,
(»=1,2, ..., N) for each set M,, M,, ..., M,y and each N.

This leads however to a rather complicated procedure which may offen
be simplified by using one of the theorems of the following section.

5. Some special theorems

The theorems ITI-VI in this section may be proved in precisely the
same way as the theorems II-V in [2].

Theorem III: If oci_,-(vi—v,-)go for each pair of values (¢,7) then
(5.1) =y, (1=1,2,..., k).

Theorem IV: If 1,1, ....1, 98 a set of values satisfying

(5.2) Kiy =045 =+ =04, =0 for each i, 0, ..., 0,

then the maximum likelihood estimates of 0,0, ..., 6, are the values of
Yo Yo -+ Yy, Which maximize Ly + Ly + ...+ L, in the domain

o i (Yi—y) =0

(5.3) e,

@7 =10, ....1,).

Theorem V: If for some pair of values (i,5) with 1<j

(#2) % (vi—v;) >0
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and
1. o&=o04;=0 for each % between ¢ and j,
(5.5) {2. i 3 == Obp g for each A < 1,
3. o= for each % > j,
then
(5.6) =1,

Theorem VI: If (¢,§) 18 a pair of values satisfying

(5.7) =
and
1. o ;=0,
(5.8) {2. O = o4,; for each A < i,
3. oyp =0, for each 2 > g,
then
(5.9) L=t

Theorem VII: If (4,9) ¢s o pair of values with
(5.10) =0,

if D' is the subdomain of D where y,<y; and if (8,1, ..., &) s the "point
where L assume its maximum in D' then

L oty =t,ty=1 ..., b=t if ¢ <t],
(5.11) 2. =t if ] =t
Proof: The proof of this theorem differs from the one given for theorem
VIin [2] only in the form of the trace from a point in D’ to the maximum
of L in D. This trace which is a straight line in [2], need not be straight
now (cf, the proof of theorem Il of the present paper).

(To be continued)
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6. The consisiency of the estimales

In this section the consistency of the estimates will be investigated.
The method used stems from a paper by A. Warp [3], but is modified
by condition (4.3), which does not occur in his paper.

Let, for f(x;6;)>0,

or 0.y 8 1 fo(®ilwi) . _ .
(6'1) gi (xlly'n 0’;) - ln f’i(x'il 01) (,[’, ]': 2:4"" k):

then

ng ny
(6.2) Li(y) = Zlyi (2,5 lyi’ 0;) + len fi (., loz') (t=12,..k)
y= y=

and the maximum likelihood estimates of 6, 0,, ..., 0, are the values of

E M
Y1, Yy > Y which maximize > > g¢:i(; ,|¥:,0;) in the domain D, the
p=1

i=1
Jast term in (6.2) being constant.
Further
(6.3) gi(2; | 0, 0;)=0 for each z; (1=1,2,...,k)

and from condition (4.3) it follows that g,(%; | y;, 0;) is, for each z;, a
strictly unimodal funection of y; in the interval I;(s=1, 2, ..., k).

Let I (1=1, 2, ..., k) be the interval ¢, =y, =d;, (with ¢,<d;) and let
N> Nos --+» M P & numbers satisfying
(6.4) {0<775§ min (0; —c¢;, d, —0,) if 9, is an innerpoint of I,,

0<n=d, —¢; if 6; is a borderpoint of I,.

Let further I,(5,) denote the set of all values y, € I; satisfying
(6.5) ly; —0;| =n; (t=1,2, ..., k).

In the following it will be supposed that the following condition is
satisfied.

(6.6) Condition : There exist k values ny, 0y, ..., 1y satisfying (6.4) such that

% L. &{g:(x:|y: 0 [6:} <O, for each y; eI, (n) with y; # 0,
o2{g; (%] 2, 0:) 163} .
2. [é”{yi(xilyi,ﬁi)lei}]2< o (2=1,2,...,k).
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Some of the conditions mentioned in WaLD’s paper [3] are in our
case sufficient for (6.6.1) and may therefore be useful for the application
of our theorems. These conditions may be stated as follows.
Lemma III: If condition (4.3) is satisfied, if n; satisfies (6.4) and if
) L &{Infi(x|y,)|0:;} < oo for each y;el;(n;) with y;+ 0,

(67) 2. —oco<&{Infi(x]0)]0;} < oo
then
(6.8) &{g:(x:ly;, 0)[6: <0 for each y, €I, (n;) with y;#0;.

Proof: Consider any y; € I;(n;), then &{n f,(x;]y;)|0;} <oco. Clearly
E{gixilys, 0,)10.} <0 if &{In fi(x;]|y,)[6:} = —oo.
Now consider the case that &{In fi(x;|y;)|0;} > —co; then

(6.9) —oo < E{gix;lys, 0:)|0:} <oo
and from (6.9) it follows that

S E{g:(%; |95, 0) |0} < In & {efix:lvi0) |9,} =

( o f filzi] 03) dF(z;]0) =In1=0,
1 ;10)>0
Further
(6.11) & {gz (xilyia 6,) ‘6,‘} =In& {egi(xi[yi,ei) IOQ}

if and only if a value ¢ exists such that
(6.12) P [g:(x;|y;, 0;) =c|0;]=1.

Thus lemma IIT is proved if we show that such a value ¢ does not exist.
This may be proved as follows. Suppose there exists a value ¢ satis-
fying (6.12), then it follows from (6.9) that |¢| <co and further we have

(6.13) P [filxlys) = e° fi(x:]0:)|6:1= 1.
From

(6.14) JAF (z]y;) = [dF (x;]0,) =1
it then follows that ¢=0.

Further if

(6.15) P [g:(xi]y;, 6;)=0[6;1=1,

then it follows from (6.3) and the fact that g,(x;|y;, 6;) is, for each x;, a
strictly unimodal function of g, in the interval I, that

(6.16) P [g:(x;]y;, 0,)>0[0,]=1 for each y; between y,; and 6,
ie.

(6.17) P [f,(6lyi) > fi(x,]0.)]0;1=1 for each y; between g, and 6,
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and this is in contradiction with
(6.18) JAF (2ly)) = [ F (;)0,) =1.

Thus there does not exist a value ¢ satisfying (6.12).
Now let (cf. section 4) M, (v=1, 2, ..., N) be N subsets of the numbers
1,2, ...,k with

N
1. UM, ={1,2,..,k,

p=1
2. M, NM, +#0 for each pair (v,v,) with », 5 »,,
3. 0,=0; for each pair ¢,je M, for any value of »
and let I, be defined by (4.5); then I, +#0 (v=1,2,..., N).

The value of 6, for 7 € M, will be denoted by 8, (»=1, 2, ...; N).
From theorem I it then follows that

(6.19)

mn

N
(6'20) L,(zlszz’---1ZN)_L,(01,:6‘2”-":01,V)=z z zgi(wi.szy:B;)

v=14ieM p=1

possesses a unique maximum in (cf. (4.6))

N
(6.21) Gy =11 Iu,

=1
say in the point (2f, 22, ..., 2%). Let further
(6.22) nEminy, @»=12,..,N)

ieM,
and
5

(6.23) 2 S,

i=1

Then the following lemma holds

Lemma IV: If
(6.24) limn; = oo for each ¢=1,2,...,Fk,

N—roQ

then
(6.25) lim P [|zy—0;| <¢ for each v|0{,0;,...,04] =1 for each £> 0
for each set My, M,, ..., My satisfying (6.19) and each N.
Proof: Let '
Bi2) £ {g:(x 2,6 |6}
2. & (2) Zo®{g:(x:]2.0)) |0}
and let further & be a positive number satisfying

(6.27) & = miny;.

(6.26) ieM,w=1,2,...,N)
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Then
1. 0,+&ely and 6;—e& el if 0, is an innerpoint of I, ,

(6.28) §2. 0,+& €ly, or 6;—e ely if 6 is a borderpoint of I, .

Now let 8 bé a, subset of the numbers 1, 2, ..., N such that

L. O,+&€ely, for ves,
(6.29)

2. O+ g1, for vé¢s,
then
(6.30) ' 2,=0, for v¢8.

Further it follows from (6.6.1), for v € 8, that
(6.31) é’{ Z 21.%( wr |05+20,0)) 10} = %%,- Bi(6,+2) <0
M, y= i€ ']
and from (6.31) and Bienaymé’s inequality then follows
X 1;8,(6,+¢1)

P B4, 0)20[0] <M _______
[ze%,, Z,lge( yl vte100) | ) = [ XnB;(0,42)12
(6.32) ieM,
- no0te) 5 mAOte) 5 G@+e)
ieH, > n,ﬂ,(@ + &) 12 —1EM ”f[ﬁ,,(e + &) 12 ieM, 1[64(9 +31)]2
jeM,
Thus
n
Pl > > gx,]0,+¢,0) <0 for each v€8|6;,0;,...,05] =
(6.33) { ‘et

8, (6,+ &)
=>1-— — .
Es saar, % [Bi(0,+ &)1

Further it follows from (6.3), (6.30) and the fact that

z Z g’i (xi 1Y Izv: 00)

€M, y=1
is a strictly unimodal function of z, in the interval I, (»=1,2,...,N)
(cf. condition (4.3)) that
L0 4+e(v=12,...,N)if

6.34
( ) 2 zgi(xiyw'-i’é‘p ;) < 0 for each »€S.

M, y=1

Thus (cf. 6.33))

| ’ ’ ’ ’ 6'(0'+61)
6.35) PlzF—0, <¢ f h v[0;,0,,...,05] =1~ S S
( ) [z &, for each v |01, 0; ) E:S ig{y s LB (O, + e IE
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From (6.6.2), (6.24) and (6.35) then follows

(6.36) lim P [zf—6, <¢ for each v|0{,0;,...,05] =1 for each &> 0.

In an analogous way it may be proved that

(6.37) lim P [zf—0, = —¢ for each v|6y,0;,...,05] = 1 for each &> 0.

If we take N=Fk in lemma IV then (6.25) reduces to (cf. remark 2
section 4)

(6.38) HLm P[|v;—0,] = ¢ for each 4 [0,,0,,...,0,] =1 for each £> 0.

Theorem VIIL: If t, is the maximum likelihood estimate of 6;
(¢=1,2, ..., k) under the restrictions R,, R,, ..., R, and if

(6.39) lim n; = co for each ¢=1,2,...,k,

then ,
(6.40) lim}P [|t;—0;] < ¢ for each 4|0,,0,,...,6,] = 1 for each &> 0.

Proof: This theorem will be proved by induction.

Consider the function L'(z, 2z, ..., 2y) —L'(67, 05, ..., 0%) (cf. (6.20)).
From theorem I it follows that this function possesses a unique maximum
in Dy, (cf. (4.9)), say in the point (w9, w9, ..., wd).

From lemma IV then follows (for s=0)

(6.41) Lim'P [|w®—6) <& for each ]0],0,...,05] =1 for each £>0
n—>0

.for each set M, M,, ..., My satisfying (6.19) and each N.
Now suppose that it has been proved that

(6.42) lim P[|jw®—0;| <& for each » [6],0;,...,04] =1 for each £¢>0

for each s<s,, each set M;, M,, ..., M, satisfying (6.19) and each N.
Then it will be proved that

(6.43) lim P [|w*Y—0;| < ¢ for each » |01,0;,...,054] =1 for each £>0

for each set My, M,, ..., My, satisfying (6.19) and each N.

Consider, for a given set M,, M,, ..., My satisfying (6.19), a domain
Dy, s+1 and the domain Dy, which is obtained by omitting one of the
essential restrictions defining Dy, ;,. Let this be the restriction: §; <0;.
Then the following two cases may be distinguished.

1. 0;<0;,; then a positive value ¢ exists satisfying

N
(6.44) DN.:a,, N H IMP (81) C DN.30+1'

v=1

Further we have, for each ¢, satisfying (6.44),
(6.45) wHtV=y (y=1,2,...,N) if |w—0;| <g for each »=1,2,...,N.
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From (6.42) and (6.45) then follows

lim P [|w&+?—g)| < ¢, for each »[0;,0;,...,04]=1
(6.46) n—c0
for each ¢, satisfying (6.44)

and from (6.46) follows
(6.47) lim P [|wtV—g;| <¢ for each »[6,0;,...,04] =1 for each &> 0.
n—>00
2. 0;,=0;,; then we have for each >0
‘P [jwstR—g;| <& for each v|01,0;...,05] =
=P wlp < wip|65,65,..., 03]
(6.48) ‘ P [|wi# —0;] < e for each »|wi <wfi;0],0;,...,04]
+P [wii = w0 |0,0;,...,0%] -
P |wintD—6| < & for each »|wir+D=wfo+D;6],6;, ...,04],
because if wig <wf then the maximum under s, restrictions coincides

with the maximum under s,+1 restrictions and if w{¥=wj then
(according to theorem II) wi*V =wfe+h,

Further wiet?, wipt?, . wip+D are, under the condition wih+? =wfht,
the values of 2, 2,, ..., 2y which maximize L'(2,, 2, ..., 2y)—L'(01, 0, ..., 0x)
in a domain Dy, ,, where N'=N —1 and s;<s,—1. Thus from (6.42)
it follows that

(6.49) Swh-]»l:oP [iwie+—0;| < e for each »|wip*V=wie*1;6.,0;...,05]=1
{ for each ¢> 0.
Thus if
(6.50) P, =P [|lwe+v 6| <& for each »|6],0;,...,05]
and if 4,, B, and B, respectively denote the events
[ —6;] < & for each »
Wik < wik
and
, wig 2w
respectively’ then it follows from (6.42)
(6.51) lim P[4,]6],6;....05] =1

n—>0o0

and from (6.48) and (6.49)
1 zlim P, = lim {P[B,]6],0;,...,04]

n~->00

e

P [A4,|B,; 6,0 ....,051+P [B,]0],65...,04] }=
(6-52) § —1im {P [4, and B,|6},0;,...,05]+P [B,|0},6;,....051} =

= lim P[4, |6},06}, ...,05) =1.

N>
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Thus
(6.53) lim P,=1.
7. Examples

In this section some examples will be given where the conditions (4.3)
and (6.6) are satisfied.

Example 1

Let x; possess a normal distribution with mean §; and known variance
of (1=1,2, ..., k). Then

o
. 2 (wi,y —i)*

(7.1) La(yi)=~—%niln2n642—%ﬁ——;é————— (?:=1, 2,...,k).
From (7.1) it follows that L,(y,) is a strictly unimodal function of g, in
the interval ( —oo, 4-00) and attains its maximum in this interval for

o
(1.2) g=m,EL S0 G=1,2,..,k.
S
Thus L,(y,) is a strictly unimodal function of y; in each closed subinterval
I, of the interval (—oo, +o0) and if I, is the interval (¢, d;) then L(y,)
attains its maximum in I; for

m; if c;g my = dy,
(7.3) Y= 6 if my <, (i=1,2,...,k)
d,; if m; > di'
Further if M is a subset of the numbers 1, 2, ..., & then (cf. (4.2))
L
{ 2 (®y—2)®
(7.4) Ly@=-%> 2niln2na?+”—=-1——2——-—
ieM 3
and from (7.4) it follows easily that Ly(z) is a strictly unimodal function
of z in the interval ( —oco, +o00). Thus L satisfies condition (4.3).
Further L,(2) attains its maximum in the interval ( —oo, 4+0c0) for

7.5 z=m 9_9_5( @>—1 L
(7.5) u iezmaiz ieu o
Now let M consist of the numbers hy, ks, ..., b,, then if ¢}=0® for each
teM
ny
ZI(WM.V“Z)”
(7.6) Ly(2)=—%nyIn 2‘no‘2—-%z————?——,
where
(7.7) = 3,

ieM
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and where zy ,, (y=1, 2, ..., ny) denote the pooled samples of x, , x;_, vees X e
Thus if L attains its maximum for Yoy =Yny =+ =Y, then the samples of
Xnys Xnys ooes X, T O be pooled if of=06% for each 7 € M.

Further

(7.8) s (2 s, 05) = =) (Zf_y"”e’) (=1,2,...,k).
Thus
”Bz
& {9 (x| 0) |0 = — L=
(7.9) i (i=1,2,..., k)
o2 {gs (x|, 0) | 0} = L2
o}
and
(7.10) o2{g; (x;|ys, 6:) [ 6:} — 40% (1:=1,2,...,]G).

[E{gi(xi| 91,00 |6:}1%  (yi—0)®
From (7.9) and (7.10) it follows that condition (6.6) is satisfied if
(7.11) si<oco  (i=1,2,..., k).
Remark 4: From (7.4) and (7.5) it follows that the estimates of
0y, O, ..., 0, may also be found by means of the method described above

if the o? are unknown and of/¢? is known for each pair of values
1,7=1,2, ..., k. Then if

=
=

€]

(7.12) K,

I

. HQN‘ @QN

(=1,2,...,k)

the maximum likelihood estimate of o? is

E %
(7.13) gy ) @iy ”’ 6=1,2,..., k).
,'= p=1

The procedure will now be illustrated by means of the following example.

Two preparations 4 and B, known to stimulate the growth of hogs,
are added in two concentrations each to the food of four groups of hogs.
Let these four additions be denoted by 4;, 4,, B, and B,. It is known
that B, is at least as good as A4, (notation 4,< B;) and that in the same
sense A;< A4, and B;< B,. No decisive knowledge however is available
concerning the ordering of 4, and B,. The growths of the hogs during
a certain period are then the four samples.

The fictitious numerical example given below concerns this partial
ordering, but has been made a little more complicated by the introduction
of unequal variances and of restrictions on the possible values of each
0, separately:
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Let
4, 4, B, B,
? 1 2 3 4
— 0,40 1,43 — 0,70 0,29
2,66 1,86 2,61 0
0,26 0,06 0,79 1,31
2,87 0,07 ' 0,86 0,15
;. 1,14 0,14 2,63
0,29 1,86
2,67
0,85
(7.14) 1,21
n;
Z iy 5,28 9,48 3,70 6,14
Py =l
7, 4 9 5 6
m; 1,32 1,05 0,74 1,02
of 2 4 5 1
v; 1 1,05 0,74 1,02

and (cf.(2.8))

1. ry=2, r;=4,
7.15
( ) 2. oy p=0y3=05,4=1.

From (7.14) and (7.15) it follows that the pairs 1=3, j=2 and ¢=4,7=2
satisfy (5.7) and (5.8). Thus according to theorem VI L attains its maximum

in D for

(7.16) N=Ys=Ys=Yp
From (7.14), (7.16) and theorem V then follows
(7.17) t, =1,

i.e. L attains its maximum in D for

(7.18) ) N=Ys=Ys =Y.
From (7.14), (7.18) and (7.5) then follows
i 1 3 4 2
n;
> Xy 5,28 3,70 6,14 9,48
p=1
(7.19) n; 4 5 6 9
My, 1,13 1,13 1,02 1,05
o? 2 5 1 4
IM, (%’ 1) (és l) (_ o0, + OO) ("‘ 0, + OO)
U, 1 1 1,02 1,05
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From (7.19) and theorem III then follows
(7.20) t=ty=1, t,=1,05, t,—1,02.

Exa,inple 2. Let x, possess a Poisson distribution with parameter
0, (0<f,<o0; i=1,2,..., k).
Then

ny

TL‘ -
(7.21)  Li(y;)=—ny;+ Z-’”i.rln.%“ zlnxi,jy! (i=1,2,...,k);
r=1 p=1
thus

def 1
>0 for 0 Sy, <m=-— 3,
n; y=1 i

dL; ()
(7.22) dy; =0 for y,=m;,

<0 for y; > m,.

From (7.22) it follows that L,(y;) is a strictly unimodal function of y,
in the interval (0,00) (t=1,2, ..., k).
Further if M consists of the numbers &y, Ay, ..., b, then

: ny Ny
(7.23) Ly(@)=—nyz+ D>y, Inz— >Ina,,l,
y=1 p=1
where 7y is defined by (7.7) and where z, , (y=1, 2, ..., ny) denote
the pooled samples of x,,x;, vees Xy e Thus L satisfies condition (4.3)

and if L attains its maximum for y, =y, =...= Yn, then the samples
of X, Xp,, ..., Xy, are to be pooled.
Further
(7.24) 0|9 0) == yi—mIn Y (i=1,2,..,0),
thus

0;
E{9:(x; | 91, 0;) |6:}=0,—y,— 6, In o

(7.25) 012 (=1,2,....k)
0 {gs (x| 94, 6 10} =0; (In )
and
01\2
(7.26) az{gi(xil?/i;oi)lei} - 0‘(1113—,;)

sl e (=1,2,...,k).
[éb{g';, (x’llly” 01)101}12 6._y — 0@ h] .B_i 2
¢ Yi

From (7.25) and (7.26) it may easily be proved that condition (6.6)
is satisfied.

A practical situation of ordered parameters of Poisson distributions
might occur if several toxicants are to be investigated as to their killing
power for certain kinds of bacteria. If the toxicants are added in different
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concentrations to cultures of bacteria, knowledge may be available
leading to a partial or complete ordering of the expected values of the
number of survivors in the different experiments.

It may easily be verified that the conditions (4.3) and (6.6) are e.g.
also satisfied if x;, possesses
1. a normal distribution with known mean yu; and variance 0

(t=1,2, ..., k),

2. an exponential distribution with parameter 0, (i=1,2, ..., k),

3. a rectangular distribution between 0 and §; (¢=1, 2, ..., k),

4. a normal distribution with mean 6, and known variance for
t=U,l,...,l, and a Poisson distribution with parameter §; for
UEZY 0 P
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