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l. Introduction and summary 

Methods to find maximum likelihood estimates for partially or com
pletely ordered sets of parameters have recently been developed in
dependently by H. D. BRUNK and the present author. Relevant references 
are given at the end of this paper. The special case of ordered sets of 
unknown probabilities was treated in [l] by BRUNK and other authors 
and in (3], [4] and [5] by the present author. 

At first sight the two methods, indicated as method B and A respectively 
do not look at all alike. Also the conditions imposed are different, those 
imposed by BRUNK (method B) being the more stringent. It therefore 
seemed worthwile to give a proof of the identity of the two methods at 
the same time indicating that method B is also valid under the more 
general conditions imposed on method A. 

In order to achieve this purpose method B is first described in the 
notation of method A (section 2) and the proof of the identity of the 
two methods is given in the sections 3 and 4. 

2. Description of method B 

The situation in which method B can be applied is, in our notation, 
described in [2] as follows. "Let u denote an n-tuple, U= (u1, ... , u"), 
of real numbers and let U;, (i= 1, ... , k) denote one member of a set of 
k such n-tuples. Let further Xi, ••• , xk 2) be k independent random 
variables and let the distribution function of X;, be completely specified 
by the knowledge of a single parameter 0;, (i= 1, ... , k). These para
meters 0i, ... , 0k satisfy the following monotonicity condition: there is 
a function 0(u), monotone non decreasing in each of the separate variables 
ui (j= I, ... , n), such that 0;,=0(u;,) (i= 1, ... , k). Further the distribution 
of X;, belongs to the "exponential falnily" (i= I, ... , k) and the distribution 
functions of X;, and xi are identical if ar,i.d only if 0;,=0i (i, j = I, ... , k)". 
No other restrictions are imposed on the parameters 01, ... , 0,.. 

1 ) Report SP 55 of the Statistical Department of the Mathematical Centre, 
Amsterdam. 

2 ) Random variables will be distinguished from numbers (e.g. from the values 
they take in an experiment) by printing their symbols in bold type. 
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Now it may be remarked that the monotonicity of the function 0(u) 

is equivalent with the (partial or complete) ordering of the parameters 
0i, ..• , 07, specified by the following set of inequalities. Let cxi,i (i,j = I, ... ,k) 
be numbers satisfying 

(2.1) 

!Xi,i = - !Xi,i, 

cx;.i = I if no coordinate of U;, is greater than the corresponding 
coordinate of ui, 

cxi.i = 0 in all other cases. 

Then it follows from the fact that 0(u) is monotone non decreasing in 
each of the separate variables ui (i = I, ... , n) and that 0;,= 0(ui) (i =I, ... ,k) 
that 01, ... , 0k satisfy the inequalities 

(2.2) (i, j = I, ... , k) 

and this is identical with (2.4) in [6], I. being in this case the set of all 
values y for which Fix.Jy) is a distribution function (i= I, ... , k). 

On the other hand every partial or complete ordering of the 0. can be 
represented in the abovementioned way by means of a function 0(u) in 
a space of a sufficiently large number of dimensions. 

In deriving the maximum likelihood estimates BRUNK does not specify 
n and the function 0.(u) but only uses the abovementioned monotonicity
property. His solution may be formulated as follows. 

If Mis a subset of the numbers I, ... , k with (cf. (4.1) in [6]) IM=!=O, 
then vM is defined as the value of z which maximizes (cf. (4.2) in [6]) 
LM(z) for z E IM. The existence of vM follows immediately from the fact 
that the distributions of Xi, ... , xk belong to the "exponential family" 
(cf. [2], p. 611). Let further 

(2.3) 
! Si def i U g'n.;{ jJ !Xi,i= I}, 

~ T/0riu ~.;{iJcx;,,i=l}. 
(i= l, ... , k). 

In [2] S;, (respectively T.) is called a lower (respectively an upper) interval. 
Furtlier if M is a subset of the numbers I, ... , k then 

(2.4) l
, 1. Sdef U Si, 

ieM 

T def 
2. =UT;, 

ieM 

and in [2] S (respectively T) is called a lower (respectively an upper) 
layer. The complement Sofa lower layer Sis an upper layer with respect 
to an other M and vice versa. Theorem I in [2] then states that 

(2.5) f;, = max min vT,., 8 (i=l, ... ,k). 
T S 
ieT III S 
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In the special case of estimating completely ordered probabilities 
with Ji_ (0, 1) (i= 1, ... , k) (2.5) reduces to (cf. [l], p. 644) 

(2.6) t 
. a,+ ... +as -=max mm 

• 1 ;a; ,;a; i i ;a; s ;a; kn,+··•+ ns 
(i= 1, ... ,k). 

It may easily be seen (cf. [2], p. 611) that condition (4.3) of [6] is 
satisfied if the distributions of Xi, ... , xk belong to the exponential family. 
Thus method A may be applied if the conditions of method B are satisfied. 

On the other hand the conditions for method B as mentioned in [2] 
need not be satisfied if the conditions for method A are satisfied; we 
have e.g. 

1. if xi possesses a rectangular distribution between O and 0i,(i= 1, ... ,k) 
then condition (4.3) of [6] is satisfied, but the distributions of Xi, ... , xk 
do not belong to the "exponential family", 

2. if xi possesses a normal distribution with mean 0i and variance 1 
for i=Z1, ... , la (1 ~g~k-1) and a Poisson distribution with parameter 
0i for i=l=li, ... , la then condition (4.3) of [6] is satisfied. There exists 
however at least one pair of values ( i, j) such that, for 0i = 0i, xi and xi do 
not possess the same probability distribution, 

3. for method A it is not necessary that Ji is the set of all values of 
y for which F-1, (xilY) is a distribution function. 

In section 4 it will be proved that (2.5) also holds if the conditions for 
method A are satisfied. For that purpose we need some lemmas which 
will be proved in section 3. 

3. Lemmas 

In this and the following sections we suppose that the conditions for 
method A are satisfied and unless explicitely stated otherwise the function 
L(y1, ... , yk) will only be considered in the domain D. Further the set 
{l, ... , k} will be denoted by E and the complement of a subset M of E 
by M, i.e. 

(3.1) ~MuM=E, 
(Mn M=0. 

Lemma I. , If for any pair of values (i; j) 

(3.2) 

then the estimates t1 , ... , tk may also be found by maximizing L in the sub
domain D' of D where Yi~Yi· 

Proof: This lemma follows immediately from the fact that D' CD and 
that (t1, .•. , tk) ED'. 

Lemma II. If for any value of A 

(3.3) 
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then the estimates ti, ... , t1c may also be found by maximizing L in the domain 
D" which is obtained from D by omitting the restriction R;.. 

Proof: If t;, ... , t; are the values of y1, .•• , Y1c which maximize L in D" 
then it follows from theorem II of [6] that ti;.=t;;. if and only if t;J.~t;J.. 

From (3.3) then follows t;J. <t;;.; thus t1 =t;, ... , tk=t;. 

Lemma III. If the parameters 0i, ... , 0k are completely ordered, if there 
exists a value i ~ 0 and a value h ~ 2 such that 

(3.4) 

and if l1 , ... , l,. is a permutation of the numbers i+ I, ... , i+h with 

(3.5) 

then the estimates t1 , •.• , tk may also be found by maximizing L under the 
restrictions 

(3.6) 

Proof: If D' is the subdomain of D where Yi+i = . . . = Yi+h then it follows 
from (3.4) that (ti, ... , tk) ED'. Further it follows from theorem V of [6] 
that the point where L attains its maximum under the restrictions (3.6) 
also lies in D'. The lemma then follows from the uniqueness of the solution. 

Lemma IV. If the parameters 0i, ... , 0k are completely ordered, if 

(3.7) 

and if MT consi.sts of the numbers I, ... , r (I ~r~k-l) then 

(3.8) 

Proof: If li, ... , lT is a permutation of the numbers 1, ... , r with 
Vz, ~ ••• ~ v1, and if lT+v ... , lk is a permutation of the numbers r+ I, ... , k 
with Vz.+i ~ ••• ~ v1k then it follows from lemma III and from the relation 
Yi,~ Yi,+i (derived from the complete ordering), that the maximum of 
L in D coincides with the maximum of L under the restrictions 

(3.9) 

From theorem II of [6] with i;.=lT and j;.=lT+1 it follows that t,,=t,,+1 if 
and only if t; ~t; . Further it follows from theorem V of [6] that 

r r+l 

(3.10) 

The lemma then follows from (3.7) and (3.10). 

Lemma V. If 

(3.11) 
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and if, for given M; S (cf. (2.4.11.) and S (cf. (3.1)) satisfy 

(3.12) S=!=0, S=1=0, 

then 

(3.13) 

Proof: For the case of completely ordered parameters this lemma is 
identical with lemma IV. 

From lemma I and (3.11) it follows that for each pair of values (i, j) 
with ai,i = 0 the restriction y,.-;;;,. y1 or Yi -;;;;_ Yi may be added. Such a 
restriction is added for each pair of values ( i, i) ES with a;,.i = 0 and for 
each pair of values (i, i) EB with o.:,,1=0 in such a way that within Sand 
within Sa complete ordering is obtained. This new ordering of the para
meters will be denoted by a;,i(0~ - 01) -;;;,_ 0 (i, j ES). Then there exists a 
value l1 ES with a;,i, ~ 1 for eaoh i ES and a value l2 ES with a~.i = 1 for 
each j ES. Further it follows from the definition of S that ai,i-;;;;_ 0 for 
each pair of values (i, j) with i ES, i es, thus lX~.i.,=lXi,.z.-;;;;_0. If a{,.i.,=l 
we have obtained a complete ordering; if a~.z.=0 we add (cf. lemma I) 
the restriction y,,-;;;,_y~. The lemma then follows from lemma IV. 

Remark. The lemma holds analogously for anyT and T withT=!=O, T=!=0 

(3.14) VT-;;;,_ Vp. 

Lemma VI. If Ml and M/are two subsets of E with 

(3.15) 

then 

(3.16) 

l 
l. Mi. =I= 0, M 2 =I= 0, 

· ~- M 1 nM2 =0, 

3. vM, -;;;,.vM,, 

Proof: This lemma follofs easily from condition (4.3) of [6]. 

Lemma VII. If 

(3.17) 

then 

(3.18) t=max vT=min v8 • 
T 8 

Proof: From lemma V and VI it follows that for any S =I= 0 

(3.19) 

and from ( 3.1 7) follows 

(3.20) 

Thus 

(3.21) 



,, 
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From (3.20) and the first inequality of (3.21) then follows 

(3.22) t=min Vs. 
s 

The other part of (3.18) follows analogously. 

4. Proof of formula (2.5) 

We first consider the case that t1 = . . . = t,c· Then it follows from lemma 
VII that it is sufficient to prove that for every i 

(4.1) max min vTns = min Vs= max vT. 
T S S T 
ieT n S 

The following relation always holds 

(4.2) max min vT,, 8 ~ min vT ... s for any T0 • 
T S S 
ieTnS ieT0 r.S 

Thus taking T0 = E, we have for given i 

(4.3) max min vTns ~ min v8 ~ min Vs. 
T S S S 
ieT .. s iES 

In an analogous way it may be proved that 

(4.4) max min vp,,s ;£ max vT 
T S T 
ieTnS 

and (4.1) then follows from (3.18), (4.3) and (4.4). 
We now consider the case that there exists at least one pair of values 

( i, j) with t, -=I= t;. 
Let M, (v= 1, ... , N) be N subsets of E with 

(4.5) 
•=l 

2. t. < t; for each pair of values (i,j) with i EM,,, j EM,. 
(v1 < v2; 'V1, 'V2= 1, ... ,N), 

3. t.=t; for each pair of values (i,j)EM,(v=l, ... ,N). 

Denoting the value of ti, for i EM. by t; (v = 1, ... , N) it follows from 
theorem IV of [6] and the lemmas II and VII that 

(4.6) (v= 1, ... ,N). 

From (4.6) it follows that 

(4.7) Vs.,M ~t; • 
for each S with Sn M.-=1= 0 (v= 1, ... , N), 

N 
thus if M; def u Mµ (v= 1, ... , N) then (cf. lemma VI) 

µ=• 

(4.8) 



,, 
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Further it follows from (4.2) for i E Mv with T0 _ M; 

(4.9) 

In an analogous way it may be proved that for i E Mv 

(4.10) 

Formula (2.5) then follows from (4.6), (4.9) and (4.10). 
In a later paper the interesting inequality in (1] (p. 644) will be 

generalized and interpreted geometrically. 
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