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1. Introduction 

The object of this paper is to give a more detailed account of the 
situation, discussed in the first part of CoBHAM's article [2]. We shall 
consider here the situation where customers of different priorities arrive 
at one counter to be served 2). 

2. Description of the system 

We distinguish r priorities by the priority numbers 1, 2, ... , r, where 
1 stands for the highest and r for the lowest priority. Customers of 
priority number k will be called k-customers in the sequel. At time zero 
the counter is opened for servicing. At that moment, with probability 
p0(cii, ... , a,) a queue consisting of a1 I-customers, ... , a, r-customers is 
present (with a1 ;;;,,0, ... ,a,;;;,,0, p0(av···,a,);;;,, 0, 2 Lcii;;;;.O, ... ,a,;;,,OJpo(av···,a,) 
= 1) 3). New k-customers arrive (k E {l, ... , r}) according to the 
following law: the interval from time zero to the first arrival of a k
customer, and the intervals between arrivals of successive k-customers 
are mutually independent random variables with distributionfunction 

(2.1) 

where we assume ).k > 0 for k E {l, ... , r }. The servicetime is also stochastic 
and has the same distributionfunction F1c(t) (continuous from the right) 
for all k-customers. All arrival intervals (including the intervals from 
time zero to the arrival of the first k-customer) and all servicetimes are 
mutually independent. 

Servicing takes place for each priority in the order of arrival. If 
customers of different priorities are present when the counter becomes 
free to serve a new customer, that one with highest priority which came 
first to the counter, is the next to be served. If the counter becomes 

1 ) Report SP 53 of the Statistical Department of the Mathematical Centre. 
2) Questions, put to us by the N.V. Philips' Gloeilampenfabrieken, Eindhoven, 

Holland, gave rise to the present investigation. 
3 ) The conditions under which a sum or a limit have to be taken are sometimes 

denoted by placing them between half square brackets l j. Summations are always 
over non-negative integers. 
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empty the next customer to be served is the first newly arriving customer. 
Servicing of a customer is never interrupted to make way for another 
customer. 

Following D. G. KENDALL (10] we consider the moments at which 
customers leave the counter at the end of their servicetime. The customers 
are numbered (1, 2, ... ) in the order in which they leave the counter, and 

(2.2) 

is defined as the probability that the nth departing customer is a k
customer and leaves a queue consisting of lli I-customers, ... , ar r-cus
tomers at the counter {for all k E {l, ... , r}, n E {l, 2, ... } and a1 E {O, 1, ... } 
fqr j E {l, ... , r}). 

We introduce the generating functions 

(2.3) fk,n (X1, ... , Xr) def .2 Lal;;,,, 0, ... ,a, ;;,,,OJ Pk,fl (a1, ... ,a,)Xr ... x~, 
for jX1 j < 1, ... , IXrJ < 1, the functions <pk(°') and the moments of Fk(t), 
defined by 1) 

{2.4) 
00 

<pk(°') def f e-"'tdFk(t) 
o-

for Re°';;;,O and 

(2.5) 
00 

µg> def f t1dFk(t). 
o-

We exclude the case where Fk(O)= 1 for some k, i.e. we have µg>>O for 
all k and all real l and <pk(°')< 1 for all k and all °'>0. 

Finally let 

(2.6) 

be the conditional distributionfunction of the waitingtime of the nth 

departing customer, given that the n th departing customer is a k-customer, 
and 

(2.7) 
00 

'IJ'k,n(°') def J e-"'tdHk,,,.(t) 
o-

for all k E {l, ... , r} and n E {l, 2, ... }. 
We distinguish two cases: 

and 

r 
the case of nonsaturation, defined by _2• Aiµp> < 1 

1 

r 
the case of saturation, defined by !• i,µ<1> > 1. 

l 

For the case of nonsaturation we prove that the limits of Pk.n(lli, ... , a,) 
and /k,,,.{X1, ... , X,) for n - oo exist and that Bk, n{t) tends to a distribution-

1) The integrals are Lebesgue-Stieltjesintegrals over the interval O ,i; t < oo. 
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function Hk(t) for n-+ oo. All these limits are independent of the initial 
situation, i.e. the probability distribution {p0 (<ti_, ••• , a .. )}. Hk(t) is the 
distributionfunction of the waitingtime of an arbitrary k-customer in 
the stationary situation. 

Using D. VAN DANTZIG's "method of collective marks" ([5], [6] and 
[7]), we derive recurrence relations (3.12) between the generating functions 
fk.n(X1, .•. , X .. ) together with relations (3.16) connecting the /k,n(X1, ... , X .. ), 
1Pk,,,.(1X) and qik(IX). From these relations we derive!the relations (5.2) for the 

fk(X1, ... ,X .. ) def lim. h,n(X1, ... ,X .. ), 
'n-HX> 

which are then solved. From the relation (3.16) we derive (5.3), connecting 
fk(X1, ... , X .. ) and 

'lfJdlX) def lim "Pk,n (IX). 
n--+-oo 

Once the MX1, ... , X .. ) are solved, they are used, together with the 
last relation, to compute the first two moments of Hk(t) and to derive an 
expression for "Pk(IX), for k E {l, ... , r}. The first moment of Hk(t) was 
given by COBHAM [2], but we did not understand his proof. 

For the case of saturation we only state some results without proof. 
We shall use some abbreviations to keep the formulaefrom becoming 

awkwardly long. With the understanding that on both sides of the equa
litysign in (2.8) up to and including (2. 14) indices may be added to the 
function symbols, we write 1) 

(2.8) 

(2.9) 

(2.10) 

abb " 
g (X) = z1 fi {X), 

1 

f (uk Xv1) abb / (u, ... ,u, Xk+1, ... ,X1 _ 1, v, ... , v), 

i.e. the first k variables in (2.10) are equal to u, the last l variables are 
equal to v and the remaining variables (if any) are equal to the correspond
ing variables of f(X) (we shall always have k+l<r). In the same way 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

We use 

f (U(k) X) abb / (Ui, ... , uk-1• xk, ... ,Xr), 

I (U<k) Xvi) abb f (U1, ... , uk-1• xk, ... ,xr-1, v, ... , v), . 

f (Y(k)X) abb f(yk,1• ···,Yk,k-l•Xk, ... ,X .. ), 

f (Y(klXv1) abb f(yk,1, ···,Yk,k-1,Xk, ... ,X .. -1, V, ... ,v). 

lim f (X) (IXl < I) 

1) abb is used, when on the left hand side of an equalitysign an abbreviation 
is introduced for an expression on the right hand side. 
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if we want to take 

lim lim ... lim /(X) 
X1->-l X1->-l .X:,-+-1 

where Xi, ... , Xr must remain inside the unit circle. The order in which 
the latter limits are taken is irrelevant unless otherwise stated. 

Finally 1) 

(2.15) 

and for all k, l E {l, ... , r}, with k+k:.r, 

(2.16) 

(2.16') 
! abb k r-l r 

p (uk, X, ) = 2' p,u+ 2' p,X,+ 2' p,v, 
1 k+l r-1+1 

(2.17) 

(2.17') 
k-1 r-1 r 

p(U<k>,X,vl) a.bb 2' Pi u.+ 2' p,X.+ 2' p,v, 
1 k r-l+l 

(2.18) 

(2.18') 
k-1 r-l r 

P(Y<k),X,v1
) abb 2' PiYk,i+ 2' p,.X,i+ 2' p,v. 

1 k r-l+l 

3. Recurrence relations for the system 

In order to apply the method of collective marks of D. VAN DANTZIG 
[5] and [6], we introduce an event E, which happens with probability 
1-X1o whenever a k-customer arrives, thus 

(3.1) 0<:X1o<l for each kE{l, ... ,r}. 

Th~ events E are independent for all customers. Any event E is called 
a "catastrophe" in D. VAN DANTZIG's papers. Its nature, however, is 
irrelevant. As only probabilities of other events, together with non
occurrence of any "catastrophe" are considered, it is irrelevant whether 
under occurrence of an event E the process continues or not. 

We can now interprete f1o. 11(X) as a probability for 

(3.2) 

is the probability, that at the n th departure, n E {l, 2, ... }, one k-customer 
leaves the counter, lli I-customers, ... , arr-customers remain at the counter 

1) If k = 1 the first sum on the right hand side of (2.17) and (2.18) equals zero, 
if k = r the last sum of (2.16); analogously for (2.16'), (2.17') and (2.18'). 
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and with respect to none of the remaining customers the event E happened. 
Therefore 

(3.3) ' f k.n (X) = 1 Lal~ o, ... ,ar ~ OJ Pk,n (ai, ... ,a,.) xr ... x:r 
is the probability, that at the n th departure, n E {l, 2, ... }, a k-customer 
leaves the counter and with respect to none of those remaining at the 
counter the event E happened. Further 

(3.4) Pi,n (0, ... , o, ak, ... , a,.) xik ... x:, 
is the probability, that at the n th departure, n E {l, 2, ... }, an i-customer 
leaves the counter, ak k-customers, ... , a,. r-custoiµers remain at the 
counter and with respect to none of the customers remaining at the 
counter the event E happened. If ~> 0 the next customer to be served 
is a k-customer, therefore for k E {l, ... , r} 1) (using (2.10)) 

(3.5) 
~ ti,n(ok-l X) - f,,n(Ok X) = 

( = 1 Lak > I,ak+l > 0, ... ,a,.> OJ Pi,n(O, ... , O,ak, ... ,a,.) xi.r. ... x:, 
is the probability, that at the n th departure an i-customer leaves the 
counter, service on a k-customer starts and with respect to none of the 
customers left by the departing i-customer the event E happened. 

Put 

(3.6) 

Now 

def A.=}"1.+ ... +i,.. 

is the probability, that at the n th departure an i-customer leaves and 
the counter becomes empty, while 

(3.7) 

is the probability, that the first customer arriving after a given moment 
is a k-customer, therefore (using (2.9) and (2.10)) 

(3.8) 

is the probability, that at the n th departure, n E {l, 2, ... }, the counter 
becomes empty and the next arriving customer is a k-customer, with 
respect to which the event E does not happen. 

(3.9) 

is the probability, that during the servicetime of a k-customer exactly 

1) If k = r then hn(fY'X) stands for /;,,n(Of). 



317 

<Li 1-custom.ers, ... , a, r-customers arrive, so (using (2.15)) 

(3.10) · a, a 
00 

-.l,i (Ai t)a, -.1,t (}.,.t)a, 
) 

Pk (l (1-pX)) = 

= z La1 > 0, ... ,a,> OJ X 1 ••• X,r J e --,- ... e -, dFk(t) 
o- £ii· a... 

is the probability, that with respect to none of the customers, arriving 
during the servicetime of a k-customer, the event E happened. 

Analogously 

(3.11) 

is the probability, that with respect to none of the customers with priority 
number k, arriving during the servicetime of a k-customer, the event E 
happened. -

Now the probability that at the (n+ l)st departure a k-customer leaves 
and that neither to him nor to those remaining at the counter the event E 
happened is equal to the probability that at the n th departure either an 
i-customer leaves the counter (for i equal to 1, 2, ... or r), service on a 
k-customer starts and to those remaining at the counter (the k-custom.er 
under service included) the event E did not happen or the counter becomes 
empty and the first custom.er arriving is a k-customer, with respect to 
whom. the event E did not happen and (in any case) during the servicetime 
of that k-custom.er no customers, with respect to whom the event E 
happened, arrive. This equality can be written in the following way, 
using (3.3), (3.5), (3.8) and (3.10) with their interpretations 

(3.12) Xkfk,n+l (X) ={Yn (Ok-l X)-g,.(OkX) +pkXkg,.(0')} Pk (A (1-pX)). 

This relation is valid fork E {l, ... , r}, n E {l, 2, ... } and all real Xk satis
fying O,.;;;;Xk< 1, because of the arbitrariness of the event E. If at the 
moment the counter is opened for service, with probability p0(ai, ... , a,) 
a queue consisting of a1 I-customers, ... , a, r-customers is present and 

(3.13) 

then (3.12) is true for n=O as well. 
For O,.;;;;Xi< 1, i=fak and O<Xk< 1 we can solve (3.12) for fk.n+i(X) 

once g,.(X) is known for those values of X. But then we can find f k.n+i(X) 
(andg,.(X)) for allX satisfying IX1 1 < 1, ... , IX,!< 1 by analytic continuation 
for each k E {l, ... , r}. Therefore (3.12) holds generally for each 
k E {l, ... , r}, n E {O, 1, 2, ... } and IX1l<l, ... , IX,l<L 

We might try to express fk.n+l(X) as a function of g0(X) only, by repeated 
application of (3.12) and so eliminating g1(X) with l:;;,, 1. This however is 
not practicable, the more so as fk,n+i(X) for X;= 0 can be found from 
(3.12) only by dividing both sides by Xk for Xk=faO and taking the limits 
for Xk-+ 0, which leads to partial differential quotients in the expression 
for /k,n+i(X) for Xk= 0. 
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Analogous to (3.11) and its interpretation we have: 

(3.14) 

is the probability, that if at the nth departure a k-customer leaves the 
counter, with respect to none of the customers with priority number 
k arriving during his waitingtime, the event E happened. 

Finally 

(3.15) 

is the probability, that at the nth departure a k-customer leaves the 
counter and with respect to none of the customers with priority number 
k which remain at the counter the event E happened. Now this is equal 
to the probability that at the_ n th departure a k-customer leaves and 
that with respect to none of the customers with priority number k arriving 
either during his waitingtime or during his servicetime the event E 
happened. 

Therefore we have 

(3.16) 

for kE{l, ... ,r}, nE{l,2, ... } and for all Xk satisfying O,;:;;Xk<l. This 
may again be generalized by analytic continuation. Therefore (3.16) 
holds for all xk satisfying 1xk1 < 1. 

We can now summarize our results. From (3.16) we have, that 'IJ'k,n(ix) 
is a function of fk.n(X) and 'Pk(ix). The functions fk,n(X) are known to 
satisfy (3.12), but cannot be solved explicitly from those relations in 
terms of g0(X). However, as we are interested in the behaviour of the 
system in the long run, we will use (3.12) and (3.16) to find lim 'IJ'k,n(ix). 

-00 

The relations (3.12) and (3.16) can also be derived in a more formal 
way than it has been done here. 

4. Convergence to a stationary distribution 

Before making use of the relations (3.12) and (3.16) we shall prove 
some results connected with the convergence of the Pk,n(<Li, ... , ar) for 
n - ~, which justify the method of the next section. 

Let us say that the system is in the state (k; av ... , a,) at the departure 
of the nth customer if the n th departing customer is a k-customer and 
if he leaves for every i E {l, ... , r} a, i-customers at the counter. Then 
all transition probabilities from a state at the n th departure to any state 
at the (n+ l)st departure are independent of n and can easily be calculated. 
By considering only the moments, at which a customer leaves the system, 
we thus obtain a Markof chain, with a denumerable number of states. 
Let us denote this Markof chain by M. For every state there is a positive 
probability to reach in a finite number of steps a state where a departing 
customer leaves an empty counter, and from this situation any state can 
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again be reached in any number of steps. We conclude that M is an 
irreducible and aperiodic Markof chain (cf. FELLER [8] for the terminology 
and classification of states in Markof chains). From Corollary 1 in 
FELLER [8] (p. 328) it follows immediately, that lim Pk,n(lli, ... , aT) 

'fl,->-()0 

exists and is independent of the initial distribution. 
T 

In the case of nonsaturation (!iJiµi1>< 1) all states are ergodic. To 
1 

prove this, we need a theorem of FOSTER [9], which was given by 
MouSTAFA [12] in the following slightly generalized form: 

Theorem 4.1. An irreducible, aperiodic Markof chain represented 
by the Markof matrix II Pi.ill (i, j = 1, 2, ... ) is ergodic if for some s> 0 and 
some integer i0, there exists a non-negative solution {Yi} of the inequalities 

00 

(4.1) L1 Pi,i Yi < Yi- 8 for i > i 0 , 
1 

00 

(4.2) L1 Pi,i Yt < 00 for i < i 0 • 
l 

00 

We note that !1 Pi.iYi can be regarded as the expectation after one step, 
1 

if we start in the i th state, of a random variable 1) y, taking values y1 with 
probabilities Pi.i• 

r 
Theorem 4.2. If !iJiµf><l, all states in the Markof chain Mare 

ergodic. 

Proof: This theorem is an application of Th. 4.1. The states of M 
can be characterized by (k; °'I, ... , aT), i.e. the priority number of the 
leaving customer and the number of customers of each priority left by 

. T 

him. With each state we associate a number y. By definition y= L' aiµ?> 
1 

for the state (k; av ... , aT), i.e. y is the expectation of the time needed 
to serve the remaining customers and as such non -negative. If we start 
in the situation (k; 0, ... , 0, a1, ••• , aT) with a1>0 for an l,;;;;r, the next 
customer to be served is an l-customer and the expectation of y after 
one step is then 

l-1 r 

_Li Aiµfll µp> + (a1+A1µj1> - I) µfl>+ Li (ai+Aiµp>) µ?> = 
1 !+l 
,. 

= _Li aiµ?> + µ! 1
> { Li A;µp> -1},;;:;; 

l 1 

r 

<!• a;µf>-s 
I 

1) Random variables are distinguished from numbers by printing their symbols 
in bold type. 
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where 
r 

edef min µj1l{l- 2' A.µ?>}. 
1;,;z;;;, 1 

In fact the expected number of i-customers arriving during the service
time of an l-customer is ).iµ)1>, and one l-customer leaves the system at 
the end of this step. Therefore (4.1) is satisfied in this case. If we start in 
the state (k; 0, ... , 0), the expectation of y after one step is finite, so 
( 4.2) is satisfied for the r states with a1 = a2 = ... =a,= 0. 

Thus Th. 4.2 follows. 

Corollary. If we define P1c(~, ... , a,)= lim Pk,n(a1, ... , a,) we have: 
,._..00 

Pk(~, ... , a,)>0 for all k E {l, ... , r}, a.;;..o 

r 

2k 2 La1 > 0, ... ,a,> OJ Pk(a1, ... ,a,)= 1 
1 

and the Pk(~, ... , a,) form a stationary distribution for the Markof chain 
M. This is an immediate consequence of Th. 4.2 and Th. 2, p. 325, in 
FELLER [8]. 

To prove also the convergence of 2LSJpk,n(~, ... , a,) where the summation 
is over an arbitrary set S of states, and the convergence of moments of 
the queue length, we need the following theorem. 

Theorem 4.3. Let an irreducible, aperiodic ergodic Markof chain 
be represented by the Markof matrix IIP,.;II (i, j= 1, 2, ... ). If 

def lim (n) 
n; - P.,;, 

,._,. 00 

where Ptl are the n step transitionprobabilities (these limits exist, are 
positive and independent of i; cf. FELLER [8], p. 325) then we have for 
any non-negative state function Fi 

00 00 

(4.3) lim 2; Pt} F; = 2I n; F; for every i. 
n--+oo 1 1 

Proof: As lim PtJ=n; and F;>O we have for all positive integers s 
n-,.oo 

00 CX) 

(4.4) lim inf 2 · p!~} Fi > 21 n; F;, 
,i-,.cx, 1 1 

because if s > 0 and N is such that 1 ) 

.v 00 ~> n; F; > 2; n; F; - s, 
1 1 

00 

1) If Ii n;F;= oo, only some obvious changes are necessary. 
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we have 

oo N N 00 

lim inf 21 P!:} F; > lim inf 21 pl~} F; = 2Ht; F; > 2ni1 F1- e 
A-+-00 1 fl-,. 00 1 l 1 

for every e>O, whence (4.4) holds. 

00 00 

The proof of (4.3) is completed, if 2i :rr:1F1==. If 2' :rr:1F1< = we 
1 1 

00 

proceed as follows. We know, that n; is always positive, .21 :rr:1= I, and 
00 l 

n;= I• n.pi~} for all positive integers n (cf. FELLER [8], p. 325). Therefore 
1 

we have for a fixed N > s and every n 

00 00 00 00 00 

2; :rr:1 F;= 2' :rr:, 2' PtJ F; > 2 LI < i < N, i ,fa sJ :rr:, 2' Pt} F1+:rr:8 21 Pt} F; 
1 1 1 1 1 

so 

00 00 00 

2' :rr:1 F; > lim.sup {2 LI < i < N, i ,fa sJ n, 21 PI:} F1+ns 2i Pi~} F;} > 
1 n:-+-00 1 1 

00 00 

> 2 LI<i < N,i ,fa sJ n.liminf!, Pt}F;+n.limsup 2' p!~/F; > 
n-...oo 1 n~oo 1 

00 00 

> I LI< i < N,i ,fa sJ n. 21 n; F;+ns limsup 2' Pt}F;. 
l tl->00 1 

Now take N-+ = 
00 00 00 

21n;F;>(l-n8 ) 21:rr:;F;+n.limsup 2'Pt}F;. 
1 l fl-+-00 1 

As n,> 0 this leads to 
00 00 

(4.5) limsup 21 P!:}F; < 21 n;F; 
n-,.00 1 1 

for all s. 
From (4.5) together with (4.4) we have (4.3). 

R{lmar k I. The theorem remains true for arbitrary state functions 
F; with 

as can be seen by writing 

where 
F + def jF;I +F; 

i - 2 ' 

F :- def jF;j-F; 
' - 2 • 

Remark 2. If the Markof chain we consider has a probability p1°> of 
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00 

being in the state i in the initial situation (p10l;;;,.O and I• pi01 = 1), then 
1 

by Th. 4.3 
00 00 00 

lim I 1 I; P1°> PtJ F, = I 1 n; F;, 
,. .... co 1 1 1 

provided F; is bounded. 
From the convergence of Pk,n(°'i, ... , a,) follows only the existence of 

lim f k,,.(X), if IXd < l for all i E {l, ... , r }. We may now conclude, that 
,. .... co 

if jXij~ l for all i E {l, ... , r} 

lim fn,k (X) = I Llli > 0, ... ,a,> OJ Pk(a1, ... ,a,) x1, ... X~• . 
...... co 

This follows if we take the state function 

F( ·. )def~X'f'-... x~ if i=k,l 
i,°'1,···,a, - 0 if 

i-# k. 
Thus 

fk (X) def lim !1c,n (X) = I Lal> 0, ... ,a,> OJ Pk (a1, ... , a,) X'f'- ... x~ 
n-+OO 

is a power series with positive coefficients, which converges for 

r 
IX.I< 1, i E{l, ... ,r}, and as Ik ! La1 ;;;,. 0, ... ,a,;;;,. OJ Pk (lli, ... ,a,.)= 1, 

1 

we conclude that 

(4.6) lim /k(1k- 1 X 1•-k)=h(l') (IXI < 1). 
X-+l 

Remark 3. From Th. 4.3 we also conclude that 

r 

lim Ik I La1;;;,. 0, ... ,a,;;;,. OJ a;Pk,n (a1 .... ,a,)= 
n~oo 1 

r 

= Ik I La1 ;;;,. 0, ... ,a,;;;,. OJ a1pk (av ... ,a,), 
1 

i.e. the expected length of the queue of j-customers at the n th departure 
tends to the expected length of the queue of j-customers derived from 
the stationary distribution, and analogously for the higher moments of 
the queue length, provided the initial state is fixed, i.e. p0(b1, •.. , b,) = 1 
for a given initial state (b1 , ... , b,). 

, 
Theorem 4.4. If I• AiµP>< 1, the conditional distributionfunctions 

1 

of the waitingtimes Hk_,.(t) (k E {I, ... , r}) converge to a non-degenerate 
distributionfunction Hk(t) with 

00 

'IJ'd°') def f e-"'tdHk(t) 
0-
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for 

Proof. A distributionfunction of a non-negative random variable 
is uniquely determined if its Laplace transform is given on an interval 
which lies in the right half plane, because the Laplace transform of such 
a distributionfunction is analytic for all arguments with positive real 
part, and can thus be determined uniquely by analytic continuation,, so 
that the uniqueness theorem for the inverse of a Laplace transform may 
be applied (cf. D. V. WIDDER [14] Th. 5a, p. 57 and Th. 6.3, p. 63). 

From (3.16) follows the convergence of "Pk,.,.(ix) for I 1 - ~I< 1 as 

lim fk,nW)>O and 'Pk(ix)>O. 
n-oo 

We can now follow a standard method (compare e.g. LEVY [11], p. 49, 
proof of Th. 17 2) to prove that Hk,n(t) converges to a function Hit) 
with '1/'k(ix)= lim "Pk.n(ix) satisfying (4.7). Hk(t) is a monotonic non-

n--+oo 

decreasing function continuous from the right and satisfies H1r,(t) = 0 for 
t<O and lim Hk(t) = 1, as from (4.7) lim "Pk(ix)= 1. This proves Th. 4.4. 

t-+oo «-->-0 

All the foregoing theorems concerning the queuing problem are valid 
r r 

only if Ii Ajµf11 < 1. In the case of saturation ( 2• Aiµ111 ;;,.i) analogous 
1 1 . 

theorems can be proved, although we did not succeed so far in finding 
simple proofs. In fact one can prove: 

s s+l 
If 2• AiµP1 < 1 and 2' .4;µ111 ;a,, 1 we have 

1 1 

lim 2 Las+2 > o, ... ,ar > OJ Pk,n(ai, .. ,,a,)=0 
n-oo 

and 

lim 2 Las+l > 0, ... , a,> OJ Pk,n (a1, ... , a,) 
n-oo 

exists and is positive. 
If we define 

we have for k E {l, ... , r} 

lim f1c,.,.(X ir-8)= 2 La1 > 0, ... ,a.> OJ Pdlli, ... ,a.)X~• ... X:• 
n-oo 

whereas 
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Hk,.,(t) converges to a non-degenerate distributionfunction if k,;;;,s and 
lim Hk,.,(t) = 0 for every finite t if k > s + I. If k < s the moments of H 1c,.,(t) 
n-oo 

do not necessarily converge to those of H1c(t), i.e. we cannot conclude 

00 00 

(4:.8) lim J tidH1c, .. (t)= f tidHdt) for k < s. 
n-oo 0- 0-

An example will show, that in some cases (4:.8) does not hold. Take 
8 + 2 < r and µl1:/. 2 = oo. If we start from an initial situation with 

00 

a1 = ... =a8 +i=O, a8 +2 >0 it is clear that ftdHk,.,(t)=oo (nE{l,2, ... }), 
0 

00 

whereas J tdHit) is not necessarily infinite for k<,s. 
0 
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(Communicated by Prof. D. v. DANTZIG at the meeting of December 29, 1956) 

5. The case of nonsaturation 

In section 4 we proved that in the case of nonsaturation, i.e. if 

r 
(5.1) "'' .l- µ<1

> < l £., • • ' 
1 

for kE{l, ... ,r} and all X with IX1 l<l, ... , IXrl<l 

fk (X) def Jim fk.n (X) 
n-+oo 

exists. 
According to Theorem 4.4 in this case the limits 

Hk (t) deflim Hk,n (t) 
n-+oo 

for all real t and 

for Re °' > 0 also exist and 1P&x) satisfies 

00 

'lfJk(°') = f e-"t dHk (t). 
0-

For kE{l, ... ,r} and IX1 j<l, ... , jX,j.;;;l we have from (3.12) 

(5.2) xk tk (X) ={g (Ok- 1 X) -g (Ok X) +pkXkg (O')} IPk (.l (I -pX)) 

while (3.16) leads to 

(5.3) fk(1k-lX1r-k)=h(l') 'lfJk(Ak-.lkXk) <pTc(A7c-AkXk). 

From (5.2) we conclude (for jX1 j < I, ... , IX,!< l and arbitrary Ui satis
fying IU1l <;I, ... , IU1c-1I < I) 

(5.4) 
Pk(l(l-pX)) tp7c(l(l-p(U<k>,X)))' 

for X1c,foO (and by analytic continuation for Xk=O as well) and also 

· (5.5) 

1) Report S211 (VP 11) of the Statistical Department of the Mathematical Centre. 
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Formula (5.5) simplifies to 

(5.6) i_, f-(X) Xi-'Pi(J.(1-pX)) =g(Or) (pX-l). 
i • 'Pi(J.(1-pX)) 

To determine /k(X)weintroduceyu, ... , Yu-i, defined (fork E {2, ... , r}) 
by 

k-1 r 
(5.7) Yk,i-,Pi(A(l- 2/P;Yk,i- z,p;X;))=O 

1 k 

for i E {l, ... , k- 1 }. The Yk.'.i are thus functions of X~, ... , Xr. We shall 
prove ( always assuming ( 5.1)) : 

Lemma 5.1. Equations (5.7) have for every set of complex numbers 
r r 

X,., ... , X.,, satisfying ziAi Re Xi< !iAiexactlyonesolutionfory,._.1 ,. ··,Yu-1 ; 
k k 

with IYk.'1' < 1, ... , IYk;k-1il < 1. 

Proof: Consider the equation 
[k-1 r 

(5.8) z- Z• Ai<p,;(A-Z- z, A;X;)=O. 
1 k 

By Rouche's Theorem (cf. TITCHMARSH [13], p. 116): "If p(z) and q(z) 
are analytic inside and on a closed contour C, and lq(z)I < lp(z)I on C, 
then p(z) and p(z)+q(z) have the same number of zeros inside C", taking 

k-1 r k-1 
p(z)derz, q(z)def - z,; A,;<p.(A-z- zi A;X;) and for C the circle lzl = z• A. we 

1 k 1 

have that 
k-1 r 

z - Z' A,; 'Pi (A - z - z, A; X,) 
I k 

k-1 
has exactly one zero z,, = zk (Xk, ... ' X,) with lzkl < z,; A,; for a fixed set 

1 

of complex numbers xk, ... ' Xr, satisfying 

If we now take 

r • 
zi A,;ReXi < z• A,;. 

k k 

• 
Yk,.=<pi (A-Zk- z, A xi> 

k 

equations {5.7) are solved and 

IYk,il < 1 
r 

because Re (A-zk- I, A1XJ > 0 and l'Pi(lX)I < 1 for Re lX> 0. A second 
k 

k-1 
solution Yti leads to z;def zi AiYZ.i where zZ satisfies (5.8) and 

1 

But then Z: = ~ and therefore yZ, i = Yk.;,. 

k-1 

IZ:I< !· A,. 
1 
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Lemma 5.2. The solution zk of (5.8) is an analytic function of the 
variables xk, ... ' XT for all xk, ... ' x; satisfying 

r r 

Li Ai Re xi< Li Ai. 
k k 

Remark (cf. BOCHNER and MARTIN [l], p. 30). A function/(;, ... , z1) 

is an analytic function of the l complex variables z1 , ••• , z1 in a certain 
region, if in some neighbourhood of every point (z~, ... , zf) of that region 
it is the sum of an absolutely convergent powerseries in; -z~, ... , z1-z?. 

r r 
Proof: Consider the point X1c=Ck, ... , X,=cr, with Li Ai Re ci< Li Ai. 

k k 

By using theorem 9 from BOCHNER and MARTIN [l], p. 39 (for the special 
case k= 1 in their notation), we prove that zk is analytic in the point 
(ck, ... , c,). The theorem reads in our notation: 

If the function F(z, X k, ••• , Xr) is an analytic function of r- k + 1 
(complex) variables in the neighbourhood of the point (a, ck, ... , c,), if 

F(a, ck, ... , c,)=0 and if ~! ,;60 for z=a, Xk=c," ... , X,=c. then the 

equation 

has a unique solution 

Z1c=z,.(X1c, ... ,X,) 

equal to a for Xk=c,., ... , X,=c, and analytic in the neighbourhood of 
the point (c1c .•.. , c,). 

We take 

with z, Xk, ... , X, as (functionally) independent complex variables. This 
function is analytic in the neighbourhood of (a, c1c, ... , c,), if 

r 
Rea+ LiAiReci <A. 

k 

This holds in particular for a=zk (ck, ... , c,), where z,., is the only zero of 
1,-1 

F(z, X,.,, ... , X,.) with jz,.,I < Li Ai (cf. proof of lemma 5.1), because 
1 

r k-1 r 

Re z,.,+ Li A; Re ci< L•A.+ Li Ai=A. FurthermoreF(z,,(c,.,, ... ,cr),ck,···,cr)=0 
Tc 1 k 

as zk satisfies (5.11} and 

loFI I Tc-1 o I Tc-1 - = 1- "'· A· <1'i ~ 1- "'· A· µ!ll > 0 oz f •oz t . . , 
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lo · I oo r °" 
0
'P•I = If texp{-;-t(it-"z- !1 it1X;)}dFi(t)I ~ f tdFi(t)=µ1~ 
Z O k 0 

and (5.1) holds. Therefore the equation (5.8) has a unique solution 
Z1r,=zk(X1r,, ..• , X,) equal to z1r,(C1r,, ... , er) for X1r,=C1r,, ... , X,=cr, which is 
analytic (only this is new) in the neighbourhood of (c1r,, ... , c,c). 

Lemma 5.3. If we keep 

r r 

Li Ai Re xi < Li } . . 
k k 

we have 

k-1 r 

(5.9) limz1r,(X1r,,---,Xr)=!iitifor L'it.(X.-1)-o. 
1 k 

Proof: As for Rex~ 0 

and 

we have 
k-1 

lzk- L' itil ¾ 
1 

1 

11-r'"l=I f xe-'"1dtl ¾ jx! 
0 

Re(it-z1r,- f, A; X;) > 0, 
k 

k-1 oo r 

¾ !dd lexp{-(it-z1r,- !d;X1)t}-lldF,(t) ¾ 
1 0- k 

k-1 r 

¾ L' A;µ.jit-¼- L1 A1X1I ¾ 
1 k 

k-1 k-1 k-1 r 

¾ L' it.µi I L1 A;-z1r,I + L' it.µ, I L1 A; (1-X;)J 
1 1 1 k 

r r 

and therefore if we take L' it. (Xi -1) - 0, keeping L' it., (Re Xi - 1) < 0, 
k k 

k-1 

we must have z1r, - L' it,. 
1 

Lemma 5.4. 

r ~ 

exists, if we keep Li iti Re X, < !• }.., for every l E {0, 1, ... , m }, if µ\ml< oo 
k k 

for every i, k E {I, ... , r} and m~ I. 



329 

Proof: ('<)~Jzk(Xk, ... , X,) can be obtained by partial differentiation of 

k-1 r 
Zk= L' A.i<p,.(A-Zk- 1, A;X;) 

1 k 

r r ~z 
with respect to Xk, for L" A,. Re X,< I• Ai and solving for '<)Xk. We 

k k k 

obtain a fraction, from which we find the higher partial derivatives by 
ordinary partial differentiation, applying the chain rule and substituting 
for those derivatives already obtained. Remembering that µf°'> < oo 
implies that <p,(.x) is an m times continuously differentiable function for 
Re .x;;;,O, which may be differentiated under the integralsign, that (5.1) 
holds and lemma 5.3, we can easily verify the statement of the lemma. 

If 

r 
keeping L' J.(X.-1) < 0, .,, 

we find 

(5.10) 

(5.11) 

(5.12) 

k-1 
J.k 2' J.,µfll 

Akl = !-1 
l- 2• J.iµil) 

1 

. k-1 
).~ 2.J.,µf2l 

Ak2= !-1 ' 
(1- 2' J.iµp>)a 

1 

k-1 k-1 
Ai 21 i.; µis> 3 Ai ( 2' i.;, µi2>) z 

Aka= ,;~-1 + /-1 
(1- 2' i.µ11))4 (1- 2· ;ti µp>)5 

1 ] 

From (5.6) we obtain, substituting X,=Yk,i for i E {l, ... , k-1} 

( Xk-(Jlk(A(l-p(y(k),X))) f ( X)-
' 9'k(J.(l-p(y(k),X)}) k _Y<k) - . 

(5.13) 
) - ~ X,-g,,.(A(l-p(y(k),X)}) I ( X) ( ( X) 1) (0') 
~ --kt: [g,i(A(l-p(y(k),X))) i Y<k> + P Y(kl• - g 

and by using (5.4) we have 

)

Xk-(J'k(J.(I-p(y(k),X)}} I (X)= 
9'k(A(l-pX)) k 

(5.14) = - J: x.-~.(~((1~~:r X))) ti (X) + (p (y(k)• X)-1) g (0') 
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We have 

Xk=<fJk (ii. (1-p ('!/ik)> X)}) 

only for 

xk=Yk+;,;cxk+l• ... ,x.> 

and therefore the ik(X) can be obtained successively for all X1, ..• , X, 
satisfying IX;I < 1 for j =1:-k and IX kl< 1 (either directly or else by analytic 
continuation) from (5.14), starting with /,(X) if g(O') is known. We shall 
not try to obtain the ik(X) explicitly, but use (5.14) in the sequel. 

The constant g(O') is determined by the condition 

(5.15) YW) = 1. 

If we take Xi=l in (5.14) for i=/:-k and, keeping IXkl<l, take Xk--+ 1, 
we have from lemma 5.3, that both sides of (5.14) tend to zero. It can be 
seen, that Xk=/:-<fJk (il.(1-p(y<k>• X, 1•-k))) for Xk=/:-1, therefore, always 
keeping IXkl < 1 and using l'Hopitals' rule 

A{l')= lim /dlk-l x1•-k)= 
Xk➔l 

, 
= _ !· /dl') lim I-ipi(l(I-p(y<k>,x, 1•-k))) + 

k+1 xk ..... 1 xk-'Pk(l(I-p(y<k>,x, 1•-k))) 
(5.16) 

+g(O') lim P(Y<k>,X,I•-k)-1 
. xk ..... 1 xk-'Pk(l(I-p(y<k>,x, 1•-k))) 

= f, t. (l') µ}
1
> (Jk+A1c,1l + uW) ik+A1c.i 

k+l 1-µ}/l (l1c+Ak,1) A 1-µ).ll (Ak+Ak,1) 

or with (5.10) 

(5.17) 

Solving (5.17) for ik{l') leads to 

(5.18) 

Because 

(5.19) 

we finally have 

(5.20) 

and 

!1cW)= Pk;(O•) 

1- ~) A;,µp> 
l 

for k E {I, ... , r }. 

r 
(5.21) g{O')=l-1; il.iµ?I. 

1 

We thus proved 
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Theorem 5 .1. The functions ik{X) satisfy the equations 

(5.22) 
) 

f X _ IPk(it(l-pX)) . 
k( )- X1c-<pk(A(l-p(y<k>,X))) 

• ~ - ~i I· (li-1 X) Xi-<pi(A(l-p(y(k),X))) + (1- ~l A- µ(1)) (p (y X) - I)~ l k71 • IPi(A(l-p(Ii-1,X))) 7 . . . (k), ~ 

for !Xij~l(icf k), 1xk1 <l, x,,ciYHl,!k(Xk+l• ... ,Xr) and all k E {l, ... , r}. 
They can be obtained successively from these equations starting 

from k=r. 
The derivation of (5.20) and (5.21) here given is unnecessarily long 

and complicated, but the same method leads us to the moments of the 
waitingtime distribution as we shall now show. 

In section 4 we proved that in the nonsaturated case the f1c(X) are 
powerseries with non-negative coefficients, absolutely convergent for 
jX1j < 1, ... , IX,!< 1 and k E {l, ... , r}. If we differentiate a function of 
this kind n times (n E {O, 1, ... }) with respect to one of its arguments 
and take the limits (in any order) ~X1 -+ 1, ... , X,-+ 1, keeping !Xii< 1 
for all i E {l, ... , r}, then either the resulting expression is finite and the 
powerseries for this derivative converges for jX1 ! < l,~ ... , !X,j < 1 or the 
limit is + oo. Moreover in all cases we have 

(5.23) \( () )" ~ . ( () )" 
( <>X1c f,.,(X)sx,= ... =X,=I = ~~ 0X1c f,.,(X) (!XI< 1). 

From (5.22) we see, that 

(5.24) lim (,x0 
_)" /~ (Xf (!XI< 1) 

X->1 u I, 

exists if 'Pi(..:l(l -pX)) is (n+ 1)-times differentiable with respect to Xk for 
j E {l, ... , r} and k E {l, ... , r}. This is certainly the case if the (n+ 1r 
moments of all F!(x) (l E {l, ... , r}) exist. If (as the only alternative) at 
least one of these moments is +oo, then we find from (5.22) 

(5.25) . ( () )" lim ox f,.,(X) = +oo 
X->I k 

(!XI< 1). 

If we take Xi= 1 for icfk in (5.22), differentiate with respect to Xk> 
then let X1c-+ 1 and use (5.10), (5.11) and (5.20) the result is 

(5.26)] 

whilst we find in the same way from the second partial derivative of 
(5.22) with respect to X,, 
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r 1' k 

An;; Aiµpl Af Ii Aiµfl I 1 AiµJ2l 

(5.27) 
1 1 1 k-1 k + ----,k,-_---,.1 ____ __,k ___ + 

3A(l - Ii Aiµpl)2 (1- Ii Aiµp>) 2A(l- L' Aiµfll)2 (1- L' ,\µp>j2 
+ 

1 1 1 1 

r k-1 

Af I· Aiµf2> Li A;µ}2
) 

1 1 + ----,k,__---,-1 _______ ....,k __ _ 

2A(l- L' A.µPl)3 (1- Ii Aiµpl) 
1 1 

From (5.3) we have by differentiating with respect to Xk 

(5.28) ~ (0°.:Jx,= ... =X,=i = fk W) (d~k {<J?dAk (1-Xk)) -ipd11.dl-X~))} )xk=i = 

? =fk(l•) {11.kµ).ll+11.le@"wle}, 

(5.29) ( 
0
2
/k) = f {l') {11.2 µ<2> + 211.2 µ<ll <ffw + 11.2 @"w2} oXif X,= ... =X,=l k le le le le k k k , 

if @"wk and Cwz are the first and second moment of the stationary waiting
time distribution Hk(t) respectively. 

On combining (5.26), (5.27), (5.28) and (5.29) we obtain: 

Theorem 5.2. The first and second moment of the stationary 
waitingtime distribution Hk(t), for k E {l, ... , r}, are respectively 

(5.30) 

and 

(5.31) 

r 
! 1 Aiµf3> 

Cwz= k-1 l k + 
3(1- L' Aiµp>)2(1-I1 Aiµi1l) 

1 1 

r le r k-1 

Ii Ai µ12) Li Ai µ}2) L' Ai µf> Li Ai µJ2l 
1 1 1 1 + · k-1 k + k-1 k 

2 (1- I· A, µpl)2 (1- L' A.µPl)2 2 (1- !1 A.µill)3 (1- I1 Aiµpl) 
1 1 1 1 

Our (5.30) is CoBHAM's formula (3) (see [2]). 

The function -ip1.(cx) can be found from (5.3), at least for JI -~I< I, 
),k 

1i.fk(l, ... ,l,l-:,l, ... ,l) 
(5.32) V'1c (iX) = A1ccp1c(°') , 

which, if combined with (5.22), leads to 
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where zt'=0 and. zZ=zt(IX) satisfies (5.8) for Xk=l-;,X,=l(i,;6k) 

and k ~ 2) i.e. 
k-1 k-1 

(5.34) zt- !d, <p, ( 2JA.i-z: +a)= 0. 
1 ] 

Therefore '1/-'i(<X) is explicitly given by 
1' r 

(1- :r• Ji..µ?>) a+ :r, Ji., (1-<pi (a)) 
(5.35) 'IJ-'i{<X) = -

1 Ai -a -Ji.1~1 (a) 

while 'IJ-'k(°') for k E {2, ... , r} contains the z:. 
As an illustration we give the following example: 

Take r=2, F 1(x)=F2(x)=l-exp (-:'.), then 
µ 

(5.36) 

(5.37) 

(5.38) 

1 
'P1(<X)=<pz(<X)= aµ+I' 

(°')- 1-lJP+aµ+aJi.µ2 
'1/-'i - 1-liP+aµ ' 

() 
(l-Ji.µ)(-Ji.1+z;-a){(Ji.1 -z;+a)µ+l} 

'1/-'2 (X = 1 1 * } > (11.2 -a){(11.1 -z2 +a)µ+l -ls 

which leads to the following waitingtime distributions (t> 0) 

(5.39) Hi(t)= 1-A.µ exp {- (l-:JP)t}, 

J,.2µ ( { A:i(l-Ji.µ)t}) H 2 (t)=l-Aµ+1;" 1-exp - lµ + 

(5.40) I 8 

-2Ai(l-Aµ) J ds J 11;:~> exp {- Ait:2µu} du, 
0 0 

where l 1(x) is the modified Besselfunction of the first order and of the 
first kind, i.e. 

(5.41) 

The result (5.40) contradicts equation (27) as given by R. E. Cox [4]. 

6. The case of saturation 
If (5.1) is not satisfied, we can find a positive integers, 0~s<r, such that 

8 •+1 
(6.1) "'' 1. µ11> < l "'• A- µ!l> ~ l £_,Aii. ,~1,1,,::;,-• 

1 1 

In section 4 we stated already without proof, that 

(6.2) h (X) deflim f1c,n (X) 
1!--+00 
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exists for k E {I, ... , r} and that 

(6.3) 

if at least one X; satisfies IX;l<l for j E {s+l, ... , r}. 
As a consequence of (6.3), it cannot be true that 

(6.4) 

as the right hand side in (6.4) equals O and 

(6.5) g(l')= 1. 

The functions MX) thus cannot be powerseries with positive coefficients 
and the method of section 4 cannot be applied. 

But if instead of MX) only h(X1•-•) is considered, we can repeat the 
argument of section 5 with some alterations. 

From (5.2) and (6.3) we have at once 

(6.6) MX)=O 

for k E {s+2, ... , r} and !Xii¾ 1, for all i E {I, ... , r}. 
If for k E {l, ... , r} 

(6.7) 

one can prove that for k E {I, ... , s + I}, f~(X) again is a powerseries _with 
non-negative coefficients, absolutely convergent for !Xii¾ 1, ... , IX.I¾ 1 
and satisfying 

s+l 
Lkfk(l')=l. 
1 

From (5.2) we have for k E {I, ... , s} and X.+1= ... =X,= 1 

s+l B 

(6.8) Xdk (X) = L' {/. (ok-l X 1•-·)-/. (Ok X 1•-3)} <fJk (1:i Ai (I-Xi)) 
1 1 

and for k=s+ 1 

s+l 
(6.9) J.+i(X)= L'h(O') f/Js+dLi A, (1-Xi)). 

1 1 

From (6.8) and (6.9) 

Equation (6.10) is the analogue of (5.2), while the analogue of (5.4) 
is (for jXil¾l,i E {I, ... ,s}and jU1l¾l,j E {I, ... , k-l}andk E {2, ... ,s}) 

(6.11) 
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and (5.3) can be written 

(6.12) 

fork E {l, ... , s}. Therefore the moments of the waitingtime distribution 
can be found as in section 5 for k E {l, ... , s}. One obtains 

(6.13) for kE{l, ... ,s}, 

(6.14) 

{6.15) 

(6.16) for kE{l, ... ,s}, 

which is CoBHAM's formula (cf. (3]). 
In addition one can prove, that 

tffwk=oo for k E {s+ 1, ... , r}. 

The authors wish to thank Prof. Dr. D. YAN DANTZIG for suggesting 
the use of his "method of collective marks" and for his valuable advice 
and criticism, which helped to give the paper its final form. 

Mathematical Centre, Amsterdam 
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Note added in proof. 

If we compare equation (5.8) with equation (49) of L. TAKACS paper "Inves
tigation of waiting time problems by reduction to Markov pro·cesses", Acta 
Mathematica Acad. Sc. Hung. VI, 101-129 (1955), it turns out that (5.8) can 
be regarded as a special case of ( 49) and therefore zk can be considered as the 
LAPLACE transform of a (proper) distribution function. Lemma 2.2 and lemma 
5.3 now become obvious. 








