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1 Introduction

The object of this paper is to give a more detailed account of the
situation, discussed in the first part of CoBmamM’s article [2]. We shall
consider here the situation where customers of dlferent pmorltles arrive
at one counter to be served 2).

2. Description of the system

We distinguish r priorities by the priority numbers 1, 2, ..., r, where
1 stands for the highest and r for the lowest priority. Customers of
priority number k will be called k-customers in the sequel.: At time zero
the counter is opened for servicing. At that moment, with probability
Polays ---» @,) @ queue consisting of a, l-customers, ..., @, r-customers is
present (with a;>0,...,6,> 0, py(ay,....a,) >0, > 16;>0,...,a,>01py(ay,...,a,)
=1)3). New  k-customers arrive (ke{l,...,r}) according to the
following law: the interval from time zero to the first arrival of a k-
customer, and the intervals between arrivals of successive k-customers
are mutually independent random variables with distributionfunction

21 Gy = 0 for x < 0
2.1) F {1—e% for z > 0,
where we assume 1, >0 for k£ € {1, ..., r}. The servicetime is also stochastic

and has the same distributionfunction F(f) (continuous from the right)
for all k-customers. All arrival intervals (including the intervals from
time zero fo the arrival of the first k-customer) and all servicetimes are
mutually independent.

Servicing takes place for each priority in the order of arrival. If
customers of different priorities are present when the counter becomes
free to serve a new customer, that one with highest priority which came
first to the counter, is the next to be served. If the counter becomes

1) Report SP 53 of the Statistical Department of the Mathematical Centre.

2)  Questions, put to us by the N.V. Philips’ Gloeilampenfabrieken, Eindhoven,
Holland, gave rise to the present investigation.

3) The conditions under which a sum or a limit have to be taken are sometimes
denoted by placing them between half square brackets | |. Summations are always
over non-negative integers.
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empty the next customer to be served is the first newly arriving customer.
Servicing of a customer is never interrupted to make way for another
customer. ‘

Following D. G. Kenparr [10] we consider the moments at which
customers leave the counter at the end of their servicetime. The customers
are numbered (1, 2, ...) in the order in which they leave the counter, and

(2'2) : pk.n (a’l, R ar)

is defined as the probability that the nt® departing customer is a k-
customer and leaves a queue consisting of a, 1-customers, ..., a, r-cus-
tomers at the counter (forallk e {1, ...,7},n € {1,2, ...} and a; € {0, 1, ...}
for je{l, ..., 7).

We introduce the generating funections

(23) fon Xy X)E S ey >0,...,0,>0] py . (ay, ..., a,) X2... X0

for [X;|<1, ..., |X,|<1, the functions ¢,(«x) and the moments of F(¢),
defined by ?) o

(2.4) 90 (0) & [ o=t dFy(t
0_
for Rex>0 and

(2.5) uPEE [ LAFL(b).
0.—

We exclude the case where F (0)=1 for some %, i.e.-we have u¥>0 for
all £ and all real ! and ¢ (x)<1 for all & and all «>0.
Finally let

(2.6) Hi,n(t)

be the conditional distributionfunction of the waitingtime of the =t
departing customer, given that the x'® departing customer is a k-customer,
and

(2.7) oolo) 2  o~4dH, 1)

for all ke {l,...,r} and ne {1, 2,...}.
We distinguish two cases:

r
the case of nonsaturation, defined by 3: 4p® <1
1
and

the case of saturation, defined by 3: A,u® > 1.
1

For the case of nonsaturation we prove that the limits of p,,(a;, ..., @,)
and f; ,(X;, ..., X,) for n — oo exist and that H, ,(¢) tends to a distribution-

1) The integrals are Lebesgue-Stieltjesintegrals over the interval 0 <t < oo.



314

function H(t) for n — co. All these limits are independent of the initial
situation, i.e. the probability distribution {py(a,, ..., a,)}. H,() is the
distributionfunction of the waitingtime of an arbitrary k-customer in
the stationary situation.

Using D. vax Dantzie’s “method of collective marks” ([5], [6] and
[7]), we derive recurrence relations (3.12) between the generating functions
frn(Xy, ..., X,) together with relations (3.16) connecting the f; (X, ..., X,),
Pr.n{x) and @y(x). From these relations we derive the relations (5.2) for the

fk(Xp --‘er) g lim fk,n (Xl’ "-:Xr):
which are then solved. From the relation (3.16) we derive (5.3), connecting
fo(Xys ..., X,) and
(@) = lim yy, ().

Once the f(X;, ..., X,) are solved, they are used, together with the
last relation, to compute the first two moments of H,(t) and to derive an
expression for y(x), for ke {1, ...,r}. The first moment of H,(f) was
given by CosraM [2], but we did not understand his proof.

For the case of saturation we only state some results without proof.

We shall use some abbreviations to keep the formulae. from becoming
awkwardly long. With the understanding that on both sides of the equa-
litysign in (2.8) up to and including (2.14) indices may be added to the
function symbols, we write 1)

(2.8) HX) 2 Xy, ..., X)),
(2.9) mmﬁéna»
(2'10) f(ukal) il_t_’ f(%: e Uy Xk+15'-°:Xr—l9 Vs eeey 'U):

i.e. the first £ variables in (2.10) are equal to u, the last [ variables are
equal to v and the remaining variables (if any) are equal to the correspond-
ing variables of f(X) (we shall always have k+1<r). In the same way

(2.11) FUD XY 2R {(Uyy .., Upeyy Xy ooy X)),
(2.12) J(UD X)) BB F(Uy, oo, Upe gy Xy ooy Xy 0 005 0),
(2'13) f(y(k) X) ab___lg f(yk,l’ AR ] yk,k—l’Xk’ ""Xr),
(2'14) f(y(k)le) ag)f(yk,l:""yk,k—l:st ---;Xr—b v, ...,7)).
We use ,;
lim f(X) (]X] <1
X1

1) 2bb i3 used, when on the left hand side of an equalitysign an abbreviation
is introduced for an expression on the right hand side.
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if we want to take

lim Lm ... Hm f(X)

X1 Xz—1 X,-»1

where X, ..., X, must remain ¢nside the unit circle. The order in which
the la,ttervlimits are taken is irrelevant unless otherwise stated.
Finally 1)

(2.15) pX ""——;9? .9

and for all k,1€{1, ..., 7}, with k+l<r,

(2'16) (uk X)—Z‘ 'iu+ z‘ pt £4]
(2.16") p(uk X, )2 E‘P u+t 2' p X+ 3 piv,
r~i+1
abb B z
(2.17) p(U®, X)2 3 p, Ui+ 35 pi X,
1 k
(2.17") p(U®, X, ) 22 z‘ 7. U, +Z‘ P X3 pi,
r—i+1
nb'bk_1 !
(2.18) P(y(k),X) = g‘ PiYrt %‘ s X
(218)  plyw X9)E z« P +Z¢ n Xt 3o

3. Recurrence relations for the system

In order to apply the method of collective marks of D. vax Danrzie
[5] and [6], we introduce an event K, which happens with probability
1-— X, whenever a k-customer arrives, thus

(3.1) 0<X,<1 for each ke {1, ..., 7}

The events E are independent for all customers. Any event X is called
a ‘“‘catastrophe” in D. vaN Danrzia’s papers. Its nature, however, is
wrrelevant. As only probabilities of other events, together with non-
occurrence of any ‘“‘catastrophe” are considered, it is irrelevant whether
under occurrence of an event K the process continues or not.

We can now interprete f; ,(X) as a probability for

{(3.2) Dieyn (@ys o0y 0) XEo. Xr
is the probability, that at the n'® departure, n € {1, 2, ...}, one k-customer
leaves the counter, a, 1-customers, ..., @, r-customers remain at the counter

1} If & = 1 the first sum on the right hand side of (2.17) and (2.18) equals zero,
if k = r the last sum of (2.16); analogously for (2.16’), (2.17) and (2.18').
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and with respect to none of the remaining customers the event £ happened.
Therefore

(3‘3) - fk.n (-X) = z l—al = 03 ey Oy = OJ Dr,n (al’ --':ar) X(ih Xff

is the probability, that at the n departure, n € {1, 2, ...}, a k-customer
leaves the counter and with respect to none of those remaining at the
counter the event F happened. Further

(3.4) Pin(0,...,0,04,...,0,) X&.. . X&

is the probability, that at the %' departure, n € {1, 2, ...}, an s-customer
leaves the counter, a, k-customers, ..., a, r-customers remain at the
counter and with respect to none of the customers remaining at the
counter the event £ happened. If a,>0 the next customer to be served
is a k-customer, therefore for ke {1, ...,r} 1) (using (2.10))
fin(0*71 X) — f, (0 X) =

(3.5)
=>lap>1,034,>0,...,8,> 0] p, ,0,...,0,a,...,0,) X% ... X%

is the probability, that at the n'™ departure an i-customer leaves the

counter, service on a k-customer starts and with respect to none of the

customers left by the departing i-customer the event F happened.
Put

(3.6) R RET I
Now
fi,n(or) =Pi,n (O: seey 0)

is the probability, that at the n® departure an i-customer leaves and
the counter becomes empty, while

(3.7) | n %

is the probability, that the first customer arriving after a given moment
is a k-customer, therefore (using (2.9) and (2.10))

(3.8) D1 X g (07)

is the probability, that at the n' departure, n € {1, 2, ...}, the counter
becomes empty and the next arriving customer is a k-customer, with
respect to which the event £ does not happen.

(3.9) I e“"*t(—%%)f e~ﬂrt%-f)!—“'dlrk(t)

is the probability, that during the servicetime of a k-customer exactly

Yy If k = ¢ then f, ,(0¥X) stands for f, .(0").
LN “Ln
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a, l-customers, ..., a, r-customers arrive, so (using (2.15))

@ (A(1—pX))=
. oo a1 Oy -
@10 3 _5 1, 50,...,q,> 0] X9... Xor I e—"‘% o &N R )

is the probability, that with respect to none of the customers, arriving
during the servicetime of a k-customer, the event E happened.
Analogously

(3.11) PulAp(1— X))

is the probability, that with respect to none of the customers with priority
number k, arriving during the servicetime of a k-customer, the event £
happened. -

Now the probability that at the (n-+1)* departure a k-customer leaves
and that neither to him nor to those remaining at the counter the event E
happened is equal to the probability that at the »' departure either an
i-customer leaves the counter (for ¢ equal to 1, 2, ... or r), service on a
k-customer starts and to those remaining at the counter (the k-customer
under service included) the event E did not happen or the counter becomes
empty and the first customer arriving is a k-customer, with respect to
whom the event F did not happen and (in any case) during the servicetime
of that k-customer no customers, with respect to whom the event K
happened, arrive. This equality can be written in the following way,
uging (3.3), (3.5), (3.8) and (3.10) with their interpretations

(3.12)  Xifrn+1(X) ={gn (0¥ X) — gu(0°X) + 11 X3 9,(0") } @1, (4 (1 — pX)).

This relation is valid for k € {1, ..., 7}, n € {1, 2, ...} and all real X, satis-
fying 0< X, <1, because of the arbitrariness of the event E. If at the
moment the counter is opened for service, with probability py(a,, ..., &,)
a queue consisting of a; l-customers, ..., a, r-customers is present and

(3.13) 9o (X) ¥ 3 La, > 0,...,0, > 0] py(ay, ...,a,) X2... X%,

then (3.12) is true for n=0 as well.

For 0<X;<1, i#k and 0<X,<1 we can solve (3.12) for f, ,.1(X)
once ¢,(X) is known for those values of X. But then we can find f, , . (X)
(and g,(X)) for all X satisfying |X,|<1, ..., |X,|<1 by analytic continuation
for each ke{l,...,r}. Therefore (3.12) holds generally for each
kefl,..,r}, ne{0,1,2,...} and |X;|<]1, ..., |X,|<1.

We might try to express f; ,+1(X) as a function of g,(X) only, by repeated
application of (3.12) and so eliminating ¢,(X) with 7>1. This however is
not practicable, the more so as f; ,.,(X) for X;=0 can be found from
(3.12) only by dividing both sides by X, for X, 50 and taking the limits
for X; — 0, which leads to partial differential quotients in the expression
for f, ,+1(X) for X, =0.
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Analogous to (3.11) and its interpretation we have:

(3.14) Prn (e (1— X3))

is the probability, that if at the nt departure a k-customer leaves the
counter, with respect to none of the customers with priority number
k arriving during his waitingtime, the event E happened.

Finally

(3.15) fen (¥ 1 X 177F)

is the probability, that at the n® departure a k-customer leaves the
counter and with respect to none of the customers with priority number
k which remain at the counter the event E happened. Now this is equal
to the probability that at the n®™ departure a k-customer leaves and
that with respect to none of the customers with priority number k arriving
either during his waitingtime or during his servicetime the event F
happened.
Therefore we have

(3.16)  foa(PF 1 X 17 %) =f n (17) ¥ n (4 (1 — X)) @1 (A (1 — X)),

for ke{l,...,r}, ne{l,2,..} and for all X, satisfying 0< X, <1. This
may again be generalized by analytic continuation. Therefore (3.16)
holds for all X, satisfying |X;|<1.

We can now summarize our results. From (3.16) we have, that ¢, ,(«)
is a function of f, (X) and ¢,(x). The functions f; ,(X) are known to
satisfy (8.12), but cannot be solved explicitly from those relations in
terms of g,(X). However, as we are interested in the behaviour of the
system in the long run, we will use (3.12) and (3.16) to find lim v .(x).

The relations (3.12) and (8.16) can also be derived in a more formal
way than it has been done here.

4. Convergence to a stationary distribution

Before making use of the relations (3.12) and (3.16) we shall prove
some results connected with the convergence of the p; .(ay, ..., q,) for
n —> oo, which justify the method of the next section.

Let us say that the system is in the state (k; a,, ..., ,) at the departure
of the n't customer if the n* departing customer is a k-customer and
if he leaves for every ¢ € {l, ..., r} @; t-customers at the counter. Then
all transition probabilities from a state at the »' departure to any state
at the (n+ 1)t departure are independent of » and can easily be calculated.
By considering only the moments, at which a customer leaves the system,
we thus obtain a Markof chain, with a denumerable number of states.
Let us denote this Markof chain by M. For every state there is a positive
probability to reach in a finite number of steps a state where a departing
customer leaves an empty counter, and from this situation any state can
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again be reached in any number of steps. We conclude that M is an
irreducible and aperiodic Markof chain (cf. FELLER [8] for the terminology
and classification of states in Markof chains). From Corollary 1 in
Frrrer [8] (p. 328) it follows immediately, that lim p,,(a,,...,q,)

exists and is independent of the initial distribution.
T
In the case of nonsaturation (J:idu{®<1) all states are ergodic. To
1

prove this, we need a theorem of FosteEr [9], which was given by
MousTara [12] in the following slightly generalized form:

Theorem 4.1. An irreducible, aperiodic Markof chain represented
by the Markof matrix ||p, ;| (¢,7=1, 2, ...) is ergodic if for some >0 and
some integer %,, there exists a non-negative solution {y;} of the inequalities

(4.1) 2w < yi—e for © >4,
1
Lol

(4.2) 2 Pii Yy < for i < i,
i

=]
We note that Di p; ;y; can be regarded as the expectation after one step,
1

if we start in the ¢*® state, of a random variable 1) y, taking values y; with
probabilities p

R
Theorem 4.2. If i’i Ap? <1, all states in the Markof chain M are
ergodie, ‘

Proof: This theorem is an application of Th. 4.1. The states of M
can be characterized by (k;ay, ..., @,), i.e. the priority number of the
leaving customer and the number of customers of each priority left by

N 7
him. With each state we associate a number y. By definition y= 3% a;uf"
) 1

for the state (k;ay, ..., a,), i.e. y is the expectation of the time needed
to serve the remaining customers and as stch non-negative. If we start
in the situation (k;0, ..., 0,4, ...,a,) with ;>0 for an I<r, the next
customer to be served is an l-customer and the expectation of y after
one step is then

-1 4
25 2PV + (a+ AP — 1) pf + D (@ + ANy i =
< I+1
.
:—_zli auP + P { D A — 1} <
1

T
<3 ap—e
I

1) Random variables are distinguished from numbers by printing their symbols
in bold type.
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where

e min pP{1- 3% 4, u}.
1=isr 1
In fact the expected number of i-customers arriving during the service-
time of an l-customer is Au, and one l-customer leaves the system at
the end of this step. Therefore (4.1) is satisfied in this case. If we start in
the state (k; 0, ..., 0), the expectation of y after one step is finite, so
(4.2) is satisfied for the r states with a;=a,= ... =a,=0.
Thus Th. 4.2 follows.

Corollary. If we define pya,, ..., a,)= lim p; (2, ..., @,) we have:
N0
Py, ...y a,)>0 for all ke{l,...,r}, ;>0
>ty la, > 0,...,a, > 0] pu(ay,...,a,)=1
1

and the p(a,, ..., a,) form a stationary distribution for the Markof chain
M. This is an immediate consequence of Th. 4.2 and Th. 2, p. 325, in
Ferrer [8].

To prove also the convergence of >|SJp; (¢, ..., a,) where the summation
is over an arbitrary set S of states, and the convergence of moments of
the queue length, we need the following theorem.

Theorem 4.3. Let an irreducible, aperiodic ergodic Markof chain
be represented by the Markof matrix ||p, ;|| (¢4,7=1,2,...). If

7 & lim p,
n—o0
where p{® are the n step transitionprobabilities (these limits exist, are
positive and independent of ¢; cf. FELLER [8], p. 325) then we have for

any non-negative state function F;

o] o
(4.3) Em Y5 pi) F;= Ysm; F; for every 4.
n—>00 1 1
Proof: As lim p{®=x; and F;>0 we have for all positive integers s
o [
(4.4) liminf > p™ F; > > x; F;,
n— 00 1 1

because if e>0 and N is such that?)

N ©
27 Fy > 3im Fi—e,
1 1
o0
1) If 3§ m;F;= oo, only some obvious changes are necessary.
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we have

lim inf ZJ PP F; > lim inf 2: ™ Fi= 21 w; F; > Yo Fy—¢
1

f-»0C n—> 00

for every ¢>0, whence (4.4) holds.
The proof of (4.3) is completed, if Zi m F;=c0. If %i mF;<oco we

proceed as follows We know, that =; is always positive, zf m;=1, and

7= 2‘ 7;pf) for all positive integers » (cf. FELLER [8], p. 325) Therefore

we have for a fixed N>s and every n
Zin F= z« :zz,z:p‘”’F Sll<i< N,i#sln 21 o™ F; +7z325p"’F
50

?; m; F; > limsup {> L1<i< N,is£slm Z: P B+, lzi M F} >

N> 00

> LI<i<N,i#slm; hmmfzf pM F; +7Eshm8up23 P Fy>

B=»CC T~ 00

>Yll<i<h, zaés.JmZJn,F+n,hmsupZ:p(")
Now take N — oo

ZJ:z,F,>(1 ) Zz 7t; F; 4z, lim sup pr‘”’lf’

As 7,>0 this leads to
(4.5) lim sup Z’ PME; < Y w; F;
. B> 00 1

for all s,
From (4.5) together with (4.4) we have (4.3).

Remark 1. The theorem remains true for arbitrary state functions
F; with

7

277 | Fj| < o0
1

as can be seen by writing
Fi=F;F—Fy,
where
def | B+ F;
F,‘" 29‘ 712 i

. def IF,'I—F,-
i =5

Remark 2. If the Markof chain we consider has a probability p{® of
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being in the state ¢ in the initial situation (p{®>0 and Y p{®=1), then
1
by Th. 4.3

lim 3¢ 35 p® pit} Fy=33m F;,
1 1

n—>0c0 1

provided F; is bounded.

7
From the convergence of p, .(ay, ..., a,) follows only the existence of

lim f, (X), if |X;|<1 for all ¢ € {1, ..., r}. We may now conclude, that
if | X;|l<1forallie{l,...r}
lim f,,.(X)=23Lla, > 0,...,a, > 0] p(ay,...,a,) X@... X2,

N> 00

This follows if we take the state function

Xn X% if i1=k)
F(iay,...,a) &30 T i
3 0s,.. ) 0 i 5k

Thus
(X)) ¥ lim f,,(X)=3 La, > 0,...,a, > 0] p,(ay, ..., a,) X%... X

n~>0Q

is & power series with positive coefficients, which converges for

) r
[Xil<1,ie{l,...,r}, and as D > la; > 0,...,a, > 0l p, (ay, ...,4,) =1,
1
we conclude that

(4.6) lim f, (1B X 17%) = f, (17 (|X] < 1).
X—>1
Remark 3. From Th. 4.3 we also conclude that

r
lim 33 la;>0,...,a,> 0] a;p . (1., 0,) =

n—>00 1
=33 1a;>0,...,a,> 01 a;p(ay,...,0,),
1
i.e. the expected length of the queue of j-customers at the »'t departure
tends to the expected length of the queue of j-customers derived from
the stationary distribution, and analogously for the higher moments of

the queue length, provided the initial state is fixed, i.e. py(by, ..., 0, )=1
for a given initial state (b, ..., 5,).

Theorem 4.4. If >iAu®<1, the conditional distributionfunctions
1

of the waitingtimes H, ,(f) (k € {1, ..., r}) converge to a non—degenera,te
distributionfunction H,(¢) with

i () d=ef0! et dH,(t)
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satisfying

(A7) fillon L, 1= 51, D= (1) 9 (0) (@) for 1_%l‘<‘51.

Proof. A distributionfunction of a non-negative random variable
is uniquely determined if its Laplace transform is given on an interval
which Hes in the right half plane, because the Laplace transform of such
a distributionfunction is analytic for all arguments with positive real
part, and can thus be determined uniquely by analytic continuation, so
that the uniqueness theorem for the inverse of a Laplace transform may
be applied (cf. D. V. Wipper [14] Th. 5a, p. 57 and Th. 6.3, p. 63).

From (3.16) follows the éonvergence of . .(x) for ll - %‘< 1 as
Lim f, ,(1)>0 and @ (x)>0. ‘ ‘
We can now follow a standard method (compare e.g. Lvy [11], p. 49,

proof of Th. 17 %) to prove that H, ,(f) converges to a function H,(f)
with g, (o)== lim y, .(«) satisfying (4.7). H,(?) is a monotonic non-

decreasing function continuous from the right and satisfies H(f)=0 for
t<0 and lim H,(f) =1, as from (4.7) lim y,(x)=1. This proves Th. 4.4.
t—>o0 o&~>0
All the foregoing theorems concerning the queuing problem are valid
only if Zrz ApiP <1, In the case of saturation (zf} ApP>1) analogous
1 : : 1 ':

theorems can be proved, although we did not succeed so far in ﬁnding

gimple proofs. In fact one can prove:
s+1

8 .
If 3 2p<1 and D Lu>1 we have
1 1

lim Z La’s—i—2 >0,...,0, > 01 pk.n(alf--w“r)':o

n—>00 .

and
m > la,;,>0,...,a,>0]p,.(a,....a,)

N> 00
exists and is positive.
If we define

e (@ ..., ;) %f im> e, >0,...,a,> 0l p, . (ay,...,a,)

n-—>+00
we have for ke {l, ..., r}

Em f (X 1"%)= Y la,>0,...,a,> 0] (@, ..., 0,) X%... X%

n—>-00

whereas

s+1 841 .
1i1tn StfraX =33 la; >0, ...,a, > 0 p.(ay,....,a)=1.
X1 1 1
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H,, ,(¢) converges to a non-degenerate distributionfunction if k<s and
lim H, ,(¢t)=0 for every finite ¢ if k>s-+ 1. If k<s the moments of H, ,(t)
k Gucge o]

do not necessarily converge to those of H(t), i.e. we cannot conclude

(4.8) lim | #dH,, ()= | ¢dH.() for & <s.
0_

n—>00 0—

An example will show, that in some cases (4.8) does not hold. Take
s+2<r and ufl,=oco. If we start from an initial situation with

o0
Oy= ... =@, ,=0, a,,,>0 it is clear that gtdﬂkm(t):oo ne{l,2,..}),

whereas Ttdﬂk(t) is not necessarily infinite for k<s.
o
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5. The case of nonsaturation

In section 4 we proved that in the case of nonsaturation, i.e. if

(5.1) Sedup <1,
1
for ke{l,...,r} and all X with |X;|<1, ..., |X,|<1
fo(X) Elim £, (X)
exists.

According to Theorem 4.4 in this case the limits
H, () Zlim H, , (¢)
for all real ¢ and n—>°°
9 (%) Elim ()
for Re >0 also exist and ,(«) satisfies

vi(o) = f_e-“t dH, (5).

For ke{l,..,r} and [X;|<1, ..., |X,|<1 we have from (3.12)
(6.2) X, fi(X)={g(0*"* X) ~g(0*X) +p, X3 g (0} ¢ (A (1 — pX))
while (3.16) leads to

(63) I IH <[ (1) v (h—h X0) g (e X).

From (5.2) we conclude (for |X;|<1, ..., |X,|<1 and arbitrary U, satis-
fying IU1|<la sy lUk—1l<1)

(5.4) X AUPX)
‘ ZA(1—pX)  pe(H(L—p (U@, X))’

for X,#0 (and by analytic continuation for X,=0 as well) and also

e XifiX c i— i
68 iy =2 g (07 X) g (0 X) 4 pXg ().

1

1) Report 5211 (VP 11} of the Statistical Department of the Mathematical Centre.
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Formula (5.5) simplifies to

(5.6) 3£ TEEEED) g (0) (X -1).

To determine f,(X) we introduce yy, 5, ..., Y111, defined (for k € {2, ..., })
by
k=1 7
(6.7) Yri— @ (A(1— 21:5 Pi¥ri— zk’ p; X;))=0

for i e {1, ..., k—1}. The y,, are thus functions of X, ..., X,. We shall
prove (always assuming (5.1)):

Lemma 5.1. Equations (5.7) have for every set of complex numbers
D. ST, saﬁsfying gi A, Re X;< éz‘ A;exactly one solution foryy ... .., ¥ x—15
with |ye|<1, ..., [Pip-ul<1. |

Proof: Consider the equation
) fe—1 r
(5.8) zZ— z‘ l,;(pi(ﬂw—z— z’ 2,‘ Xi)=0'
1 k

By Rouché’s Theorem (cf. TrrcaMarsa [13], p. 116): “If p(z) and ¢(z)
are analytic inside and on a closed contour C, and [¢(2)]<|p(2)| on C,
then p(z) and p(z)—l—q(z) have the same number of zeros inside C” ta,king

P(2)ELz, g(z)2f — z @ (A—2z— }_’; A4,X;) and for C the circle ]z]— Zi 2 we
have that
k—1 T
2— z‘ }’i ¢1(l—z— zf ZJ,X’)
1 k

has exactly one zero z,=2z, (X, ..., X,) with ]z,c|<k§_}1 A; for a fixed set
of complex numbers Xj, ..., X,, satisfying '
z;« ARe X, < % A
If we no;w take
Yri= @i (A—2— é”l X;)
equations (5.7) are solved and
[954] <1

because Re (1 zk 2} AX;)>0 and |g(a)|<1 for Re x>0. A second

solution y; ; leads to zF3f Z Ay ; where 2 satisfies (5.8) and [¢f]|< z .
But then zf=2z and therefore Yii =Y i
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Lemma 5.2. The solution z, of (5.8) is an analytic function of the
variables X, ..., X, for all X,, ..., X satisfying

S 4, Re X, < 3 ;.
k k

Remark (cf. BocENER and MARTIN [1], p. 30). A function f(z, ..., %)
is an analytic function of the ! complex variables z,, ..., % in a certain
region, if in some neighbourhood of every point (2), ..., 2?) of that region
it is the sum of an absolutely convergent powerseries in 2, —29, ..., z,—2{.

Proof: Consider the point X, =¢, ..., X,=c,, with z AL Rec; <z A

By usmg theorem 9 from BocENER and MarTIN [1], p. 39 (for the speclal
case k=1 in their notation), we prove that z, is analytic in the point
(¢ ---» 6,)- The theorem reads in our notation:

If the function F(z, X,, ..., X,) is an analytic function of r—k+1
(complex) variables in the neighbourhood of the point (a, ¢, ...,¢,), if

Fla, ¢y ...y 6,)=0 and if %1;—7;&0 for z=a, X}=c¢, ..., X,=¢, then the
equation

F(z, Xy, ..., X,)=0
has a unique solution

2y =2 (Xps .- » X)

equal to a for X, =c¢, ..., X,=¢, and analytic in the neighbourhood of
the point (. ..., c,).

We take
aef P <
F(z3 Xka ""Xr) =2z-— Z'. Z’i‘Pi (}.-—-Z— 2’ ﬂ.in)
1 k
with 2z, X, ..., X, as (functionally) independent complex variables. This

function is analytic in the neighbourhood of (a, ¢y, ..., ¢,), if
T
Rea+ D54 Rec; <A
k

This holds in particular for a =z, (¢, ..., ¢,), where 2z, is the only zero of

k=1
F(z, X3, ..., X,) with [g|< Z‘ A; (cf. proof of lemma 5.1), because

k-1

Re z,+ Zo A Re¢;< Z“ A+ Zv A;=2. Furthermore F(z(cy, ..., €,), Cise-,C,) =0

as 7z, satlsﬁes (5.11) and

k-1
|°F|_|1 zza% >1— 3% Aud> 0,
1
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for z=a, X, =¢, ..., X,=¢,, because

2|~ ftexp (—t(—2—3 4, X)}ar.()] =T taF. ) —p

and (5.1) holds. Therefore the equation (5.8) has a unique solution
2e=24(Xp, .-, X,) equal to zc, ..., ¢,) for Xy=c,, ..., X,=c,, which is
analytic (only this is new) in the neighbourhood of (g, ..., c;).

‘ Lenima 5.3. If we keep
zi },@ReX@ < Zi ;b N
k k
we have
k—1 T
(5.9) ]j.m Zk (Xk) ""XT) == z‘ 1,; fOI' z‘ li (X’i_ ].) —_ 0.
‘ : > ol
Proof: As for Reyc}O
1
[1—e®|=]|[ ze~® dt| < ||
0
and
Re(A—z,— >34, X)) >0,
k
we have
k-1
|2— 20 4| <
1

k—1 o0 r
< ik [lexp{—(A—z— 314 X;)t}—1|dF;(t) <
T o- %
k=1 T
< ?‘ A pa|A—2— %’ %X <

k—1 k—1

k—1 r
< 12‘ Ay i ;’ Ai—2z |+ ;‘ 2i i | g’ 4 (1-X5)i

and therefore if we take i‘ 2;(X;—1) =0, keeping Efi A (Re X;—1) <0,
k k

k—1
we must have z,— 3% 4;.
1

Lemma 5.4,
. R IR z
hm(m) % (X s X) for 3 A (Xi—1) >0
exists, if we keep ii A; Re Xi<§~‘_i A, forevery L € {0, 1, ..., m}, if pi™ <oo
k &

for every ¢,ke{l,...,r} and m>1.
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Proof: (a—?—xk)zk(Xk, ..., X,) can be obtained by partial differentiation of

k=1 14
2= zl‘ A ‘Pi(l_zk—é’ 4 X;)

with respect to X, for ikiliRe Xi<§i A, and solving for :—;;. We
obtain a fraction, from which we find the higher partial derivatives by
ordinary partial differentiation, applying the chain rule and substituting
for those derivatives already obtained. Remembering that u{™ <<co
implies that @H«) is an m times continuously differentiable function for
Re x>0, which may be differentiated under the integralsign, that (5.1)
holds and lemma 5.3, we can easily verify the statement of the lemma.

If

-abbqe NV ’ c :
A, 22 lim (a_ﬁ) % (Xe - X) for S AX~1) >0,

keeping > 4 (X;—1) < 0,
h -

we find '
k-1
lk,%‘ AP
(5.10) Ay = ———
13 lil‘::l)
1
. k=1
S A
(5.11) A= — 2
(11— 3 2,uV)?
1
k-1 k-1
B3 4 pud 3AF (3 A uP)?
(5.12) A= — + :

k—1 k-1 *
(1= 35 4uM (1— 35 4 u)
1 1

From (5.6) we obtain, substituting Xi-%—yk.i for ie{l,..,k—1}

| Xe—er(M1—p(ym, X)) _
I —plye, X)) 1 W X)=

(5.13) e oo o :
[ == SR £ 0+ 0 ) -1 9(®)

and by using (5.4) we have

X —or(A{1 —p(yms X)) —
maa—pxy &)=

L Xi—oi(A(l—p(yay, X §
= — 3 TR S0 (X)+ (p (u )~ D 9 (0)

(5.14)

for all X; satisfying |X;|<1 for j#k and |X|<1.
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We have

Xp=@p (A (1 —p (Y, X))
only for

: Xe=Yer 12 (&prnr oo Xp) - .

and therefore the f,(X) can be obtained successively for all X, ..., X,
satisfying | X;|<1 for j#% and |X,|<1 (either directly or else by analytic
continuation) from (5.14), starting with f(X) if g(07) is known. We shall
not try to obtain the f,(X) explicitly, but use (5.14) in the sequel.

The constant g(07) is determined by the condition

(5.15) g(1n)=1.
If we take X;=1 in (5.14) for ¢k and, keeping |X,|<1, take X, — 1,
we have from lemma 5.3, that both sides of (5.14) tend to zero. It can be

seen, that X, s£¢, (A(1—p(ye, X, 1"7%)) for X,+1, therefore, always
keeping |X;|<1 and using I'Hopitals’ rule

fe (1) = lim fk(lk_l X1%)=

= - z‘ (1' lim 1@ (A(1 —p(ym, X, 17-F)))
1 X1 Xe— (A (L —p (Y, X, 17-)))

o 1 P (Y, X, 1r-F) — _
+9(0) iﬁ‘.’i Xy —gr(A(1—p (Y, X, 1"’“)))

= f (1 L et Ay (0 Y
o 1— i (g Ay, 1) k3 s A+ Ag )

(5.16)

or with (5.10)

g:; F () 4P 2+ 9 (07)
(6.17) fe(1) = .

1— z‘ i ‘u(l)

Solving (5 17) for fi(17) leads to

0r)
(5.18) fr(1)= ”’ig—(————(-;) for ke{l,...,r}.
1— Zi A u
Because
(5:19) g(1n=1,
we finally have
(5.20) f(1) =p,
and
(56.21) g(o)=1- Z A o

We thus proved
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Theorem 5.1. The functions f( Y) satisfy the equations -

_ wzc(/l(l pX)) - )
e (X) = 2 TP e X))
(5.22)

= 3 puquer x) DO RO 4 (-3 ) (0 ir D)= 1)
for | X|<1(#k), | X <1, Xy #Ypr1m(Zprrs-.»X,) and all ke{l,.

They can be obtained successwely from these equations startmg
from k=r.

The derivation of (5.20) and (5.21) here given is unnecessarily long
and complicated, but the same method leads us to the moments of the
waitingtime distribution as we shall now show.

In section 4 we proved that in the nonsaturated case the f,(X) are
powerseries with non-negative coefficients, absolutely convergent for
[ X1l<1, ..., [X, <1 and ke{l, ..., r}. If we differentiate a function of
this kind n times (n € {0, 1, ...}) with respect to one of its arguments
and take the limits (in any order) 'X; — 1, ..., X, — 1, keeping |X;|<1
for all 7 € {1, ..., 7}, then either the resultmg expression is finite and the
powerseries for this derivative converges for |X,; [<1,..., |X, <1 or the
limit is +oo. Moreover in all cases we have

(6.23)  Noz) D o —lim(E)A@ (X<,

X1

From (5.22) we see, that

(5.24) lim (sz) £(X), (X <1)
exists if ¢;(1(1 —pX)) is (n+1)-times differentiable with respect to X, for
je{l,...,r} and ke {1, ..., r}. This is certainly the case if the (n+ 1)*

moments of all Fy(z) (l € {1, ..., r}) exist. If (as the only alternative) at
least one of these moments is -+oco, then we find from (5.22)

(5.25) hm( )fk(X) too  (X|<1).

If we take X,;=1 for 1s£k in (5.22), differentiate with respect to X,
then let X, — 1 and use (5.10), (5.11) and (5.20) the result is

}"’z 2. ”(2)

s l%l‘i”
620] () B ’
2(1— 3 A ) (1 —z@ Api?)
1

whilst we find in the same way from the second partial derivative of
(5.22) with respect to X,



T
Bu> 4, pu®
o _ B, 3 el .
X=..=X,

oX} A - zs 2 0) <1—22f A )
T
RS 2,4 2 >:* Bypf? Z’ I
(521 | + _ 1 - + - +

1 k
BA(L— 3 A (1= 2 Ap) 2201~ S 2,2 (1 — 3 2,y
1 1 1

-1
a8 zi 7‘ (2) zj 2’7'”;‘2)
+

22 (1 — z‘ 2, )3 (1_2 2, 41

From (5.3) we have by differentia,ting with respect to X,

625) OB e mnms =00 (5, (222 01— X0) G (1=K )=
=i (17) {A sl + 4 Ewye}s

d 9
(520 () qo g oy =S OV R+ 20 Gt B SWE,

if &w;, and &w: are the first and second moment of the stationary waiting-
time distribution H(t) respectively.
On combining (5.26), (5.27), (5.28) and (5.29) we obtain:

Theorem 5.2. The first and second moment of the stationary
waitingtime distribution H,(¢), for k € {1, ..., r}, are respectively

| 4 3 dulp
(5.30) Ew,= 1 -
and 2(1— }13 Ap) (1— 213 ;)
zi A M(B)
(fw,%_ Fo— +
31— Z‘ Az (1— Z‘ A
(5.31) ) . 1
Zs 2 zi 2 DTS
+ +

20 zi z u‘“)za—zf B 21— zc By (1—-2 hai®)

Our (5.30) is CopraM’s formula (3) (see [2]).
The function y,(x) can be found from (5.3), at least for |l~%[< 1,

i ,1,1—1 L1
(5.32) e (o) = ( TP (o) )

which, if combined with (5.22), leads to

3

r k-1 T k—1
(L= A (— 25 425 —o) — 20 A (L— @ (X7 A —2f + o))
(5.33) 1w, (o) = —— ! ot - .
lk~o¢—/'lk<pk(§1:f A—2p + o)
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where z7=0 and zg=2}(«x) satisfies (5.8) for X,=1 "}.ﬁ’ X,=1@E#k)
and k>=2) ie. «

k-1 B—1
(5.34) 25— 3¢ A (31— +)=0.
1 1 .

Therefore w,(x) 15 explicitly given by

(1— >1: A0 ot § 2 (1— gy (o))
(5.36) va(o)=— —o—A e (x) ?

while y,(x) for k € {2, ..., 7} contains the z.
As an illustration we give the following example:

Take r=2, Fy(x)= F,(x)=1—exp (——z—), then

1
(5.36) P1 () =y () = P
_ 1 =hptopt-alu?
(5'37) ‘!/)1(06)— 1___11”_*_0‘[‘ 3

(L—2p) (—hy 2 — o) {(ly— 25+ o) p4 1}
h—) (-t put i

which leads to the following waitingtime distributions (¢> 0)

(5.38) Yo ()=

(5.39) H,()=1—Auexp {___ (1—:1l‘)t}’
T P 6 _h(1—2u)¢
H,({t)=1—Au+ » (1 exp{ e })+
(5.40) S
_ _ 1(2uY Zifp) At
22, (1—Ap) fdsf T exp { T u} du,
0 0

where I,(z) is the modified Besselfunction of the first order and of the
first kind, i.e.

22+

(5.41) L (x):EOn ZFipl (n 1)1

The result (5.40) contradicts equation (27) as given by R. E. Cox [4].

6. The case of saturation
If (5.1) is not satisfied, we can find a positive integer s, 0<s <7, such that

8 8+1
(6.1) D hpP <1, 3 Ap > L
1 )

1

In section 4 we stated already without proof, that
(6.2) fo(X) Elim f,,,, (X)
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exists for ke {1, ..., 7} and that
(6.3) : ' f(X)=0

if at least one X; satisfies |X;|<1 for je{s+1,...,7}
As a consequence of (6.3), it cannot be true that

(6.4) fo (17 = im f, (X),

as the right hand side in (6.4) equals 0 and
(6.5) g(1n)=1.

The functions f,(X) thus cannot be powerseries with positive coefficients
and the method of section 4 cannot be applied.
But if instead of f,(X) only f(X17*) is considered, we can repeat the
argument of section 5 with some alterations. "
From (5.2) and (6.3) we have at once

(6.6) h(X)=0

for ke{s+2,...,r} and |X;|<1, for all te {1, ..., 7}
If for ke{l,...,r} ‘

(6.7) Fu(X) & f (X 1)

one can prove that for k € {1, ..., s+ 1}, f(X) again is a powerseries with
non-negative coefficients, absolutely convergent for |X,|<1, ..., |X,|<1
and satisfying

s+1 _
EI:kfk(l')=1-
From (5.2) we have for ke {l,...,s} and X, ;= ... =X, =1

(6.8) X.f, (X)=s§1} (0 X 1), (0 X1} 5 (5 2,01 X))

and for k=s+1

69 - Fa(X)= sz?ﬁ(ow Poes (55 & (1= X).
From (6.8) and (6.9)

X fe(X)= Zsf {F, (001 X 17=9) —F, (0F X 17=9)} +
(6.10) T

s+1

_ s s ] 8 §
+ Zl* Ji(0){Pess (zlj Ai— Ekf % X3) = Pors (21}' A— kzjllixi)}?’k (g‘ A(1—-X))).
Equation (6.10) is the analogue of (5.2), while the analogue of (5.4)
is (for |Xj|<1,ie{l,...,stand |U)|<1,j€{l,...,k—1}and k€ {2, ...,s})

fe(X 1r-3) _ f(U® X 1r-3)
o(A(1—p(X,17-%)))  @r(A{(1—p(UW,X,1r-9)))

(6.11)



335
and (5.3) can be written
(6.12)  F(l1 X179 = F, (19 9 (A (1— X)) 94 (B (1 — X))

for k& € {1, ..., s}. Therefore the moments of the waitingtime distribution
can be found as in section 5 for k € {1, ..., s}. One obtains

- )
(6.13) fe(1)=— e for ke{l,...,s},
1 ?‘ AmP 4 u 21:‘ 4

3
1— 35 A,
"

618  Jun()=— _,
130 4P - prg 35 4
1 1
3
341 _ 1“?‘ 1'5,:“:',1)
(6.15) z« ﬁ (0N = - . ,
! 1— 21:" AP +Hs+1§1:‘ A
2 ”(27 Fs
S+ (1 1,0
(6.16) Ew, = L Pot1 1 for ke{l,...,s},

k-1 k
2(1— 3% A, uiY) (1— 3% 4 V)
1 1

which is Copmam’s formula (¢f. [3]).
In addition one can prove, that

Ewy=oco for kefs+1,..,r}

The authors wish to thank Prof. Dr. D. van Danrzie for suggesting
the use of his “method of collective marks” and for his valuable advice
and criticism, which helped to give the paper its final form.

Mathematical Centre, Amsterdam
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Note added in proof.

If we compare equation (5.8) with equation (49) of L. Taxics paper “Inves-

tigation of waiting time problems by reduction to Markov processes”, Acta
Mathematica. Acad. Se. Hung. VI, 101—129 (1955), it turns out that (5.8) can
be regarded as a special case of (49) and therefore z; can be considered as the
LaprLace transform of a (proper) distribution funection. Lemma 2.2 and lemma
5.3 now become obvious.
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