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MATHEMATICS

A GENERAL CLASS OF DISTRIBUTIONFREE TESTS FOR SYM-
METRY CONTAINING THE TESTS OF WILCOXON AND FISHER 1).
I

BY

CONSTANCE VAN EEDEN axp A. BENARD

{(Communicated by Prof. D. van Dawrzi¢ at the meeting of March 30, 1957)

1. Introduction ,

In this paper a class of tests for symmetry will be considered which
is closely related with the class of two sample tests described in [4]
(p. 251). Special cases are e.g. the tests for symmetry of F. WiLcoxox
(cf. [223, [23], [24], [25]) and of R. A. FisgER [7] (p. 43-47) and the sign
test.

In section 2 a description of the tests will be given and in section 3
some properties of the distribution of the test statistic under the hypo-
thesis tested will be proved. In section 4 the relation with the class of
two sample tests, described in [4], will be given and in section 5 the
consistency of the tests of Wicoxon and Fisaer will be investigated.
In section 6 a combination of the sign test and the class of tests for
symmetry will be given,

All theorems in this paper hold for the case with ties as well as the case
without ties.

2. Description of the tests

Congider m independent random variables z, ..., z,, %) representing a
series of observations. In this paper a class of tests is described for the
hypothesis H, that the probability distributions of z,, ..., z,,, which need
not be identical, are all symmetrical with respect to zero.

The test statistic is defined as follows. The observations which are
equal to zero are omitted. Let the remaining observations consist of
a; times the value u; (¢=1, ..., k), where 0<u,< ... <u, and b; times
the value —u, (1=1, ..., k). Let further

(2.1) i1 =
tig—g'fdi'l‘bi('i: L,...k), n=nst+n,

1) Report SP 54 of the Statistical Department of the Mathematical Centre,

Amsterdam.
?) Random variables will be distinguished from numbers (e.g. from the values

they take in an experiment) by printing their symbols in bold type.
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and
(2.2) rEY -1 (E=1,...k).

i=1
Then r; is the rank of the absolute value of the observations which are
equal to u; or —u; according to increasing size (¢=1, ..., k). The t; are
the sizes of the ties. Finally let ¢(u, r) be a given function of % and r
and let (pig_e—ftp(u,-, r;) (=1, ..., k). The test is executed under the conditions
k=Fk, t;=t, ..., =1, U=y, ..., U="2%4, ((k,t, u) for short) and the test
statistic is

(2.3) _ T gk -(a;—

The distribution of T under the hypothesis H, and under the condition
(k, t, w) is symmetrical with respect to zero and may be calculated by
means of a recursion formula (cf. section 3). Let P[T=T|(k,t, u); Hy)
denote the probability that T assumes the value 7' under the hypothesis
H, and under the condition (%, ¢, u); let further T, denote the smallest
value of T' satisfying

(2.4) P[T=T|(k, t, u); Hy]<o.
Then the following critical regions are used
SZZ: T=-T,,
(2.5) Z:T=zT,
2 Z:|T =T,

The ¢onditional asymptotic normality of T under the hypothesis H, for
n — oo will be investigated in section 3 (theorem V).

Special cases
If

(2.6) p(u, r)=r

then we obtain the test statistic Ty of WriLcoxon’s test for symmetry

(2.7)- Ty= ZL: r;(a;—b;).

=1

A table of the distribution of T;;; under the hypothesis H, and under the
condition n=n for the untied case and for n=23(1)20 may be found in
{17 (p. 28-27). The local powerfunction of this test has been investigated
by E. L. LeamaNN [10] and has been compared with the power functions
of the sign test and the tests for symmetry of J. HEMELRIIK ([8] and [9])
and N. V. Smrrwov [16] by E. Ruist [14].

The test statistic T of FisEER’s test for symmetry is obtained by
substituting «; for ¢;
(2.8) Tp= Z Z,= Z w, {a;—

k=1
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If ¢ is independent of % and 7, then the test statistic (2.3) reduces to

k
(2.9) ‘P_Zl (a;—b;) = @ (ny—ny).
Thus in this case the test is identical with the sign test.

Remarks
1. WILCOXON uses as a test statistic for his test the sum of the ranks
of the positive observations. Denoting this statistic by Ty we have

) k
(2.10) Tip=2ria=}Ty+in(n+l).
i=1

Tables of the lefthandsided critical values of Ty for the untied case may
be found in [24] and [25]. These critical values are defined as the values
of Ty, which minimize |P [T, =Ty |n; Hy]—«| 3).

2. By means of the tests described in this paper one may also test
the hypothesis H, that the probability distributions of z, are symmetrical
with respect to given points ¢ (h=1, ..., m) by applying the test to
Zy—0Cpy vy Zy—Cpye

3. Some properties of the distribution of T under the hypothesis Hy and
under the conditions k=Fk, t;=1, ..., =0, Uy=1y, ..., U=1U.

Theorem 1:

P[T:T|k,tl,...,tk,ul,...,uk;H0]=
3.1) .
=2—t£z ( )P[T:T—(2'}}_tk) (pk]k—'latla---:tk-—la ul"")uk-’l;Hﬂ]'
y=0 \7
Proof:

Let B, denote the event that the tie of size £, consists of y positive and
t,—v negative observations; then

(3.2) PE,|H, =2 (‘;j) (y=0,....%).

If E, occurs then the contribution of the observations in the tie of size
t. to the test statistic is

(3.3) {y—G—M}oe=QCy—t) o (y=0,....%).

If, on the other hand, (3.3) is the contribution of the observations in the
tie of size {, to T then this tie must contain exactly y positive and #,—y
negative observations. Thus

(PIT=T\k, t;, ..., tos Wy, ..., s By, Hyl=

(34) , =P [TZT“(Q'}’“tk)‘Pklk" Lty, e Gpgs Uy, oees Ugg; Hyle

3) The tables in [22] and [23] contain mistakes, which have been corrected
in {24] and [25].
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The recursion formula (3.1) then follows from (3.2), (3.4) and
P[T=T ! k, tl’ ""tk’ '1,61, ..,,uk; Ho] =
(3.5) &
= ZOP [E.y | Ho] P [T=T I k, tl’ ...,tk, ul’ ...,’ll/k; Ey, Ho].
g

If ;=1 for each =1, ..., n (no ties), (3.1) reduces to
2P [T=T|n,uy, ..., uy; Hyl=
(3.6)  =P[T=T+g@,n—1, uy,..., %, ; Hyl+
+P[T=T—quln—1, uy,...,u, 4; Hy].
Remarks:
3.. The recursion formula (3.1) is analogous to the formula derived by
L. J. Svap [15] for the distribution of the test statistic of Wircoxox’s

two sample test.
4. For the case of WiLcoxon’s test for symmetry (3.6) reduces to

(3.7) 2P[Tp=T|n;H)]=P[Tp=T—n|n—1; HJ+P[Typ=T+nln—1; Hy].
This formula may also be found in [19] (p. 15).

Theorem II:

(3.8) EXT|(k,t,u); Ho)=2‘”f[ (X% ++ X o),
Proof: -
From (2.3) it follows that

(3.9) =3 (a1 g

i=1
and from (3.9) and the fact that a,, ..., g, are distributed independently
follows

&
(3.10) & (X7 | (kyt, w); Ho) = TT & (Xeutie |y, s Hy).

Further a, possessing a binomial probability distribution with para-
meters (¢, 4), we have

(3.11) & (Xw@a—t |t g Hy)=2"4(X%+ X204 (i=1,...,k).
From (3.10) and (3.11) then follows
T
(2.12) EXT|(k,t,u); Hy) =277 (X% 4+ X-o)h,
i=1

Remark: .
5. (3.8) may also be deduced from the recursion formula. From (3.1)
it follows that

é"(XT]k, by e ves By Uy eees Uy Flg)=

b
(3.13) =270 (t;j) X~ & (X7 | = 1,8y, cevs byegy Ugs oo, Ugq s Ho) =
y=0

=270 (X0 X0 & (X7 | E— 1,8y, ooyt gy Uy een Uy 3 Hy)
and (3.8) follows from (3.13).
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Now let #, denote the y-th cummulant of the distribution of T under
the hypothesis H, and under the condition (k, £, ), i.e. #, is the coefficient
of 7”/y! in the expansion of In &(e*7|(%, ¢, u); H,). Then we have 4)

Theorem III:

(3.14) Hopr1=0 (»=0,1,...)
and
929 (220 —1) By, <& )
(3.15) ,42v=.__(__2v_>_2_§1t,.¢§ v=12,..),

where B,, are Bernoulli’s numbers.

Proof:
From (3.8) it follows that

k
(3.16) Ee T | (k,t,u); Hy)= I'Il(ch T@)k,
thus ‘
k
(3.17) In & (e*T|(k, ¢, u); Hy)=> t;Inchvg;.
i=1
Further we have
(3.18) Inchz= [thudu
. 0
and
_ S 22(2%—1) By o,
(3.19) thu_v;——(ﬁﬁ!_ 2 -1
thus
(3.20) Incha— 3 ZUZ 1) Boy ¥

(2v)1 20"

v=1

From (3.17) and (3.20) then follows

R g2 92v(92v. L4
(3.21) Iné& (ele (k, t,u); HO) _ Z (‘L’ 22v(22» 1) By, z t 0.
v=1

2v)! 2 o]
. 20 +1
Thus the coefficient of ES is
(3.22) gpi1=0 (#=0,1,...)
and the coefficient of il is
(2v)!

_ 22(22 1) By,
- 2v :

T

k
(3.23) Koy Ler (v=1,2,...).
=1

From (3.22) it follows that the distribution of T under the hypothesis
H, and under the condition (%, ¢, ») is symmetrical and

(3.24) = E(T|(k, £, w); Hy)=0.

4) Cf, also D. van Danrzic [2] (Chapter VI) for the cumnmulants of the distri-
bution of the test statistic of WrLcoxon’s two sample test for the untied case.
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From (3.23) it follows that
(3.25) sg=®(T| (k,t, u); H)= 3 4, 2.
i=1
Special cases
From (3.25) and (2.7) it follows that

k n3—£¢?+3n(n+ 1)2
(3'26) 02 (TW l (kJ t) ; H()) = 2 t,, 7'%.—_‘ i=1 %)
i=1

and if £,=1 for each ¢=1, ..., n then (3.26) reduces to

3.27) o Ty|n; Hy)=%tn(n+1)(2n+1) (cf. [24] and [25]) 9).
Further it follows from (3.24) and (2.10)

(3.28)  &(Ty|(k, 1); H)=%n(n+1)  (cf. [22], [23], [24] and [25]).

A table of 02 and ¢ according to formula (3.27) may be found in [1] (p. 30).
From (2.8) and (3.25) follows

(3.29) o (Tp| (b, t,u); He)= > tui= > 23.
. 4=1 fi=1

In the following theorem a necessary and sufficient condition will be
given for a constant difference between the successive values T assumes
under the condition (&, ¢, u).

The smallest value T assumes is

I
(3.30) T in= Z b~ z L= — Z AAR
P;<0 P> 0 i=1
thus
k k
(8.31) T—Tpu= Z @; (9, —b;) + z ti]%{= 2 2 I(Pi‘bi+2 Z I‘le a;.
i=1 i=1 P;< 0 @; >0
Now let |gy], ..., |g;| consist of k' different values ¢y, ..., ¢, with
(3.32) O0<p/< ... <@g,
and let
, def
HE X 4,
K
75} =2’
(3.33) ag¥ 3 a+ 3 b, (i=1,...k)
q;j=7(p ’ ‘pj=,-_¢§’

s.def ,, ’
bzzti—ai,

then T—T,,, may be written in the form

k’

(3.34) TET-T,.,=23 ¢/a].
=1

§) The fomulae for the variance of Ty, in [22] and [23] are in error, but have
been corrected in [24] and [25].
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Theorem IV: The difference d between the successive values T assumes
under the conditions k=k, t;=t,, ..., t=8, =10, ..., U=, 95 constant
if and only if for i=2, ..,k

1. ¢/ is a multiple of ¢ and

(3.35 =
) 2 ¢l s 3 Hoiter

This difference then equals 2.

Proof:

It will be proved that the difference between the successive values
T’ assumes under the condition (k, #, u) is constant if and only if (3.35)
is satisfied.

From (3.34) it follows that

1. if a/=0 for each i=1,...,k', then T"=0,
(3.36) 2. if a]= za =1, then T"=2¢;
i=1
and from (3.32) and (3.36) it follows that T’ does not assume values between
0 and 2¢j, i.e. d=2¢p] if d exists.

Further if 7'y is a value T’ assumes, then T’ also assumes the values
Ts+2¢; and (or) Tg—2¢;. Thus a necessary condition for the existence
of d is that 2¢; is a multiple of 2¢; (1=2, ..., k). Further if (3.35.1) is
satisfied then all values T’ agsumes are multiples of 2¢j.

Now suppose that (3.35.1) is satisfied then it will be proved that
(3.35.2) is a necessary and sufficient condition for the occurrence of all

kl
multiples of 2¢; between T, =0 and T, ,.=2 >t ¢;.
=1

We first prove that (3.35.2) is a necessary condition. Consider for any
fixed value of ¢ the following two cases

537 a;=0 for each j=i1,...,k,

(3:37) 2. a; =1 for at least one value of j=1i,...,k".

These two cases are mutually exclusive and one of the two must occur.

The greatest-value T’ assumes in case (3.37. 1) is 2 z { ¢f and the smallest
7=

value in case (3.37.2) is 2¢;. Thus if 2¢;>2 2 i ¢; then no values between

these two can be assumed by T'. This means that the difference
i1
20i—2 2 1 ¢
j=1
should not be larger than d=2¢;, or
i—1
(3.38) 7S SHpel (=2 k).
i

The sufficiency of condition (3.35.2) will be proved by induction.
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Suppose that it has been proved, for a certain value of %, that in case
(3.37.1) the difference between the successive values T’ assumes are
constant and equal to 2¢;. Then T’ assumes in this case the values

, 13,
(3.39) 2lp;  (1=0,...,= Xt ¢f)
P1 4=1

For i=1 this is true. Further the contribution of the “tie” of size #; to
T’ equals

(3.40) 2ho;  (h=0,...,8).

Thus if aj=0 for each j=4+1, ..., k" then T’ assumes the values
= £ o,

(3.41) 2k¢;+2l<p; ¢ ,gl v

3 'L )'
For each possible value of & and I these values are multiples of 2¢p, and
for any ﬁxed value of A, say A,, the difference between these values for

{= z @; is constant and equal to 2¢,. Thus it remains to be
11=1

proved that no gap can arise by raising 2 from, say, &, to hy+1. The
smallest value T’ assumes if h=7y+1 is 2(hy 1)g; and the greatest value

i—1
of T' if h=hy is 2hg[+2 3t ¢i. Thus if
j=1

. i—1
(3.42) WS 3Hgte (=2 k)
i=

then no gap arises if £ is raised from A, to Ay 1, i.e. (3.85.2) is a sufficient
condition for the occurrence of all multiples of 2¢; between 0 and

&
224l
=1

Special case )
For WiLcoxon’s test for symmetry we have ¢(u, r)=r and

(3.43) O<r < ... <1y
Cond_ﬂqion (3.35) reduces in this case to
1. t——(——l)i is a multiple of ¢;+1 and

(3.44) ?2. ;< Zt}2 zt

for i=2, ..., k and this condition is e.g. satisfied if
bosr1=1%; for ¢=1 [ and

(3.45)

=1 for z=1[§]

The difference d then equals ¢4 1.



389

A special case of (3. 45) is the case that {;=1 for each i=1, ..., k.
Then d=2.

In order to prove the conditional asymptotic normality of the distri-
bution of T under the hypothesis H, we consider a sequence {z;} (1=1,2,...)
of independent random variables (cf. section 2). Let

(8.46) m EP [z, # 0],
then if
(3.47) S m=o0

i=1

the sequence {z,} has, according to the BoREL CANTELLI lemma (cf. e.g.
W. Frrrer [6] p. 155), probability one of containing infinitely many
elements = 0. Thus omitting the elements which on observation assume
the value 0 an infinite sequence remains. Y

Let the non zero values assumed by |z}, ..., |z;| consist of ¢, , times
the value u; (i=1, ..., k;), where u; < ... <uy,; and let
(3.48) raZ z-e, =L (a=1)  @=1,...k).

Let further
(3.49) Pua 0 (U1 1,2)
and let T, denote the test statistic for =z, ..., z;. Finally let
def <2
(3.50) M= b,
i=1
and
(3.51) o3, zd—efgz (Tal ks tyns - sy, s Ug 2y oo Uy 23 Hy).

Then n; — oo with A except for a probabilitv 0.
Theorem V: Let {k}, {n} and {t..}, ..., {#x, 1} be sequences of non
K

negative integers with ny= > t;, (A=1,2,...) and n; — oo for A — oo ; let
i=1

further {u; s}, ..., {¥z,1} be sequences of mumbers with 0<u,; <...<uy ;
(A=1, 2, ...) then if
Z A‘P%",z
(3.52) hm = =0
{2 ;.%'2,,1}2

the random variable T,[a, ;1s, under the hypothesis Hy and under the conditions
ky="Fy, ¥ a=b105 0> By a="Trp 20 Y1,2= U 25 +ovs Upy 2=Ug, 3 fOr A — 0O asymp-
totically normally distributed with mean 0 and wvoriance 1.
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Proof: The notation will be simplified by omitting the index A.
From (3.14) it follows that it is sufficient to prove that

(3.53) lim ’%’: = for »>1

00 00

and from (3.15) and (3.25) follows

% 3
> t';,‘P%” th‘,?’%
2 2y Famt 2y — o o
(3.54) ZZ— 22 (2 ”21, 1) By, =L <2 (22”2,” L) By, = for » > 1.
O,
0 {ZuoR) {2 40if
i=1 i=1
Thus
St gt
t.(p.
) o (929 . L]
(3.65) himZ PO D Br i 1 o for y> 1.
A-00 Op A—>00 { z ti 97,?}2
i

Special cases
For WiLcoxoN’s test for symmetry we have

(3.56) (p¢=ri<2n (’l:=1, ey k),
thus
% k

(3.57) >tgt< (2n)t Y ;=275

i=1 i=1
and (cf. (3.26))

E
(3.58) PR =F I8
i=1

From (3.57) and (3.58) then follows

k
>t of
(3.59) lim <=1 — 9

= =
7-—>00 {iglt‘i ‘pi2}2

and (3.52) then follows from the fact that » tends to infinity with A.
In the case of FisHER’s test for symmetry we have

(3.60) o(u, r)=u
and thus
& m
PR > %
(3.61) L = 2=

k - m *
1. o212 212
{2-:1 ad; {hzlzh}
Thus in this case (3.52) is identical with
2
> %
(3.62) lim ";’1 =0,
A->00 {glz%}z
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Now suppose there exists a random variable X with ©)

1. P[|z;|=X|z;#0]=P[|X|=X] for each X =0 and each 4,
(3.63)
2. £ X2< o0,

then (cf. e.g. M. Loive [11], p. 242)
A
(3.64) hm;ié > zt=0 except for a probability 0
A>00 N =y

and

2
(3.65) }.Jm ZIZ S{zi— & (2|2, # 0)}=0 except for a probability 0.
I v

Thus if moreover

i - .
(3.66) liminf L ¥ & (22 |z, # 0) > 0
200 A 5T
then
A
> z;
(3.67) lim 221 =0 except for a probability 0.

A—-co {Z z%}z
h=1

If the distributions of z; under the condition z;#0 are, for 1=1, 2, ...

identical then the conditions (3.63) and (3.66) reduce to
(3.68) &(Zf|z;#0) <oo.

$) This result we owe to Mr. J. TE. RUNNENBURG.
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A GENERAL CLASS OF DISTRIBUTIONFREE TESTS FOR SYM-
METRY CONTAINING THE TESTS OF WILCOXON AND FISHER *).
II
BY
CONSTANCE VAN EEDEN anp A. BENARD

(Communicated by Prof. D. vax Dawrzic at the meeting of March 30, 1957)

4. The relation with the class of two sample tests described in [4]
From (2.3) it follows that T may be written in the form

E k k
(4.1) T=23 pia;— Zl% f=2t%— Zl% bis
i= B=

i=1 .
where t* is the test statistic for the two sample problem defined in [4]
(p. 251) applied to the positive observations as the first sample and the

absolute values of the negative observations as the second sample.
Further if (cf. e.g. [4] p. 252)

~_ def n L
(4.2) t*:t*—é”(t*](k,t,u),nl; HO)=‘t*——nl Zq)i &,
. Qe
then
~ 2 k
(4.3) T=2t*+ > (n,—§n) 3 @it

i=1 -
Thus the test statistic T is a combination of the statistic t* for the two
sample problem and the statistic n; of the sign test.
Special cases
For Wicoxon’s test for symmetry we obtain from (4.3)

(4.4) Ty=W+(n+1) (n,—1n),
with
(4.5) WEW_n n,,

where W is the test statistic of WrLcoxoN’s two sample test 7).
In the case of FisuER’s test for symmetry we have

~ 2 m
(4.6) Tp=2tp+- (nl—%n)hzllzhl,
where £, is E. J. G. PrtMaAN’s test statistic for the two sample problem [13].

*) Report SP 54 of the Statistical Department of the Mathematical Centre,

Amsterdam.

?) The test statistic of Wincoxon’s two sample test for the samples 2y, ..., Zp,
and 4y, ...; Yy, is defined bere as twice the number of pairs (z;, y;) with z; > ¥,
increased by the number of pairs (@, y;) with 2, =y, (E =1, ..., ny3 7 =1,..., 1)
(cf. [20]).
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Remark

6. Other tests for symmetry may e.g. be obtained by choosing for t*
the test statistic of the two sample tests of M. E. Terry [18] or B. L.
vAN DER WAERDEN [21], i.e. by taking

(4.7) %=—t.—2f"zn.s,~+y (i=1,...,k)

£ y=
or

ts
—Lsy(Ety)y o
(4.8) 7= glsp(nﬂ) (i=1,...,k),
with
i—1

(4.9) = St (i=1,...,k)

and where & Z, , is the expectation of the r-th order statistic of a random
sample of size n from a standard normal distribution and ¥ (x) is defined by

(4.10) -1 g,

1 ¥ (x
Ve L

Further the hypothesis H, implies, under the conditions (k, ¢, %) and
m =mn, the hypothesis H; that the positive observations are a random
sample without replacement taken from the absolute values of all
observations (cf. [9] p. 71 and [5] p. 307). The mean and variance of T
under the hypothesis H, and under the condition (%, ¢, u) thus also follow
from the formulae for the mean and variance of t* under the hypothesis
Hy (cf. e.g. [4] p. 252).

From (4.3) it follows

2 %
(4.11) @@(T[(k:t,u),m§ﬂo)=; (ny—%n) Zl%ti
and
. 49y n, i
@12) o(T| (ot )y Hy)= 32008 S it 2 (St
From (4.11) and (4.12) then follows
E(T|(k,t,u); Hy)= & {&(T|(k, t, u), ny; Ho) | (k, ¢, u); Ho}=

W13) ) _2 St = | (b, 6 0); H) =0 (of. (3.20))
and "
o®(T| (k,t,u); Hy) =
=02{&(T|(k,t,u), ny; H) | (k,t, u); Hy}+
+& {0 (T | (k,t,w), ny; Hy) | (k,t, u); Ho}=
_tiv, o S L
(4.14) —nz{gliz%}""dz(ﬂl!(k, t, u); Hy)+

4 £ 1,3
+;;(—n_—1){2 4 %?";b (Z b )2} & (nyny | (K, 8, w); Hy) =

=%{§ s 9} +{Zt%-——(2t ARE Zt% (cf. (3.25)).
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5. The consistency of the tests of WiLcoxox and FIsHER

In this section the eonsistency of the tests for symmetry of WiLcoxon
and Fisger will be investigated.

We again consider the sequence {z;} and an alternative hypothesis #
stating that the distributions of z; under the condition z;0 are, for
A=1,2, ..., identical. Let x, 4, ..., Xn, 42 denote the positive observations
and ¥y, ---; ¥n, ;2 the absolute values of the negative observations, with

ny ;+n, ;=n;. Let further

. def =
(.1) pd;P[zl>O|z,1;éO] A=1,2,...),

g=1-—p.

We first prove the consistency of WiLcoxox’s test. Let
(5.2) 0P x>y ]-Pla<y] (Gp=12..),
then we have

Lemma I:

(5.3) P (T |n; H)=n(n—1) pd+n (n+1) (p—3).

Proof: From (4.4) it follows that
(5.4) Ty=3 j:lsgn (—¥;) + (m+1) (n,—1n),

i=17-=
where '
1if 2>0

(5.5) sgnz=< 0 if z2=0

~1if 2<0.
From (5.4) follows
(5.6) E(Twn, ny; H)=ny nof+ (n+1)(n, —4n),
thus

E(Ty|n; H)y=E{6(Tyn, ny; H)|n; H}=
(5.7) =08 (nnyln; H)+(n+1)E(ny—$njn; H)=
- =n(n—1)pgd+n{n+1)(p—1).
Lemma II:
(5.8) o 0 (Tyy | n; H)=0 (n)
and the coefficient of n® in (5.8) is = E.
Proof: We have
(6.9) XTy|n; H)=0*{&(Tyin, ny; H)|n; H}+ {0 Ty|n, ny; H)|n; H}.
From (5.6) it follows that
(8.10)  o*{&(Tyln, ny; H)n; H}=0*{n; n+(n+1)(n—}n)|n; H}=0(n?)
and the coefficient of #® in (5.10) is

(5.11) Pq(0+1—2pgh)2.
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Further (cf. (5.4))

(5.12) o2(Ty | n,ny; H)y= 02(2 ngn (x;—y;) |, ny; H)

i=1j=1

and from D. J. Stoxsr ([17], p. 67-68) it follows that

(5.13) 02(2 Z sgn (x,—¥;) | n, ny; H) < nymp (04-1),
i=17=1

thus

(5.14) E{c¥(Tyln, ny; H)|n; H} <n(n?—1)pq.

Thus

(5.15) o¥(Tyn; H)=0(n?)

and the coefficient of n® in (5.15) is

(5.16) =pg(0+1—2pgb)*+pg=<i}%).

Theorem VI: If (3.47) is satisfied then the, test for symmetry of
WILCOXON based on the critical region Z (cf. (2.5)) 4s, for A — oo, consistent
for the class of alternative hypotheses
(5.17) |p—%-+pq6|>0.

The tests based on the critical regions Z, and Z, respectively are consistent
for the classes of alternative hypotheses

(5.18) P—3%-+pgo<0

and

(5.19) p—3+pg0>0

respectively and not consistent for the classes of alternative hypotheses
(5.20) p—%+pg6>0

and

(5.21) p—%+pg0<0

respectively.

All tests of WILCOXON mentioned are, for sufficiently small &, not consistent
for the class of alternative hypotheses

(5.22) p—3+pg0=0.
Proof:? The index A will be omitted. Let
1. s & 62(Ty [ n, thy ..., ty; Hy),
(5.23) 2. 02defin(’n+ 1)2

3. cgd.e_f}in(n—!-l) (2n+1),
8 If p=4%and 6 =1 then

pq(0+1—-2pq6)>=3%
and (cf. [17). p. 67-68)

02(2 ngn (5 —y)) | n, ny; Hy=n, ny (n—2).
i=1]=1
Thus in this case the coefficient of »3® in {5.15) equals 1
%) Cf. also D. vanx Danrzia [3] for the proof of the conms’oency of WILCOXON’S

two sample test.
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then

(5.24) ¢ <sh <.
We first consider the case that

(5.25) p—1+pgb<0.

For the test based on Z; we have (cf. lemma I and II)

lim P [TW¢Z,]n;H]=h'mP[TW>—§“sW]'n;H] =
G.26) 77

<lim P Tw—iw > — Ea Cz‘H"WI :]
A->00 ow

where &, is defined by

(5.27) de=x.

T i
7L
From (5.23), (5.25), lemma IT and the fact that » tends to infinity with 4
it follows that — é"%;{ﬂ is positive for sufficiently large 4; thus according

to the inequality of BreNavM#i-TCHEBYCHEF

2

0'
(5.28) im P [Ty ¢ 2| n; H] < lim oo =

Thus the test based on the critical region Z, is, for A4 —> oo, consistent
for the class of alternative hypotheses (5.25).

If
(5.29) p—3+pgh=>0
then
}LimP [(TweZ|n; H SlimP [Ty = —&,¢|n; H =
00 A0
(6530) . o

=0,

jA=00 (Excy +pw)*

— é”—‘-%#‘—”being negative for sufficiently large 1. Thus the test based on

Z, is, for A — oo, not consistent for the class of alternative hypotheses
(5.29).

Finally if
(5.31) p—i+pg6=0
then
lim P [Ty € Z,[n, H] < lim P [TZE7 < — 5“"1+”W[n;ﬂ] <
(5.32) ‘:’ o (7 Amvoo
= lim (Z2)
Thus if
(5.33) &, > lim 2%

i>o0 G
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then the test based on Z,; is, for 4 — oo, not consistent for the class of

alternative hypotheses (5.31) and from (5.23) and lemma II follows
(5.34) lim % < V3,25 = 1,80.

A>o0 C1

The proofs for the tests based on Z, and Z are analogous.

Theorem VII: If the disiributions of z, ..., z, are identical and
symmetrical with respect to a then

1. p—}+p96=0 if a=0,

(5.35) 2. (p—31+pgd)a>0 if a0,
Proof: Let

(5.36) H(z) =P [z, <]

and (cf. (3.46))

(5.37) =P [z, 7 0].

Then (cf. (5.1))
(5.38) p=—[dHE), = f dH (2). 19)
0 —oo

If a=0 then p=% and 0=0, thus
(5.39) p—32+pg8=0 if a=0.

Now consider the case that ¢>0; then p =1. From the fact that the
distribution of z, is symmetrical with respect to a it follows that

(5.40) =;t- [ dH ().

If further “

(5.41) F@)EP[x, <], GHEP[y, =<y
then

(5.42) aF (@)= 2, F(x)-——%;}dﬂ ()

and from the symmetry of the distribution of z, with respect to a it
follows that

1 20+y
G)=- J dH ().

2e

dH (y+2a)
I —

(5.43) a6 (y) = =%

10y Here we define

[dH @ =P[5 < z<2)
and l

f dH(z)—P[zl<z<zz]
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If ¢>0 then
0=P[x; > y]—P[x; < y;] > P [x,> y;+2a] — P [x; < y;+20] =

(5.44) =51_q.{§°dﬂ(x) fdﬂ(u)_fdﬂ(x_g.mf}zzzﬂ(u)}

and from (5.44) follows

z+2a

g6 > [ 4H (@) [ dH (u)— [ dH (@+2a) | dH (w)=
20 2a 0 (1]
= [4H (z) [ dH (w)— T 4H (z) [ dH ()=
(5.45) JOH ) [ Al (w)= | dH (@) [ dH (u)
— TdH (@) [ dH (w)— [ dH (2) | dH () =
2a 2a 2a 0
=n?q*—n?pg=n?q(g—p)-
Thus if ¢>0 then
p—3+pg0>p—§+aqq—p)=(p—q)3—n*g=
z(p—q) $3—-9=%4p—-9*=0.
Further if ¢=0 then p=1 and
(5.47) p—+pgf=p—%>0.

(5.46)

Thus p—4%4pqgf is positive if ¢ is positive.
The proof for a <0 is analogous.

From the theorems VI and VII it follows that if the distributions of
z, are, for A=1, 2, ..., identical and symmetrical with respect to ¢ then
WILCOXON’s test for symmetry based on the critical region Z is, for
A —> oo, consistent for the class of alternative hypotheses

(5.48) a+0.

The tests based on Z; and Z; respectively are consistent for the classes
of alternative hypotheses

(5.49) a<0

and

(5.50) a>0

respectively and not consistent for the classes of alternative hypotheses
(5.51) a>0

and

(5.52) a<<0

respectively.

We now consider FisHER’s test for symmetry.
Theorem VIII: If (3.47) is satisfied and if
(5.53) &(23|z;#0)< o0
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then FISHER's test for symmetry based on the critical region Z is, for 4 — oo,
consistent for the class of alternative hypotheses

(5.54) &(z;]|z;#0) #0.

The tests based on the critical regions Z; and Z, respectively are consistent
for the classes of alternative hypotheses

(5.56) E(2;]2,#0) <0

and

(8.57) é’(zzlzlaéb)>0

respectively and not consistent for the classes of alternative hypotheses
(5.58) 6(z;|2;#0)>0

and

(5.59) 8(z;]z;#0)<0

respectively.

All tests of FISHER mentioned are, for sufficiently small x, not consistent
for the class of alternative hypotheses

(5.60) 8(z;| 2, 0)=0.
Proof: The index 4 is omitted.
We have

(5.61) prZ & (Ty|n; Hy=né (z|z # 0)

and

(5.62) 0% Eo?(Ty|n; Hy=no®(z|z # 0).
We first consider the case that

(5.63) &(z|z+#0)<0.

Let

(5.64) 2 ¥ 62(T, [ 7,8y, s iy Uy, ooy Uy Hg) = hg:lz,%,

then we have for each §>0
o P [Tr ¢ Zy|m; H] = lim P [Ty > —&asp [ H] =
A—>00 ->00
=HmP [Tz>—&,sp and |(1/n) sk —& (22|z# 0)| < d|n; H] +

A0

(5.65) { THMP[Tp>—&, sp and [(1n) s}~ & (2|2 # 0)| 2|n; H] <

skhim P [Ty > —& Vn {6 (2*|z # 0)+ 6} | n; H] +
+1im P [[(1/n) 53— & (2|2  0) | 28| n; H].

Further it follows from (5.53) (cf. also (3.65)) that the second term in
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the right hand member of (5.65) is zero; thus according to the inequality
of Brenaymi-ToHEBYCHEF we have
lm P [Ty ¢Z|n; H] <
A—o0
<limP Tr—uzp - &y pn{g(zz‘:;éo)'i‘a}‘l‘ﬂﬁ’ln; H] <
A->00

op

(5.66)

=lim oF —0,
im>oo [£0 V{8 (2*[2£0) + 6} +ur]®

_ V@220 +0} +ur being positive for sufficiently large 4. Thus the

oF
test based on Z, is, for 4 — oo, consistent for the class of alternative
hypotheses (5.63).
In an analogous way it may be proved (cf. also the proof of theorem VI)
that the test based on Z; is not consistent for the class of alternative
hypotheses

(5.67) &(z|z#0)>0.
Finally if
(5.68) &(z]z#0)=0

then we have (cf. (5.65) and >(5.66)), for 0<d<&(z%|z£0),
limP [TyeZ|n; H] <

A—>00 .
. Tr—pup &y Vn{é& (22|z£0) —6}

(5.69) é}fﬁ Pl == or =

< lim o% _ & (22 |z£0)

T ico E21{8 (22]25£0)—8}  E2{&(z*|z£0)—06}
Thus if

ACIEE0)

(5'70) §oc > Vm)_;_é

then the test based on Z,; is not consistent for the class of alternative
hypotheses (5.68).
The proofs for the tests based on Z, and Z are analogous.

Remark

7. If

(5.71) M%;:—E@@(xi,ahé"(zll z,> 0),
pe=E&(y;:)=—& (2,2, < 0)

then (cf. (5.1))
(6.72) ; &(23] 2;# 0) = Pty — qta.-
Thus &(z;|z,#0)Z 0 is identical with

7 z b
(5 3) P= My Hp



MATHEMATICS

A GENERAL CLASS OF DISTRIBUTIONFREE TESTS FOR SYM-
METRY CONTAINING THE TESTS OF WILCOXON AND FISHER 1).
I

BY

CONSTANCE VAN EEDEN axp A. BENARD

(Communicated by Prof. D. van Dantzi¢ at the meeting of March 30, 1957)

6. A combination of the class of tests for smeetry and the sign test

In this section a class of tests for the hypothesis H; will be described
which is a combination of the sign test and the class of tests for symmetry.
Let n,, denote the smallest integer satisfying

(6.1) Pln, =n, ,|n; Hy] <o,
then the following critical regions are used (cf. (2.4) and (2.5))
SZZ’: ny =n—ny, and (or) T =-T,,

(6.2) Zl:ing 2Ny, and (or) T =T,
eZ': |ny—%n| =7y 4., —%n and (or) |T| 2 T,.,.
Now let
(6.3) 3 61:_::1) [ny = 0, |05 Hyl,
=P[T=T,|(k, ¢, u); Hy

and let ¢ denote the size of the critical region Z;, then
e=g+(1—e) P[T =T, |0 <ny,, (bt u); H]=
(6.4) Py m—1 27 (")
=g+ (1—¢&) Z 1= PT=T, ]“1—7': (k, ¢, u); Hol.

=0

Analogous formulae hold for the other onesided and the twosided test.
Thus, T— 2 - (m—%n) Zt p; possessing under the hypothesis H, and

under the con(htlons (%, t u) and n, =m0, the same probability distribution
as the statistic 2%* for the two sample problem under the hypothesis
Hy (cf. section 4), ¢ may be calculated from (6.4) for each oy, o, and n
by means of tables of the distribution of ¢*.

Special case

For WiLcoxon’s test for symmetry we have (cf. (4.4))

(6.5) 2t* =W

1) Report SP 54 of the Statistical Department of the Mathematical Centre,
Amsterdam.
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and tables of the distribution of W under the hypothesig H, ma,y e.g.
be found in [20].

On the other hand the critical regions Z;, Z; and Z’ are not uniquely
determined by ¢ and %. One may now proceed e.g. in one of the following
two ways.

1. Suppose one wants to test the hypothesis H by means of the
combination of the class of tests for symmetry and the sign test with level
of significance «. Then for each & <« let &, ,,,, denote the largest value of
&, satisfying ¢<x. This value may be found from (6.4). Further, for this
value & g, Of &, 16t & g, denote the largest value of ¢, satisfying ¢ <a.
Of these Pairs (&1, E2,mes) Choose the one with the smallest difference.

If two pairs of values have the same value of |&; ., — &, mas| then choose
the pair with the largest value of e.

2. Take o =w, and choose the largest value of & =« £« satisfying
2 =0,

These two procedures do not always give the same critical values, but
if they give different results then in general the first procedure gives a
larger value of ¢. Further it will be clear that the two procedures are
asymptotically, for n — co, identical.

Special case

A table of the critical values of Z, for the combination of WiLcoxox’s
test for symmetry and the sign test for the untied case calculated according
to the first method described above, may be found in [1] (p. 31), for
n=5(1)20 and «=0,005; 0,01; 0,025 and 0,05.

In the following an approximation to « will be given for large values
of n. First we prove the following theorems.

Theorem IX: If %,(s=0,1,...;r=0,1, ...,8+r>0) are the cumu-
lants of the simultaneous probobility distribution of T and ny—in under
the hypothesis H, and under the condition (k,t, u), then
(6'6) ”s.2v+1—3=0 (V = O> O=s= 27’+ 1)
and

20(22—1) By &

(6.7) g 0p—g = % Ste (#>0,0<s<2y).

i=1

Proof: In the same way as in section 3 we find

3
In & (euTrmm—in l (k, 2, w); Hy) = z tinch(zy @+ 31) =
i=1

X 9% (922v 1) B, Yy
(68) (=2- -—-—(mv).zi : Zt(rlq)@-wz)z
v=

78 7238

2 (2w— l)B,, 2
= z : sg 31(12112 s)! 2szt %

r=1
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12v+1 3 .
Thus the coefficient of ——2 <7 (2v +1—8)'
(6.9) ”s.2v+1—s=0 (7’ =20,0=s=2v+1)
B
and the coefficient of ‘1 2 is
812y —s)!
2(22—1) Byy o,
(6.10) sy = VB S (1> 0,0 =5 <2).

=1

From (6.10) it follows that

k
(6.11) ta—0® (T (8, w); Hy) = 3,07 (of. (3.25)),
=1
(6.12) Hoo=0%(ng|n; Hy)=1n
and
k
(6.13) 1=cov (T, n | (k, ¢, u; H, =%z

Thus the correlation coefficient of T and n, under the hypothesis H, and
under the condition (k, ¢, ) is

k
259
(6.14) Y (T, ny l (]C, t, 'u,) ) HO) = _z:_l_____——:

&

thv?

In order to prove the conditional asymptotic normality of the simul-
taneous distribution of T and n, under the hypothesis H; we again consider
the sequence {z;} (cf. section 3).

Theorem X: If {k)} and {t,,}, ..., {ti, 1} are sequences of non negative
Iy

integers with ny= 3 1,3, and ny — oo for 2 — oo, if {uy 3}, ..., {Uug,u} are
i=1

sequences of numbers with 0<u; ;< ... <u,,, if (3.47) and (3.52) are
satisfied and if moreover
3,
B Z f’z FRZW]
A—o0 / 7
2 E/nl 2 tz A % 2

i=1

exists and is in absolute value < 1 then the random variables

Ta nya—fm
6.16 — d 22 ==
(6.16) Tiana Mk

possess, under the hypothesis H, and under the conditions
k=1, & 2=1t12, .-, Tg =ty Us, 2=, 25 o> Uy 2= Uy 2

asymptotically, for A — oo, @ two dimensional normal probability distribution
with zero means, variances 1 and correlation coefficient g.
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Proof: The index A is omitted.
It is sufficient to prove that

. 3 op—
(6.17) l&%m_sm&(io.—;)m=0 for » >1 and 0 s _3_211.

From (6.7), (6.11) and (6.12) it follows that

t;
6.18 o _eeonpy T
(6.18) (22,0)272 (29, 2)?— @2 W 3 .
o . ( 2 t,' (p‘g)s/z Y —(8/2)
i=1

If v—(s/2)=0 then
13 & k
2 49 Z Loy Zhot
(6.19) = =1 < 2:1 .
(izl 2 ﬁ)alz ,nv—(s/2) ( E t (Pz)" (.thilp?)z

From (6.18), (6.19) and (3.52) then follows

(6.20) lim it =0 for v—(s/2)=0.

100 (%2,0)52 (ap, 2)? —(62)

If v—(5/2)>0 then

k
249
i=1

k
( z 2 q,?)slz n— 82

=1

1
= pr—1{s/2) *

(6.21)

From (6.18), (6.21) and the fact that » tends to infinity with 4 then follows

(6.22) lim — 2220 for v—(s/2) > O.

Aso0 (#2,0)5/% (9,2}~ (82
Special case

For Wmcoxon’s test for symmetry condition (3.52) is satisfied (cf.
(3.59)). Further the correlation coefficient of Ty and n; under the hypo-
thesis H, and under the condition (k, ¢, ») is

f 51 1
(6.23)  o(Tw,ny | (k,t,u); H))= —= = = —————
2 Vn S 412 / z t3
=1 5 1 + 3 y
n(n-{—l)

Thus in this case the limit (6.15) exists and is in absolute value <1 if
7} t:’;
lim Y -2 exists and is <1.

A>r00 =3 A
From theorem X it follows that, for Z] and oy=o,=0«', « may be
approximated by

6.24 20"~ T j’" e dxd
~ o s
(6.24) o &= 1—’”25 e x dy

s Sor
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where

Ekj
t; @;
17
def f=
r i =1

.
2)/nZ 49}
i=1

Analogous formulae hold for the other onesided and for the twosided test.

Thus an approximation to « may be found by means of a table of the
two dimensional normal distribution with correlation coefficient r (cf.
e.g. [12], p. 52-57). Table 1 contains this approximation for the onesided
test for some values of &' and r.

(6.25)

TABLE 1
Approximation to o for some values of &’ and r
(xl
N 0,005 0,01 0,025 0,05
0,85 0,008 0,015 0,037 0,072
0,90 0,007 0,015 0,035 0,068
0,95 0,007 0,013 0,032 0,063

Further an approximation to o' may be found from (6.24) for given
values of « and r; table 2 contains this approximation for the onesided test.

TABLE 2
Approximation to «’ for some values of « and r
[+
N 0,01 0,025 0,05
0,85 0,0064 0,0165 0,034
0,90 0,0068 0,0175 0,036
0,95 0,0075 0,0193 0,040

Special case
For WincoxoN’s test for symmetry we have

(6.26) iy = et > 1 1/3 = 0,866,

[ w- 34
j=1
‘/ 1+ 3n({n41)2
In [1] (p. 32-33) a table is given of the approximate critical values of
Z; for the combination of the sign test and WiLcoxox’s test for symmetry

for n=21(1)100, x=0,01; 0,025; 0,05 and rp»=0,85 (i.e. for &’ =0,0064;
0,0165; 0,034).

In order to prove the consisteney of the combination of the sign test
and WiLcoxoN’s (respectively FisEER’s) test for symmetry we again
consider the sequence {z;} and an alternative hypothesis H stating that
the distributions of z;, under the condition z;%0 are, for A=1,2, ...,
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identical. Then it follows from the theorems VI and VIII and the properties
of the sign test that the following theorems hold.

Theorem XI: If (3.47) is satisfied then the combination of the sign
test and WILCOXON’s fest for symmelry based on the critical region Z' is, for
A — oo, consistent for the class of alternative hypotheses

(6.27) p#L and (or) 6#0

and, for sufficiently small «, not consistent for the class of alternative hypo-

theses

(6.28) p=1, 0=0.

The test based on Zj is, for A — oo, consistent for the classes of alternatives
1. p<i,

(6.29) 11
2. pzh p—3+p90<0,

not consistent for the class of aliernatives

(6.30) PzE p—i+pef>0
and, for sufficiently small «, not consistent for the class of alternatives
(6.31) pzh, p—3+pgf=0.

The test based on Z, is, for A —> oo, consistent for the classes of alternatives
L. p>4,

(6.32) 1.1

2. p=3, p—3+p0>0,

not consistent for the class of alternatives

(6.33) p=% p—%+pgh<0
and, for sufficiently small «, not consistent for the clqss of alternatives
(6.34) p=}, p—4+pg0=0.
Theorem XII: If (3.47) is satisfied and if
(6.35) &(z3]z;#0) <00

then the combination of the sign test and FISHER’s fest for symmetry based
on the critical region Z' is, for A — oo, consistent for the class of alternative
hypothesis

(6.36) mFpp and (or) p#}

and, for sufficiently small & not consistent for the class of alternatives

(6.37) M=l P=1%.

The test based on Zj is, for A — oo, consistent for the classes of aliernatives
L p<3

6.38

(6:38) ?2- PZE: P~ <0,

not consistent for the class of alternatives

(6.39) Pz%, pp—que>0
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and, for sufficiently small o, not consistent for the class of alternatives
(6.40) Pz}, Ppa—que=0.
The test based on Z, is, for A — co, consistent for the elasses of alternatives
1. p>3
2. psh pm—que>0
not constistent for the class of alternatives

(6.41)

(6.42) D=3, Pa— <0
and, for sufficiently small x, not consistent for the classes of alternatives
(6.43) P=%, pu—qua=0.

The combination of the sign test and the class of tests for symmetry
has two advantages

1. If n, falls in the critical region then the test statistic 7' need not be
computed,

2. The tests are consistent for a larger class of alternatives than the
class of tests for symmetry.

Remark

8. The combination of the sign test and WiLcoxox’s test for symmetry
is analogous to the test for symmetry of HEMELRITK (cf. [9], p. 69-81),
which is based on n, and the test statistic W of WiLcoxoN’s two sample
test (cf. section 4). The critical regions differ only slightly from the ones
given here, but the computations are more complicated. The two sided
test of HEMELRIJK is consistent for the same class of alternatives as the
two sided test described in this section, but other critical regions are
also given, which are consistent for other alternatives, e.g. for p<%,
for <0, ete. '
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