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1. Introduction 

In this paper a class of tests for symmetry will be considered which 
is closely related with the class of two sample tests described in [ 4] 
(p. 251). Special cases are e.g. the tests for symmetry of F. WILCOXON 

(cf. [22], [23], (24], [25]) and of R. A. FISHER [7] (p. 43-47) and the sign 
test. 

In section 2 a description of the tests will be given and in section 3 
some properties of the distribution of the test statistic under the hypo­
thesis tested will be proved. In section 4 the relation with the class of 
two sample tests, described in [ 4], will be given and in section 5 the 
consistency of the tests of WILCOXON and FISHER will be investigated, 
In section 6 a combination of the sign test and the class of tests for 
symmetry will be given. 

All theorems in this paper hold for the case with ties as well as the case 
without ties. 

2. Description of the tests 

Consider m independent random variables Zi, ... , zm 2) representing a 
series of observations. In this paper a class of tests is described for the 
hypothesis H0 that the probability distributions of z1, ... , zm, which need 
not be identical, are all symmetrical with respect to zero. 

The test &tatistic is defined as follows. The observations which are 
equal to zero are omitted. Let the remaining observations consist of 
ai times the value u~ (i=l, ... , k), where 0<u1 < ... <uk and b, times 
the value - u, (i= 1, ... , k). Let further 

(2.1) 
def n=n1 +n2 

1 ) Report SP 54 of the Statistical Department of the Mathematical Centre, 
Amsterdam. 

2) Random variables will be distinguished from numbers (e.g. from the values 
they take in an experiment) by printing their symbols in bold type. 
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and 

(2.2) r/er±t;-½(ti-1) (i=l, ... ,k). 
i=l 

Then r, is the rank of the absolute value of the observations which are 
equal to u, or - u, according to increasing size (i= 1, ... , k). The t, are 
the sizes of the ties. Finally let <p(u, r) be a given function of u and r 
and let <p. def <p(u,, r,) (i= I, ..• , k). The test is executed under the conditions 
k=k, ti =ti, ... , tk=tk, u1 =iti, ... , uk=uk ((k, t, u) for short) and the test 
statistic is 

(2.3) 

The distribution of T under the hypothesis H 0 and under the condition 
(k, t, u) is symmetrical with respect to zero and may be calculated by 
means of a recursion formula (cf. section 3). Let P[T=Tl(k, t, u); H 0 ] 

denote the probability that T assumes the value T under the hypothesis 
H 0 and under the condition (k, t, u); let further T°' denote the smallest 
value of T satisfying 

(2.4) P[T~Tl(k, t, u); H0 ];;;;;iX. 

Then the following critical regions are used 

(2.5) 
\Zz: T ;;;;;-T"', 

1z,: T ~ T"', 
(Z: JTl~T½e<' 

The conditional asymptotic normality of T under the hypothesis H0 for 
n --+ oo will be investigated in section 3 (theorem V). 

Special cases 

If 
(2.6) <p(u, r)=r 

then we obtain the test statistic T w of Wrr..coxoN's test for symmetry 

(2.7)-
k 

Tw= 2 rdai-bi). 
i=l 

A table of the distribution of T w under the hypothesis H 0 and under the 
condition n=n for the untied case and for n=3(1)20 may be found in 
(1] (p. 23-27). The local powerfunction of this test has been investigated 
by E. L. LEHMANN (10] and has been compared with the power functions 
of the sign test and the tests for symmetry of J. HEMELRIJK ([8] and [9]) 
and N. V. SMIRNOV [16] by E. RursT [14]. 

The test statistic T F of FISHER's test for symmetry is obtained by 
substituting u,. for <p, 

m k 

(2.8) TF= 2 z,.= 2 n;(a;-b;). 
h=I i=l 
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If <p is independent of u and r, then the test statistic (2.3) reduces to 

Tc 

(2.9) <p L (ai-bi) = <p (n1 -n2). 
i=l 

Thus in this case the test is identical with the sign test. 

Remarks 

l. WILCOXON uses as a test statistic for his test the sum of the ranks 
of the positive observations. Denoting this statistic by T{v we have 

Tc 

(2.10) T{v= Iria,=½ Tw+¼n(n+l). 
i=l 

Tables of the lefthandsided critical values of T{v for the untied case may 
be found in [24] and [25]. These critical values are defined as the values 
of T{v which minimize JP [T{r, ~ T{r-.1 n; H0]-a:1 3). 

2. By means of the tests described in this paper one may also test 
the hypothesis H~ that the probability distributions of zh are symmetrical 
with respect to given points c1i(h= 1, ... , m) by applying the test to 

3. Some properties of the distribution of T under the hypothesis H 0 and 

under the conditions k = k, t 1 = t1, ••• , t1c = t1c, u1 = Ui, ... , U7c = U7c. 

Theorem I: 

(

P[T=T j k, ti, ... ,t7" Uv ••• ,u7c; H 0] = 
(3.1) tk t 

= 2-1:;lo (;) P [T =T-(2y-t1c) <p7c I k-1,ti, ... , tk-i, Ui, ... ,U7c_1 ; H 0]. 

Proof: 

Let E.., denote the event that the tie of size t1c consists of y positive and 
t1c -y negative observations; then 

(3.2) 

If E.., occurs then the contribution of the obsehations in the tie of size 
tk to the test statistic is 

(3.3) 

If, on the other hand, (3.3) is the contribution of the observations in the 
tie of size t1c to T then this tie must contain exactly y positive and t1c-Y 
negative observations. Thus 

(3.4) 
\ P [T=Tjk, ti, ... , t1c, Ui, ... , u7c; E..,, H0]= 

f =P [T=T-(2y-t7c)<p1clk-l, t1, ••• , t1c-v Ui, ... , U7c_1 ; H0]. 

3) The tables in (22] and [23] contain mistakes, which have been corrected 
in [24] and [25]. 
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The recursion formula (3.1) then follows from (3.2), (3.4) and 

) 

P [T =TI k, ti, ... ,t,,, Uv .•• ,uk; H 0] = 
(3.5) tk 

=,,~o P[E,, I H0] P [T=T I k, t1 , ••• ,t,,, u 1 , ••. ,uk; E,,, H 0]. 

If t,= 1 for each i= 1, ... , n (no ties), (3.1) reduces to 

) 

2P [T=Tjn, Ui, ... , un; H0 ]= . 

(3.6) =P[T=T+rpnln-1, Ui,•··,un-l;H0 ]+ _ _ _ . 
+P[T -T 'Pnln 1, Ui, ... ,Un-t, H0]. 

Remarks: 
3. The recursion formula (3.1) is analogous to the formula derived by 

L. J. SMID [15] for the distribution of the test statistic of WILcoxoN's 
two sample test. 

4. For the case of WILcoxoN's test for symmetry (3.6) reduces to 

(3.7) 2P[Tw=Tjn;H0 ]=P[Tw=T-n!n-l; H0 ]+P[Tw=T+nln-l; H0 ]. 

This formula may also be found in [19] (p. 15). 

Theorem II: 
k 

(3.8) C(XT I (k, t, u); Ho)=2-nII (X'Pi+x-q,,)t1. 
i=l 

Proof: 
From (2.3) it follows that 

k 

(3.9) T = L (2a,-t;,) rp;, 
i=l 

and from (3.9) and the fact that a1, ... , ak are distributed independently 
follows 

k 

(3.10) <ff (XT I (k, t, u); H 0) = II <ff (X'P1C2a.-ti> It,, u,; H0). 
i=l 

Further a;, possessing a binomial probability distribution with para­
meters ( t,, ½), we have 

(3.11) <ff (X'P1(2a1-t1) It;,, U;,; Ho)= 2-t, (X'P·+ x-'1'1)11 (i = 1, ... , k). 

From {-3.10) and (3.11) then follows 
1r 

(2.12) <ff (XT I (k, t, u); Ho)= 2-n II (X'P1+x-q,i)t1. 
i=l 

Remark: 
5. {3.8) may also be deduced from the recursion formula. From {3.1) 

it follows that 

) 

<ff (XT J k, ti, ... ,tk,Uv ... ,uk; H 0) = 
lk 

(3.13) = 2-tk L ek) X'P1c<2r-11c> <ff (XT I k-1, ti, •'• ., tk-1> U1, ... 'uk-1; Ho) = 
)'=0 y 

= 2-tk (X'Pk+x-'Pk)1k <ff (XT I k-1, ti, ... ,tk-1, Ui, ••• ,u,.,_l; Ho) 

and (3.8) follows from (3.13). 
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Now let "v denote the v-th cummulant of the distribution of T under 
the hypothesis H0 and under the condition (k, t, u), i.e."• is the coefficient 
of -rv/v! in the expansion of 1n C(e-,TI (k, t, u); H0). Then we have 4) 

Theorem III1 

(3.14) 

and 

(3.15) 

,e2v+i =0 (v=O, 1, ... ) 

_ 22"(22V-l) B2v ~ t 2v ( 2 ) 
"2v- 2v ·""' i <p, V= 1, , ... ' 

•=1 

where B2v are Bernoulli's numbers. 

Proof: 

From (3.8) it follows that 

(3.16) 

thus 

(3.17) 

k 

C(e"'T I (k, t,u); H0)= IT (ch-r<p,;,)'•, 
i-1 

k 

In C (e1:T I (k, t, u); H0) =Lt, ln ch -r<p,. 
i=l 

Further we have 

(3.18) 

and 

(3.19) 

thus 

(3.20) 

"' 1n ch x = f th u du 
0 

1n h = ~ 22v(22V-l) B2v x2• 
C x ,,7

1 
(2v)! 2v· 

From (3.17) and (3.20) then follows 

(3.21) 
TT . - oo 7:2• 22•(22•-l)B2, le 2v 

lnC(e !(k,t,u),H0)-I(2 ), 2 It;<p;,. 
v=l V • V i=l 

7:2•+1 
Thus the coefficient of (2v+l)! is 

(3.22) 

7:2• 
and the coefficient of (2v) 1 is 

(3.23) (v=l,2, ... ). 

From (3.22) it follows that the distribution of T under the hypothesis 
H 0 and under the condition (k, t, u) is symmetrical and 

(3.24) 

4) Cf. also D. VAN DANTZIG [2] (Chapter VI) for the cummulantR of the distri­
bution of the test statistic of "\VILcoxoN's two sample test for the untied case. 
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From (3.23) it follows that 
,. 

(3.25) u2 = a2 (TI (k, t, u); H0) = L ti rp;. 
i=l 

Special cases 

From (3.25) and (2. 7) it follows that 
k 

k n 3
- 1;tf+3n(n+l)2 

(3.26) a2 (Twl(k,t);Ho)=Itirr= i=l 12 
i=l 

and if ti=l for- each i=l, ... ,n then (3.26) reduces to 

3.27) a2(Tw! n; H0) =¼n(n+ 1)(2n+ l) (cf. [24] and [25]) 5). 

Further it follows from (3.24) and (2.10) 

(3.28) @"(T{vj(lc,t);H0)=!n(n+I) (cf. [22], [23], [24] and [25]). 

A table of a2 and a according to formula (3.27) may be found in [I] (p. 30). 
From (2.8) and (3.25) follows 

m 

(3.29) a2 (Tp I (k, t,u); Ho)= L tiur= L z~. 
i=l h=l 

In the following theorem a necessary and sufficient condition will be 
given for a constant difference between the successive values T assumes 
under the condition (Tc, t, u). 

The smallest value T assumes is 

(3.30) 

thus 

Ir 

Tmin= L ticpi- L tirpi= - L ti l'Pil, 
,P; < 0 'P; > 0 i = 1 

k 7, 

(3.31) T -T min= L 'Pi (ai-bi) + L ti jrpij = 2 L !'Pi! bi+ 2 L jrpij O;. 
i=l i=l ,P;<O ,P;>O 

Now let l'Pil, ... , l'P1cl consist of le' different values rp;, ...• rp;, with 

(3.32) 

and let 

(3.33) 

O<rp; < ... <<pj,, 

t{ def L t;, 
i 

l'P1i=,p1' 

,def "' ai= £. ai+ 
i 

'Pj=,p I 

b, deft' , 
i - i -ai, 

L b;, (i=l, ... ,k') 
i 

'P;= -qJ,' 

then T -T min may be written in the form 

(3.34) 
le' 

T'defT-Tmin= 2 L rp{ a{. 
i=l 

6 ) The fomulae for the variance of T{v in [22] and [23] are in error, but have 
been corrected in [24] and [25]. 
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Theorem IV: The differenced between the successive values 7 assumes 
under the conditions k=k, ti.==ti, ... , tk=½, u1 =Ui_, ••• , uk=14 is constant 
if and only if for i=2, ... ,k' 

l l. <p; is i~l multiple of <p; and 
(3.35) 

2. <p; ~ L, t; 'Pi+ <p;, 
. i=l 

This difference then eq_uals 2cp;. 

Proof: 

It will be proved that the difference between the successive values 
T' assumes under the condition (k, t, u) is constant if and only if (3.35) 
is satisfied. 

From (3.34) it follows that 

l 
l. if a;=o for each i=l, ... ,k', then T'=O, 

(3.36) k' 
~- if a;= I, a;= 1, then T' = 2<p; 

i=l 

and from (3.32) and (3.36) it follows that T' does not assume values between 
0 and 2cp;, i.e. d = 2cp; if d exists. 

Further if T~ is a value T' assumes, then T' also assumes the values 
T~+2cp; and (or) T~-2cp;. Thus a necessary condition for the existence 
of dis that 2cp; is a multiple of 2cp{ (i=2, ... , k'). further if (3.35.1) is 
satisfied then all values T' assumes are multiples of 2cp;. 

Now suppose that (3.35.1) is satisfied then it will be proved that 
(3.35.2) is a necessary and sufficient condition for the occurrence of all 

k' 
multiples of 2<p; between T:r,m = 0 and T:00.:= 2 I, t; <p;. 

i=l 

We first prove that (3.35.2) is a necessary condition. Consider for any 
fixed value of i the following two cases 

~ 1. a;=o for each j=i, ... ,k', 
(
3

.
37

) ( 2. ai ~ 1 for at least one value of j=·i, ... ,k'. 

These two cases are mutually exclusive and one of the two must occur. 
i-1 

The greatest,value T' assumes in case (3.37.1) is 2 z t; 'Pi and the smallest 
-• i=l 

value in case (3.37.2) is 2cp;. Thus if 2cp;> 2 tt; 'Pi then no values between 
i=l 

these two can be assumed by T'. This means that the difference 
i-1 

2cp; - 2 L, ti 'Pi 
i=l 

should not be larger than d = 2<p{, or 

(3.38) 
i-1 

, < ~ t' , , <p, = £., i 'Pi +'P1 
i=l 

(i=2, ... ,k'). 

The sufficiency of condition (3.35.2) will be proved by induction. 



388 

Suppose that it has been proved, for a certain value of i, that in case 
(3.37.1) the difference between the successive values T' assumes are 
constant and equal to 2q;;. Then T' assumes in this case the values 

(3.39) 
l i-1 

(l=O, ... ,-, I,t;q;J). 
CfJ1 i=l 

For i = 1 this is true. Further the contribution of the "tie" of size t{ to 
T' equals 

(3.40) 2hq;{ (h= 0, ... ,t;). 

Thus if a;= 0 for each j = i + 1, ... , k' then T' assumes the values 

(3.41) 
, , (l=0, ... ,-,-2,t;<p;, 

I 

1 i-1 

2hq;.+2l<pl CfJ1 i=l 

h=O, ... ,t;). 

For each possible value of h and l these values are multiples of 2q;; and 
for any fixed value of h, say h0, the difference between these values for 

. l . 

l = 0, ... , ..; 'i t; <p; is constant and equal to 2q;;. Thus it remains to be 
CfJ1 i=l 

proved that no gap can arise by raising h from, say, h0 to h0 + 1. The 
smallest value T' assumes if h=h0 + 1 is 2(h0+ l)q;; and the greatest value 

i-1 

of T' if h = h0 is 2h0q;; + 2 2, t; <p;. Thus if 
i=l 

i-1 

(3.42) I ,..- "'t' I I <p. "=' £. i <pi + 1/)1 (i=2, ... ,k') 
i=l 

then no gap arises if his raised from h0 to h0 + 1, i.e. (3.35.2) is a sufficient 
condition for the occurrence of all multiples of 2q;; between O and 

k 

2 ! t; q;;. 
i=l 

Special case 

For WILcoxoN's test for symmetry we have q;(u, r)=r and 

q.43) 

Condition 

(3.44) 

0<r1 < ... <rk. 

(3.35) reduces in this case to 

~ 1. t.- (-1)• is a multiple of t1 + 1 

? 2. 
i-1 i-1 

ti~ { 2, ti}2
- 2, ti 

i=I i=2 

for i = 2, ... , k and this condition is e.g. satisfied if 

~t2i+ 1 =t1 for i=l, ... , [k;l] 

~ t2i = 1 for i = 1, ... , [iJ. 
(3.45) 

and 

The difference d then equals t1 + 1. 

and 
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A special case of (3.45) is the case that t,= I for each i= I, ... , k. 
Then d=2. 

In order to prove the conditional asymptotic normality of the distri­
bution of T under the hypothesis H 0 we consider a sequence { z,_} (;t = I, 2, ... ) 
of independent random variables (cf. section 2). Let 

(3.46) 

then if 

(3.47) 

the sequence {z,.} has, according to the BOREL CANTELL! lemma (cf. e.g. 
W. FELLER [6] p. 155), probability one of containing infinitely many 
elements =/= 0. Thus omitting the elements which on observation assume 
the value O an infinite sequence remains. · 

Let the non zero values assumed by lztl, ... , Jzal consist of ti,'- times 
the value ui,;.(i=l, ... , k;.), where u1.!;.< ... <uk,_,,. and let 

(3.48) 

Let further 

(3.49) 

and let T,. denote the test statistic for z1 , ... , z,.. Finally let 

(3.50) 

and 

(3.51) 

Then n,.-+ oo with ;t except for a probabilitv 0. 

Theorem V: Let {k;.}, {n;.} and {t1,;.}, ••. , {t1'-"a} be sequences of non 
k'/. 

negative integers with n;. = 2 t.:.t (A= I, 2, ... ) and n;.-+ oo for A-+ oo; let 
i=l 

further {u1,,.}, •.• , {uk;.,J.} be sequences of numbers with 0<u1,a < ... < u,,;.,,. 
(l= I, 2, ... ) then if 

(3.52) 

the random variable T;./a0_;. is, under the hypothesis H0 and under the condition~ 
k;. = k;., t 1,;. = t1,;., ... , tk;.,J. = tk;.,'-' u1,;. = u1,;., ••• , uk;.,J. = ~;..J. for A -+ oo asymp­

totically normally distributed with mean O and variance I. 
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Proof: The notation will be simplified by omitting the index A. 
From (3.14) it follows that it is sufficient to prove that 

(3.53) lim " 2
• = 0 for 'II > I 

Jl-,.oo a~• 

and from (3.15) and (3.25) follows 
k k 
I t. rp?• I t .. rpf 

u2v 22•(22•-l) B2, i=l • • < 2!•(22•-l) B2v i=l 

a2• = 2v { ~ 
2
}• = 2v --=-1,,--(3.54) 

0 ~~~ {I~~p 
i=l i=l 

Thus 

(3.55) 

Special cases 

For WILcoxoN's test for symmetry we have 

(3.56) 

thus 

(3.57) 

and (cf. (3.26)) 

(3.58) 

<p;,=r;,<2n (i= I, ... , k), 

k k 
'! t, <pf< (2n) 4 ! t,= 24 -n5 
i=l i=l 

k 

'! t, <pf ~ ¼ na. 
i=l 

From (3.57) and (3.58) then follows 

(3.59) 

for v > I. 

and (3.52) then follows from the fact that n tends to infinity with A. 
In the case of FJSHER's test for symmetry we have 

(3.60) 

and thus 

<p(u, r)=u 

k m 

I t,<pt I z! 
(3.61) i-1 h=l k =-m-

{ I t;, rpt}2 { I zf}2 
i=l h=l 

Thus in this case (3.52) is identical with 

(3.62) 
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Now suppose there exists a random variable X with 6) 

~ 
I. P[lz,iJ~Xlz.:i,fa0];:;:;;P[JXl~X] for each X~O and each A, 

(3.63) 2 _fJ!Jx2 
• <t> <oo, 

then (cf. e.g. M. LoEvE [11], p. 242) 

(3.64) 

and 

(3.65) 

,l 

lim \ z zt = 0 except for a probability 0 
.<-+00 n_. h=l 

_. 
lim _!._ z {z~-<ff (z~ I zh ,fa 0)}= 0 except for a probability 0. 
A->-00 n,i h=l 

Thus if moreover 

(3.66) 

then 
,l 

:r zt 
(3.67) lim h;t = 0 except for a probability 0. 

-<-+CO { :r zn2 
h=l 

If the distributions of Z;i under the condition Z;i,fa0 are, for A= I, 2, ... , 
identical then the conditions (3.63) and (3.66) reduce to 

(3.68) <ff(z}lz,. ,fa 0) < oo. 

6 ) This result we owe to Mr. J. TH. RUNNENBURG. 
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4. The relation with the class of two sample tests described in [ 4] 

From (2.3) it follows that T may be written in the form 
k k k 

(4.1) T=2 !<p,a,.- 2<p,t,.=2t*- 2<p.;,t,., 
i=l i=l i=l 

where t* is the test statistic for the two sample problem defined in [4] 
(p. 251) applied to the positive observations as the first sample and the 
absolute values of the negative observations as the second sample. 

Further if (cf. e.g. [4] p. 252) 

(4.2) 

then 

(4.3) 

t* def t*-<ff (t* I (k, t, u), n1 ; H0) =t*- ..!!!. i, <p,. t,., 
n i=I 

Thus the test statistic T is a combination of the statistic t* for the two 
sample problem and the statistic n1 of the sign test. 

Special cases 

For Wrr.coxoN's test for symmetry we obtain from (4.3) 

(4.4) 

with 

(4.5) ~ def W=W-n1 n2 , 

where W is the test statistic of Wrr.coxoN's two sample test 7). 

In the case of FISHER'S test for symmetry we have 

~ 2 m 
(4.6) Tp=2tp+- (n1 -½n) Ilzhl, 

n h=l 

where tp is E. J. G. PITMAN's test statistic for the two sample problem [13]. 

*) Report SP 54 of the Statistical Department of the Mathematical Centre, 
Amsterdam. 

7) The test statistic of WILcoxoN's two sample test for the samples Xi, ... , xflt 

and y1, ••• , y'fla is defined here as twice the number of pairs (x,., Yi) with Xi > y,, 
increased by the number of pairs (x,;, y,.) with x,. = Y,; (i = I, ... , n 1 ; j = I, ... , n2) 

(cf. [20]). 
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Remark 

6. Other tests for symmetry may e.g. be obtained by choosing for t* 
the test statistic of the two sample tests of M. E. TERRY [18] or B. L. 
VAN DER WAERDEN [21], i.e. by taking 

(4.7) 

or 

(4.8) 

with 

(4.9) 

I t, 
<pi=t- L@"Zn,s;+Y (i=l, ... ,le) 

i y=l 

t-
I ~ (si+Y) 

<p;,= t- £.. 1P n+I 
• y=l 

(i= 1, ... ,le), 

def i-1 
8;,= L ti (i= 1, ... ,le) 

i=l 

and where @" Zn,r is the expectation of the r-th order statistic of a random 
sample of size n from a standard normal distribution and P(x) is defined by 

I 'l'Cxl 
(4.10) - J e-h' du=x. 

lf2n -oo 

Further the hypothesis H 0 implies, under the conditions (le, t, u) and 
n1 =ni the hypothesis H~ that the positive observations are a random 
sample without replacement taken from the absolute values of all 
observations (cf. [9] p. 71 and [5] p. 307). The mean and variance of T 
under the hypothesis H0 and under the condition (le, t, u) thus also follow 
from the formulae for the mean and variance of t* under the hypothesis 
H~ ( cf. e.g. [ 4 J p. 252). 

From (4.3) it follows 
2 k 

(4.11) @"(TI (le, t, u}, ni_; H 0} = - (n1 -½n} L <p;, t;, 
n i=l 

and 

(4.12) k k ~ o-2 (TI (le, t, u), n1; Ho)= ~n1_:,i) ~ 2 t;, <p;- ! (Lt;, <p;,)2 • 
n n (i=l n i=l 

From (4.11) and (4.12) then follows 

) 

@" (Tl (le, t, u); H 0 ) = @" {@"(Tl (le, t, u), n1 ; H 0 ) I (le, t, u); H 0}= 
(4.13) 2 k 

= - L ti <p, '9'(n1 -½n I (le, t, u); H0) = 0 (cf. (3.24)) 

and 

(4.14) 

n,=1 

a 2 (TI (le, t, u); H 0) = 

=a2 {'9'(Tj (le, t, u), n1 ; H0) I (le, t, u); H0}+ 
+ @" { o-2 (TI (le, t, u), n1 ; H 0) I (le, t, u); H 0}= 

4 k 
= 2 {Lt;, <p;,}2 o-2 (n1 I (le, t, u); H 0) + 

n i=l 

4 k I k 
+ ( -l) {Lt, <p;- - (Lt;, <p;,) 2} '9' (n1 n2 I (le, t, u); H0) = 

n n i=l n i=l 
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5. The consistency of the tests of WILCOXON and FISHER 

In this section the consistency of the tests for symmetry of WILCOXON 
and FISHER will be investigated. 

We again consider the sequence { zi} and an alternative hypothesis H 
stating that the distributions of Zi under the condition Z;. ,fa O are, for 
.ii.= 1, 2, ... , identical. Let x1 "' ... , x 0 , "denote the positive observations • 1 .... 

and Yi,.t, ... , y02_,,.:i the absolute values of the negative observations, with 

n1.;. + n2.i = n4• Let further 

~

PdefP[z_.>Ojz;.,fa-0] (.il.=1,2, ... ), 
(5.l) def 

q=l-p. 

We first prove the consistency of WILcoxoN's test. Let 

(5.2) 

then we have 

Lemma I: 

(.ii.,µ= 1, 2, ... ), 

(5.3) µw def@" (Tw In; H) =n (n-1) pq0+n(n+ 1) (p-½). 

Proof: From (4.4) it follows that 

(5.4) 
n1 n2 

Tw= 2 !sgn(xi-y1)+(n+l) (n1-½n), 
i-1 i-1 

where 

(5.5) 
) 

1 if z>O 
sgn Z= 0 if Z=O 

-lifz<O. 
From (5.4} follows 

(5.6) @"(Twin, n1 ; H)=ni n20+(n+ l)(ni-½n), 

thus 

) 

@"(Twin; H)=<S'{C(Twln, n1 ; H)jn; H}= 
(5.7) . =0'9'(n1n2jn; H)+(n+ l)<S'(n1 -½nln; H)= 

=n(n- l)pq0+n(n+ l)(p-½). 

Lemma II: 

(5.8) arv def a 2 (Tw In; H) = 0 (n3) 

and the coefficient of n3 in (5.8) is ~ f¾. 
Proof: We have 

(5.9) a2(Twln; H)=a2{<S'(Twln, n1 ; H)jn; H}+<S'{a2(Twln, n1 ; H)jn; H}. 

From (5.6) it follows that 

(5.10) a2{'9'(TwJn, n1 ; H)jn; H}=a2{n1 n20+ (n+ l)(n1 -½n)ln; H}= O(n3) 

and the coefficient of n3 in (5.10) is 

(5.11) pq_(0 + l - 2pq0)2• 
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Further (cf. (5.4)) 
n1 n2 

(5.12) a2 (Tw ln,n1 ; H)=a2 (2, }:,sgn (x,-y;) In, n 1 ; H) 
i=li=l 

and from D. J. STOKER ([17], p. 67-68) it follows that 

"1 "" 
(5.13) a2 ( "'I, "'I, sgn (xi-Yi) In, n1 ; H) ~ n1 n 2 (n+ 1), 

thus 

(5.14} 

Thus 

(5.15} 

i=l:i=l 

and the coefficient of n3 in (5.15) is 

(5.16) ~pq(0+ l-2pq0)2 +pq~M 8 ). 

Theorem VI: If (3.47) is satisfied then the; test for symmetry of 
WILCOXON based on the critical region Z (cf. (2.5)) is, for A~=, consistent 
for the class of alternative hypotheses 

(5.17) IP-½+pq0l>O. 

The tests based on the critical regions Z1 and Z,,. respectipely are consistent 
for the classes of alternative hypotheses 

(5.18) p-½+pq0<O 

and 

(5.19) p-½+pq0>O 

respectively and not consistent for the classes of alternative hypotheses 

(5.20) p-½+pq0>O 

and 

(5.21) p-½+pq0<O 

respectively. 
All tests of WILCOXON mentioned are, for sufficiently small tx, not consi8tent 

for .the class of alternative hypotheses 

(5.22) p-½+pq0=O. 

Proof: 9} The index A will be omitted. Let 

l l. s¥v def a2 (Tw In, t 1 , ••• , tk; H 0), 

2. Cidef¼n(n+l)2 

3. c~deftn(n+l) (2n+l), 

(5.23) 

8) If p = ½ and 0 = I then 

pq(0+ l-2pq0) 2=tii 
and (cf. [17]. p. 67-68) 

"1 "" 
a2 ( "'I, "'I, sgn (xi-Yi} In, n 1 ; H) =n1 n 2 (n- 2). 

i-1 i=l 

Thus in this case the coefficient of n 3 in (5.15) equals ii• 
9) Cf. also D. VAN DANTzIG [3] for the proof of the consistency of WILOOXON's 

two sample test. 
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then 

(5.24) 

We first consider the case that 

(5.25) p-½+pq0<O. 

For the test based on Zz we have ( cf. lemma I and II) 

) 

lim P [T w ¢. Z1 j n; H] = lim P [T w > - ~ °' sw I n; H] ;:;=;; 
).-,.co ).-,.co 

;:;;; limp [Tw-µw > _ g,.c2+µwln; HJ, 
;i.--,.00 aw aw 

(5.26) 

where ~" is defined by 

(5.27) I! foo -10)• d ,~ e X=a. 
y 2:n ~°' 

From (5.23), (5.25), lemma II and the fact that n tends to infinity with Ii. 

it follows that - g°' c2 +µw is positive for sufficiently large 1i.; thus according 
aw 

to the inequality of BIENAYME-TCHEBYCHEF 

(5.28) 
2 

lim P [T w ¢. Z1 I n; H] ;:;=;; lim (.; a; )2 = 0. 
.1.-+co ;i.--+oo "'C2 µw 

Thus the test based on the critical region Z 1 is, for 1i. - oo, consistent 
for the class of alternative hypotheses (5.25). 

If 

(5.29) p-½+pq0>O 

then 

(5.30) l 
limP [Tw EZzln; H] ;:;=;; limP [Tw ;:;=;; -~ .. c1 j n; H] ;:;=;; 
A➔OO ).--,.oo 

2 
~ lim aw = 0 
-i~ (.; .. c1 +µw)2 ' 

- g°' Ci +µw being negative for sufficiently large 1i.. Thus the test based on 
aw 

Z1 is, for 1i. - oo, not consistent for the class of alternative hypotheses 
(5.29). 

Finally if 

(5.31) p-½+pq0=O 

then 

(5.32) 

Thus if 

(5.33) 

) 

lim P [T w E Z1 In, H] 
;i.--+co 

~ lim ( aw_\2. 
- ).-,.co ,;"cJ 

1: 1. aw 
<.a> rm­

).--,.oo Ci 
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then the test based on Zz is, for A--+ oo, not consistent for the class of 
alternative hypotheses (5.31) and from (5.23) and lemma II follows 

(5.34) lim <1W ~ ¥3,25 = 1,80. 
.'.--+00 C1 

The proofs for the tests based on Z, and Z are analogous. 

Theorem VII: If the distribiitions of z1, ..• , zm are identical and 
symmetrical with respect to a then 

(5.35) 

Proof: Let 

(5.36) 

and (cf. (3.46)) 

(5.37) 

Then (cf. (5.1)) 

(5.38) 

~ I. p-½+pq0=0 if a=0, 

( 2. (p-½+pq0)a>0 if a,f,0. 

def 
H(z) =P [zh ~ z] 

00 0-

p= ! f dH(z}, q= ! f dH (z). 10
) 

0 -00 

If a=0 then p=½ and 0=0, thus 

(5.39} p-½+pq0=0 if a=0. 

Now consider the case that a> 0; then p ~ ½. From the fact that the 
distribution of zh is symmetrical with respect to a it follows that 

(5.40) 

If further 

(5.41) 

then 

(5.42) 

1 00 

q=- f dH(z}. 
:rr, 2a 

dF (x) = d~(x), 1 "' F (x) = - f dH (u) 
p 0 

and from the symmetry of the distribution of zh with respect to a it 
follows that 

(5.43) dG(y)= dH(y+2a), 
q 

10) Here we define 

and 

l 2a+11 

G(y)=- f dH(u). 
q 2a 

z,- d f 
f dH (z) e P [z1 < z < z:J. 
z, 



398 

If q>0 then 

l 0=P[x, > Yi]-P [xi< Yi]> P [x, > Yi+2a]-P [x, < Yi+2a] = 

{
5

.
44

) = ..!.. { j dH (x) J dH (u)- j dH (x+ 2a) "'fdH (u)} 
pq ,2a 2a O o 

and from (5.44) follows 

oo "' oo ro+2a 

pq0 > f dH(x) f dH(u)- f dH(x+2a) f dH(u)= 
2a 2a o O 

co re co a, 

(5.45) 
= f dH(x) f dH(u)- f dH{x) f dH(u)= 

2a 2a 2a O 

00 00 00 00 

= f dH (x) f dH (u) - f dH (x) f dH (u) = 
2a 2a 2a O 

=n2q2-n2pq=n2q (q-p). 

Thus if q > 0 then 

~ p-½+pq0>p-½+n2q(q-p) = (p-q)(½-n2q);;:;:; 
(5.46) (;;:;:; (p-q) (½-q)=½(p-q)2;;:;:; 0. 

Further if q = 0 then p = I and 

(5.47) ·p-½+pq0=p-½>0. 

Thus p - ½ + pq0 is positive if a is positive. 
The proof for a<() is analogous. 

From the theorems VI and VII it follows that if the distributions of 
Z;i are, for A= I, 2, ... , identical and symmetrical with respect to a then 
WILcoxoN's test for symmetry based on the critical region Z is, for 
A---+ oo, consistent for the class of alternative hypotheses 

(5.48) 

The tests based on Zi and Z;. respectively are consistent for the classes 
of alternative hypotheses 

(5.49) 

and 

(5.50)' 

respectively and not consistent for the classes of alternative hypotheses 

(5.51) a>O 

and 

(5.52) 

respectively. 

We now consider FISHER's test for symmetry. 

Theorem VIII: If (3.47) is satisfied and if 

(5.53) <&"(z}!z.:i =fa 0) < oo 
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then FISHER's test for symmetry based on the critical region Z is, for A-+oo, 
consistent for the class of alternative hypotheses 

(5.54) @"(z.,Jz,;,60),60. 

The tests based on the critical regions Zz and Z, respectively are consistent 
for the classes of alternative hypotheses 

(5.56) @"(z,;lz,;#0)<0 

and 

(5.57) 

respectively and not consistent for the classes of alternative hypotheses 

(5.58) @"(z,;lz,;#0)>0 

and 

(5.59) 

respectively. 
All tests of FISHER mentioned are, for suffeciently small (X, not consistent 

for the class of alternative hypotheses 

(5.60) @"(z,;IZ,;#0)=0. 

Proof: The index A is omitted. 

We have 

(5.61) 

and 

(5.62) 

µF def@" (T FI n; H) = n@" (z I z # 0) 

We first consider the case that 

(5.63) 

Let 

@"(zlz# 0) < 0. 

then we have for each cl>0 

lim P [TF ¢Z11 n; H] = Jim P [TF > -t,sF In; H] = 
,i-,.oo ,i-,.oo 

=lim P [T F > - ~a Sp and I (1/n) S],-<ff' (z2 I z # 0) I< cl In; H] + 
il->00 

(5.65) +lim P [TF > -~,. sF and / (1/n) S],-<ff' (z2 I z # 0) I ;?; cl In; H] ~ 
,t-,oo 

~lim P [TF > -~"' Vn{<ff(z2 I z # 0)+<5} In; H] + 
il->00 

+lim P [/ (1/n) S],-<ff' {z2 I z # 0) I ;?; cl In; H]. 
,t-,oo 

Further it follows from (5.53) (cf. also (3.65)) that the second term in 
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the right hand member of (5.65) is zero; thus according to the inequality 
of BrnNAYME-TCHEBYCHEF we have 

lim P [T.F ¢Z1 In; H] ~ 
hoo 

(5.66) 
~limp [T.F-µF >_~IX Vn{tD'(z

2
lz=,i:O)+o}+µFI n; n] ~ 

l-+00 a.F aF 

::::;; lim aF = 0, 
- ,:i_,_oo [~IX Vn{tD'(z2jz=,t:O)+o}+µFJ2 

_ ~IX Vn{tD'(z
2
lz=,i=O)+o}+µF being positive for sufficiently large A. Thus the 
aF 

test based on Z1 is, for A-+ oo, consistent for the class of alternative 
hypotheses (5.63). 

In an analogous way it may be proved ( cf. also the proof of theorem VI) 
that the test based on Z1 is not consistent for the class of alternative 
hypotheses 

(5.67) 

Finally if 

(5.68) 

@"(zlz,t= 0) > 0. 

@"(zjz,t=0)=0 

then we have (cf. (5.65) and (5.66)), for 0<<5<18"(z2 jz,t=0), 

lim P [T F E Z1 I n; H] ~ 
}.--,oo 

(5.69) 

Thus if 

(5.70) 

then the test based on Z1 is not consistent for the class of alternative 
hypotheses (5.68). 

The proofs for the tests based on Z~ and Z are analogous. 

Remark 

7. If 

(5. 71) 

then (cf. (5.1)) 

(5.72) 

~ µ1 def@" (xi_,:i) = @" (z,:i I Z;. > 0)' 

( µ2 def@" (Yi,,,)= - @" (z,, I z,, < 0) 

Thus @"(z,,lz,,,t=0)i0 is identical with 

(5.73) 
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A GENERAL CLASS OF DISTRIBUTIONFREE TESTS FOR SYM­

METRY CONTAINING THE TESTS OF WILCOXON AND FISHER 1 ). 

III 

BY 

CONSTANCE VAN EEDEN AND A. BENARD 

(Communicated by Prof. D. VAN DANTZIG at the meeting of March 30, 1957) 

6. A combination of the class of tests for symmetry and the sign test 

In this section a class of tests for the hypothesis H0 will be described 
which is a combination of the sign test and the class of tests for symmetry. 

Let n1."' denote the smallest integer satisfying 

(6.1) P[n1 ~ni_,.jn; H 0 ] ~,x, 

then the following critical regions are used (cf. (2.4) and (2.5)) 

~ Z(: ni ~ n-n1,,.1 and (or) T ~ -T °"' 
J z;: n1 ~ n1_,.

1 
and (or) T ~ T,.

2
, 

CZ': jn1 -½nl ~n1.,""-½n and (or) !Tl ~T•"'•· 

(6.2) 

Now let 

(6.3) 
~ 81 defp [n1 ~ n1.a, In; Ho], 

( s/0rP [T ~ T«. I (k, t, u); H0] 

and let c: denote the size of the critical region z;, then 

{

e=e1 + (1-c:1) P [T ~ T,., I n1 < n1,a,, (k, t, u); H0] = 

(6.4) n1,a,-l 2-n (7) . 
=c:1+(1-c:1 ) i~ 1_

81 
P[T~Ta,ln1 =i,(k,t,u);H0]. 

Analogous formulae hold for the other onesided and the twosided test. 

Thus, T - ~ (ni -½n) ! ti Ti possessing under the hypothesis H0 and 
_n i-1 

under the conc;litions (k, t, u) an,d 111 = ni the same probability distribution 

as the statistic 2t* for the two sample problem under the hypothesis 
H~ (cf. section 4), c: may be calculated from (6.4) for each °'v a 2 and n 

by means of tables of the distribution of t*. 

Special case 

For WILcoxoN's test for symmetry we have (cf. (4.4)) 

(6.5) 2t*=W 

1 ) Report SP 54 of the Statistic~l Department of the Mathematical Centre, 
Amsterdam. 
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and tables of the distribution of W under the hypothesis H0 may e.g. 
be found in [20]. 

On the other hand the critical regions z;, z; and Z' are not uniquely 
determined by e and n. One may now proceed e.g. in one of the following 
two ways. 

1. Suppose one wants to test the hypothesis H0 by means of the 
combination of the class of tests for symmetry and the sign test with level 
of significance IX. Then for each e1 < IX let e2.= denote the largest value of 
½ satisfying 8;£1X. This value may be found from (6.4). Further, for this 
value e2.= of 82, let e1,= denote the largest value of 81 satisfying 8 ;£1X. 

Of these pairs (e1,mao:, e2,mao:) choose the one with the smallest difference. 
If two pairs of values have the same value of I 81,ma:n- e2,mao:I then choose 

the pair with the largest value of e. 
2. Take °'I= 1X2 and choose the largest value of °'I= °'2 ;£ IX satisfying 

8 ;£ IX. 

These two procedures do not always give the same critical values, but 
if they give different results then in general the first procedure gives a 
larger value of e. Further it will be clear that the two procedures are 
asymptotically, for n---+ oo, identical. 

Special case 

A table of the critical values of z; for the combination of' Wrr..coxoN's 
test for symmetry and the sign test for the untied case calculated according 
to the first method described above, may be found in [l] (p. 31), for 
n=5(1)20 and IX=0,005; 0,01; 0,025 and 0,05. 

In the following an approximation to IX will be given for large values 
of n. First we prove the following theorems. 

Theorem IX: If x,.r(s=0, l, ... ;r==0, 1, ... ,s+r>0) are the cumu­
lants of the simultaneous probability distribution of T and n1 - ½n under 
the hypothesis H0 and under the condition (k, t, u), then 

(6.6) X 8 , 2,+1 _ 8 =0 (v ~ 0, 0 ;£ s ;£ 2v+l} 

and 

(6.7) _ 28 (2211 -l) B2v ~ . 8 "•.2•-· - 2 £., t, <pi 
V i=l 

(v > 0, 0 ;£ s ;£ 2v}. 

Proof: In the same way as in section 3 we find 

Tc 

1n & (e-r1TH,<n1-½n> J (k, t, u); H0) = 2 t .. Inch (-r1 <pi+½-r2) = 
i=l 

(6.8) 

oo (22•-l) B 2• •• 0 211-s k 
_"' 2v °"' 1 2 2"°"'t B 
- £.. 2v £.. s!(2v-s)! ~ i <pi• 

•=l s=O i=l 
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0 s 02v+1-s 

Thus the coefficient of s!(;v:i-l-s)! is 

(6.9) x,.2v+1-s= 0 (v ~ 0, 0 ~ s ~ 2v+ I) 

•• 0 2v-s 

and the coefficient of , (
2 

2 
_ ) , is 

8. V 8. 

(6.10) (v > 0, 0 ~ s ~ 2v). 

From (6.10) it follows that 

(6.11) 

(6.12) 

and 

(6.13) 

k 

x2, 0 =a2 (TI (k,t, u);H0)= 2,ti<pT (cf. (3.25)), 
i-1 

k 

x1, 1 = cov (T, n1 I (le, t, u; H0) = ¼ 2, ti <pi. 
i~l 

Thus the correlation coefficient of T and n1 under the hypothesis H0 and 
under the condition (k, t, u) is 

(6.14) 

In order to prove the conditional asymptotic normality of the simul­
taneous distribution of T and n1 under the hypothesis H 0 we again consider 
the sequence {z,,} (cf. section 3). 

Theorem X: If {le,,} and {t1.J.}, ... , {tk,,,.i.} are sequences of non negative ,,,, 
integers with n,. = 2, ti,,, and n,. - oo for .il - oo, if {Ui,,.}, ... , {uk":.;.} are 

i-1 

sequences of numbers with 0 < u1,.i. < ... < u,,,.,,,, if (3.4 7) and (3.52) are 
satisfied and if moreover 

(6.15) 

exists and is in absolute value < I then the random variables 

(6.16) and _111~_.i._-_½_-n_,. 
½ v;i;. 

possess, under the hypothesis H0 and under the conditions 

k.,. = le,,, '1:1,,l = t1.}., . .• , tk,i," = tk;/J., U1,,. =U1,}., • .. , UkJL," =U1r,,,J. 

asymptotically, for .il ----3>- oo, a two dimensional normal probability distribution 
with zero means, variances I and correlation coeffecient e-
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Proof: The index ii. is omitted. 

It is sufficient to prove that 

(6.17) lim "3
•
2
•-• = 0 for v > 1 and O ~ 8 ~ 2v. 

A-+oo ("2,0)•12 (uo.2)•-<st2> 

From (6.7), (6.11) and (6.12) it follows that 

(6.18) 

If v-(s/2) =0 then 

(6.19) 

From (6.18), (6.19) and (3.52) then follows 

(6.20) lim. "•• 2•-s = 0 £ ( /2) 0 
A-+oo (u2,o)•/2 (uo.2)•-<•/2> or v- 8 = . 

If v-(s/2)>0 then 

(6.21) 

From (6.18), (6.21) and the fact that n tends to infinity with ii. then follows 

(6.22) lim "•·2
•-• = 0 for v- (s/2) > 0. 

A-+oo (u2.0)•12 (uo,2)'-<•12> 

Special case 

For WILcoxoN's test for symmetry condition (3.52) is satisfied (cf. 
(3.59)). Further the correlation coefficient of T w and n1 under the hypo­
thesis H0 and under the condition (k, t, u) is 

(6.2,3) 

k 

I tir, 
(! (T w, rl1 I (k, t, u); Ho)= _i--;::=

1===== 
k 

2 V nl/;r; 
l 

Thus in this case the limit (6.15) exists and is in absolute value < 1 if 
lc;i t3 

lim I •·; exists and is < 1. 
A-+00 i=l n,. 

From theorem X it follows that, for z; and °'l = a 2 =a', a may be 
approximated by 

00 00 

(6.24) 
I I I • x'+y'-2r,:y 

iX ~ 2a'- Vf=r2 e- 1 -r• dxdy, 
2n I -r lfa, lftx, 
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where 

(6.25) 

Analogous formulae hold for the other onesided and for tlie twosided test. 
Thus an approximation to °' may be found by means of a table of the 

two dimensional normal distribution with correlation coefficient r ( cf. 
e.g. [12], p. 52-57). Table 1 contains this approximation for the onesided 
test for some values of °'' and r. 

TABLE l 
Approximation to IX for some values of IX

1 and r 

~ 0,005 0,01 0,025 0,05 

-
0,85 0,008 0,015 0,037 0,072 
0,90 0,007 0,015 0,035 0,068 
0,95 0,007 0,013 0,032 0,063 

Further an approximation to °'' may be found from (6.24) for given 
values of°' and r; table 2 contains this approximation for the onesided test. 

TABLE 2 
Approximation to IX

1 for some values of IX and r 

~ 0,01 0,025 

0,85 0,0064 0,0165 
0,90 0,0068 0,0175 
0,95 0,0075 0,0193 

Special case 

For WILCOXON's test for symmetry we have 

(6.26) rw= 
1 

k ~ ½ t/3 = 0,866. 

V
I n 3 - 2 tf 

l + 3n(n~:)2 

0,05 

0,034 
0,036 
0,040 

In [I] (p. 32-33) a table is given of the approximate critical values of 
z; for the combination of the sign test and WILcoxoN's test for symmetry 
for n=21(1)100, iX=0,01; 0,025; 0,05 and rw=0,85 (i.e. foriX'=0,0064; 
0,0165; 0,034). 

In order to prove the consistency of the combination of the sign test 
and WILcoxoN's (respectively FISHER's) test for symmetry we again 
consider the sequence { z,1} and an alternative hypothesis H stating that 
the distributions of z,1, under the condition Z,1 * 0 are, for ,A= 1, 2, ... , 
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identical. Then it follows from the theorems VI and VIII and the properties 
of the sign test that the following theorems hold. 

Theorem XI: If (3.47) is satisfied then the combination of the sign 
test and Wrr..coxoN's test for symmetry based on the critical region Z' is, for 
.il--+ =, consistent for the class of alternative hypotheses 

(6.27) 

and, for sufficiently small ex, not consistent for the class of alternative hypo­
theses 

(6.28) p=½, 0=0. 

The test based on Z{ is, for .il--+ =, consistent for the classes of alternatives 

~ 
1. p<½, 

(6.29) 
2., P~½, p-½+pq0<0, 

not consistent for the class of alternatives 

(6.30) p ~ ½, p-½+pq0 > 0 

and, for sufficiently small ex, not consistent for the class of alternatives 

(6.31) p~½, p-½+pq0=0. 

The test based on Z~ is, for .il--+ =, consistent for the classes of alternatives 

~ 1. p>½, 
(6.32) ( 2. P~½, p-½+pq0>0, 

not consistent for the class of alternatives 

(6.33) p~½, p-½+pq0<0 

and, for sufficiently small ex, not consistent for the class of alternatives 

(6.34) p~½, p-½+pq0=0. 

Theorem XII: If (3.47) is satisfied and if 

(6.35) C(zxl Zi =I= 0) < = 
then the combination of the sign test and FISHER' s test for symmetry based 
on the critical region Z' is, for A->-=, consistent for the class of alternative 
hypothesis 

(6.36) /1i =I= µ 2 and (or) p=/= ½ 
and, for sufficiently small ex not consistent for the class of alternatives 

(6.37) /1i =µ2, p=½• 

The test based on Z{ is, for A--+=, consistent for the classes of alternatives 

~ 1. p<½, 
(6.38) ( 2. P~½, P11i-qµ2<0, 

not consistent for the class of alternatives 

(6.39) P~½, p11i-qµ2 >0 



407 

and, for sufficiently small tX, not consistent for the class of alternatives 

(6.40) P~½, pfJ,j_-qµ2 =0. 

The test based on z; is, for A-+=, consistent for the classes of alternatives 

(6.41) 
p. 
( 2. 

p>½ 
P~½, pfJ,j_-qµ2 >0 

not consistent for the class of alternatives 

(6.42) P~½, pfJ,i-q~<0 

and, for sufficiently small tX, not consistent for the classes of alternatives 

(6.43) 

The combination of the sign test and the class of tests for symmetry 
has two advantages 

1. If ni falls in the critical region then the test statistic T need not be 
computed, 

2. The tests are consistent for a larger class of alternatives than the 
class of tests for symmetry. 

Remark 

8. The combination of the sign test and WILCOXON's test for symmetry 
is analogous to the test for symmetry of HEMELRIJK (cf. [9], p. 69-81), 
which is based on n1 and the test statistic W of WILcoxoN's two sample 
test (cf. section 4). The critical regions differ only slightly from the ones 
given here, but the computations are more complicated. The two sided 
test of HEMELRIJK is consistent for the same class of alternatives as the 
two sided test described in this section, but other critical regions are 
also given, which are consistent for other alternatives, e.g. for p < ½, 
for 0<0, etc. 
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