MATHEMATICS

A LEAST SQUARES INEQUALITY FOR MAXIMUM LIKELIHOOD ESTIMATES OF ORDERED PARAMETERS ${ }^{1}$)
 BY

CONSTANCE VAN EDEN

(Communicated by Prof. D. van Dantzig at the meeting of June 29, 1957)

1. Introduction

In this paper the results of a further investigation on the maximum likelihood estimates of partially or completely ordered parameters will be given. One of these results is a generalization of the following inequality for the binomial case, which may be found in [1] (p. 644).

If ${ }^{2}$)

$$
\begin{equation*}
\mathrm{P}\left[x_{i}=1\right]=\theta_{i}, \mathrm{P}\left[x_{i}=0\right]=1-\theta_{i} \quad(i=1, \ldots, k) \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{i} \stackrel{\operatorname{def}}{=} \sum_{\gamma=1}^{n_{i}} x_{i, \gamma}, b_{i} \stackrel{\text { def }}{=} n_{i}-a_{i} \quad(i=1, \ldots, k) \tag{1.2}
\end{equation*}
$$

then

$$
\begin{equation*}
\sum_{i=1}^{k} n_{i}\left(y_{i}-\frac{a_{i}}{n_{i}}\right)^{2} \geqq \sum_{i=1}^{k} n_{i}\left\{\left(t_{i}-\frac{a_{i}}{n_{i}}\right)^{2}+\left(t_{i}-y_{i}\right)^{2}\right\} \tag{1.3}
\end{equation*}
$$

for each point $\left(y_{1}, \ldots, y_{k}\right) \in D$.
The inequality (1.3) is equivalent with

$$
\begin{equation*}
\sum_{i=1}^{k} n_{i}\left(t_{i}-y_{i}\right)\left(t_{i}-\frac{a_{i}}{n_{i}}\right) \leqq 0 \quad \text { for each point }\left(y_{1}, \ldots, y_{k}\right) \in D \tag{1.4}
\end{equation*}
$$

In this paper the inequality (1.4) will be generalized for the case of partially or completely ordered parameters of other probability distributions. The problem will be treated in section 2 and in section 3 some examples will be given.

2. The problem

In this paper we suppose that, for each subset M of E, there exists a pair of values (i, j) with

$$
\begin{cases}1 . & i \in M, j \in \bar{M}, \tag{2.1}\\ 2 . & \alpha_{i, j} \neq 0 .\end{cases}
$$

[^0]This may be supposed without any loss of generality for if there exists a subset M of E not satisfying this condition then (cf. theorem IV in [2]) the estimates t_{1}, \ldots, t_{k} may be found by separately maximizing $\sum_{i \in M} L_{i}\left(y_{i}\right)$ in the domain

$$
D_{1}:\left\{\begin{array}{l}
\alpha_{i, j}\left(y_{i}-y_{j}\right) \leqq 0 \tag{2.2}\\
y_{i} \in I_{i}
\end{array} \quad(i, j \in M)\right.
$$

and $\sum_{i \in M} L_{i}\left(y_{i}\right)$ in the domain

$$
D_{2}:\left\{\begin{array}{l}
\alpha_{i, j}\left(y_{i}-y_{j}\right) \leqq 0 \tag{2.3}\\
y_{i} \in I_{i}
\end{array} \quad(i, j \in \bar{M})^{3}\right)
$$

Let J_{i} be the set of all values of y for which $F_{i}\left(x_{i} \mid y\right)$ is a distribution function ($i=1, \ldots, k$); we suppose J_{i} to be an interval. Let further for any subset M of E

$$
\begin{equation*}
J_{M} \xlongequal{\text { def }} \bigcap_{i \in M} J_{i} . \tag{2.4}
\end{equation*}
$$

In this paper we suppose that the following condition is satisfied.
(2.5) Condition: For each M with $J_{M} \neq 0$ the function $L_{M}(z)$ is strictly unimodal in $J_{M}{ }^{4}$)
Let w_{M} be the value of z which maximizes $L_{M}(z)$ in J_{M} and let w_{i} denote the value of y which maximizes $L_{i}(y)$ in $J_{i}(i=1, \ldots, k)$. Then if I_{i} is the interval $\left(c_{i}, d_{i}\right)$ and if (cf. [3], section 2) v_{M} is the value of z which maximizes $L_{M}(z)$ in I_{M}

$$
\left\{\begin{array}{lll}
v_{M}=w_{M} & \text { if } & \max _{i \in M} c_{i} \leqq w_{M} \leqq \min _{i \in M} d_{i}, \tag{2.6}\\
v_{M}=\max _{i \in M} c_{i} & \text { if } & w_{M}<\max _{i \in M} c_{i}, \\
v_{M}=\min _{i \in M} d_{i} & \text { if } & w_{M}>\min _{i \in M} d_{i} .
\end{array}\right.
$$

Now let E_{0} be a subset of E with

$$
\left\{\begin{array}{ll}
\text { 1. } & t_{i} \neq v_{i} \tag{2.7}\\
\text { 2. } & t_{i}=v_{i}
\end{array} \quad \text { for each } i \in E_{0}, ~ \text { forch } i \in \bar{E}_{0},\right.
$$

then
Lemma I: The estimates t_{1}, \ldots, t_{k} may also be found by separately maximizing $\sum_{i \in E_{0}} L_{i}\left(y_{i}\right)$ in the domain

$$
D^{\prime}:\left\{\begin{array}{l}
\alpha_{i, j}\left(y_{i}-y_{j}\right) \leqq 0 \tag{2.8}\\
y_{i} \in I_{i}
\end{array} \quad\left(i, j \in E_{0}\right)\right.
$$

[^1]and $\sum_{i \in \bar{E}_{0}} L_{i}\left(y_{i}\right)$ in the domain
\[

$$
\begin{equation*}
\left.D^{\prime \prime}: y_{i} \in I_{i}\left(i \in \bar{E}_{0}\right) \cdot{ }^{5}\right) \tag{2.9}
\end{equation*}
$$

\]

Proof:
The function $\sum_{i \in \bar{E}_{0}} L_{i}\left(y_{i}\right)$ attains its maximum in $D^{\prime \prime}$ for $y_{i}=v_{i}=t_{i}\left(i \in \bar{E}_{0}\right)$. Further the function $L\left(y_{1}, \ldots, y_{k}\right)$ attains its maximum under the conditions $y_{i}=t_{i}\left(i \in \bar{E}_{0}\right)$ in D for $y_{i}=t_{i}(i=1, \ldots, k)$, i.e. the function $\sum_{i \in \bar{E}_{0}} L_{i}\left(t_{i}\right)+$ $+\sum_{i \in E_{0}} L_{i}\left(y_{i}\right)$ attains its maximum in D for $y_{i}=t_{i}(i=1, \ldots, k)$. Thus $\sum_{i \in E_{0}} L_{i}\left(y_{i}\right)$ attains its maximum in D^{\prime} for $y_{i}=t_{i}\left(i \in E_{0}\right)$.

Now let M_{0} be a subset of E_{0} with

$$
\begin{equation*}
t_{i}=t_{j} \text { for each pair of values }(i, j) \in M_{0} . \tag{2.10}
\end{equation*}
$$

Theorem I: If $\delta_{1}, \ldots, \delta_{k c}$ satisfy

$$
\begin{cases}1 . & \sum_{i \in M_{0}} \delta_{i}\left(w_{M_{0}}-w_{i}\right)=0 \text { for each } M_{0} \subset E_{0} \text { satisfying (2.10), } \tag{2.11}\\ 2 . & \delta_{i}>0 \text { for each } i \in E,\end{cases}
$$

then the function

$$
\begin{equation*}
Q=Q\left(y_{1}, \ldots, y_{k}\right) \stackrel{\text { def }}{=} \sum_{i=1}^{k} \delta_{i}\left(y_{i}-w_{i}\right)^{2} \tag{2.12}
\end{equation*}
$$

attains its minimum in D for $y_{i}=t_{i}(i=1, \ldots, k)$.
Proof:
If M is a subset of E then $-\sum_{i \in M} \delta_{i}\left(z-w_{i}\right)^{2}$ is a strictly unimodal function of z; thus, analogous to theorem I in [2], $-Q$ possesses a unique maximum in D, i.e. Q possesses a unique minimum in D.

Every term of the function $\sum_{i \in \bar{E}_{0}} \delta_{i}\left(y_{i}-w_{i}\right)^{2}$ (and thus the function itself) attains its minimum in $D^{\prime \prime}$ (cf. (2.9)) for $y_{i}=v_{i}=t_{i}\left(i \in \bar{E}_{0}\right)$. Lemma I then implies that it is sufficient to prove that the minimum of

$$
\sum_{i \in E_{0}} \delta_{i}\left(y_{i}-w_{i}\right)^{2}
$$

in D^{\prime} (cf. (2.8)) coincides with the maximum of $\sum_{i \in E_{0}} L_{i}\left(y_{i}\right)$ in D^{\prime}.
We first prove this (by induction ${ }^{6}$)) under the following stronger condition for $\delta_{1}, \ldots, \delta_{k}$

$$
\begin{cases}\text { 1. } & \sum_{i \in M} \delta_{i}\left(w_{M}-w_{i}\right)=0 \text { for each } M \subset E_{0} \tag{2.13}\\ 2 . & \delta_{i}>0 \text { for each } i \in E_{0} .\end{cases}
$$

$\left.{ }^{5}\right)$ Cf. footnote 3.
${ }^{6}$) Cf. the proof of theorem I in [2], which runs along the same ways.

Let $M_{\nu}(v=1, \ldots, N)$ be subsets of E_{0} with

$$
\begin{cases}\text { 1. } & \bigcup_{v=1}^{N} M_{\nu}=E_{0}, \tag{2.14}\\ \text { 2. } & M_{v_{1}} \cap \\ M_{v_{2}}=0 \text { for each pair of values }\left(v_{1}, v_{2}\right) \text { with } v_{1} \neq v_{2}, \\ \text { 3. } & I_{M_{\nu}} \neq 0 \text { for each } \nu=1, \ldots, N .\end{cases}
$$

Let further (cf. (4.6) in [2])

$$
\begin{equation*}
G_{N} \stackrel{\text { def }}{=} \prod_{\nu=1}^{N} I_{M_{p}} \tag{2.15}
\end{equation*}
$$

and (cf. (4.7) and (4.8) in [2])

$$
\left\{\begin{array}{l}
Q_{M_{\nu}}(z) \stackrel{\text { def }}{=} \sum_{i \in M_{v}} \delta_{i}\left(z-w_{i}\right)^{2}, \tag{2.16}\\
Q^{\prime}\left(z_{1}, \ldots, z_{N}\right) \stackrel{\text { def }}{=} \sum_{\nu=1}^{N} Q_{M_{\nu}}\left(z_{\nu}\right)
\end{array}\right.
$$

and (cf. (4.9) in [2])

$$
\begin{equation*}
D_{N, s}^{\prime} \stackrel{\text { def }}{=} D^{\prime} \cap G_{N}, \tag{2.17}
\end{equation*}
$$

where s denotes the number of essential restrictions defining D^{\prime}. Then the function $Q_{M_{\nu}}(z)$ attains its minimum in the interval $(-\infty,+\infty)$ for

$$
\begin{equation*}
z=\frac{\sum_{i \in M_{\nu}} \delta_{i} w_{i}}{\sum_{i \in M_{\nu}} \delta_{i}}=w_{M_{v}} \tag{2.18}
\end{equation*}
$$

and the fact that $-Q_{M_{v}}(z)$ is strictly unimodal in the interval $(-\infty,+\infty)$ then entails that $Q_{M_{\nu}}(z)$ attains its minimum in $I_{M_{\nu}}$ for $z=v_{M}$ (cf. (2.6)). The minimum of Q^{\prime} in G_{N} thus coincides with the maximum of L^{\prime} in $G_{N}=D_{N, 0}^{\prime}$.

Now suppose that it has been proved that the minimum of Q^{\prime} in $D_{N, s}^{\prime}$ coincides with the maximum of L^{\prime} in $D_{N, s}^{\prime}$ for each $s \leqq s_{0}$, for each partition M_{1}, \ldots, M_{N} of E_{0} satisfying (2.14) and for each N.
We then prove that the same holds for $s_{0}+1$ essential restrictions. Consider, for a given partition M_{1}, \ldots, M_{N} satisfying (2.14) a domain $D_{N, s_{o}+1}^{\prime}$ and the domain $D_{N, s_{0}}^{\prime}$ which is obtained by omitting one of the essential restrictions defining $D_{N, s_{0}+1}^{\prime}$. Let this be the restriction $z_{\nu_{2}} \leqq z_{\nu_{2}}$. Then $D_{N, s_{0}+1}^{\prime} \subset D_{N, s_{0}}^{\prime}$. The minimum of Q^{\prime} in $D_{N, s_{0}}^{\prime}$ coincides with the maximum of L^{\prime} in $D_{N, s_{0}}^{\prime}$ in (say) the point $\left(z_{1}^{0}, \ldots, z_{N}^{0}\right)$ and the following two cases may be distinguished:

1. $z_{v_{1}}^{0} \leqq z_{v_{2}}^{0}$; then $\left(z_{1}^{0}, \ldots, z_{N}^{0}\right) \in D_{N, s_{0}+1}^{\prime}$. Thus in this case the minimum of Q^{\prime} in $D_{N, s_{0}+1}^{\prime}$ coincides with the maximum of L^{\prime} in $D_{N, s_{0}+1}^{\prime}$.
2. $z_{v_{1}}^{0}>z_{v_{2}}^{0}$; then (cf. theorem II in [2]) Q^{\prime} attains its minimum (and L^{\prime} its maximum) in $D_{N, s_{0}+1}^{\prime}$ for $z_{v_{1}}=z_{\nu_{2}}$. The domain $D_{N, s_{q}+1}^{\prime}$ reduces, with $z_{v_{1}}=z_{v_{2}}$, to a domain $D_{N-1 . s_{0}^{\prime}}^{\prime \prime}$ with $s_{0}^{\prime} \leqq s_{0}$ and the minimum of Q^{\prime} under the condition $z_{v_{1}}=z_{v_{2}}$ in $D_{N-1, s_{o^{\prime}}}^{\prime}$ coincides with the maximum of L^{\prime} under
the condition $z_{\nu_{1}}=z_{v_{2}}$ in $D_{N-1, s_{0}^{\prime}}^{\prime}$. Thus if $\delta_{i}\left(i \in E_{0}\right)$ satisfy (2.13) then the minimum of Q^{\prime} in $D_{N, s}^{\prime}$ coincides with the maximum of L^{\prime} in $D_{N, s}^{\prime}$. This holds for each N, i.e. it holds for $N=k^{\prime}$, if k^{\prime} is the number of elements of E_{0}. Thus if $\delta_{i}\left(i \in E_{0}\right)$ satisfy (2.13) then the minimum of $\sum_{i \in E_{0}} \delta_{i}\left(y_{i}-w_{i}\right)^{2}$ in $D_{k^{\prime}, s}^{\prime}=D^{\prime}$ coincides with the maximum of $\sum_{i \in E_{0}} L_{i}\left(y_{i}\right)$ in D^{\prime}.

We now prove the theorem under condition (2.11). Let $E_{\nu}(\nu=1, \ldots, K)$ be subsets of E_{0} with

$$
\begin{cases}\text { 1. } & \bigcup_{v=1}^{K} E_{v}=E_{0}, \tag{2.19}\\ \text { 2. } & t_{i}<t_{j} \text { for each pair of values }(i, j) \text { with } i \in E_{\nu_{1}}, \\ & \quad j \in E_{v_{2}}\left(v_{1}<v_{2} ; v_{1}, v_{2}=1, \ldots, K\right), \\ \text { 3. } & t_{i}=t_{j} \text { for each pair of values }(i, j) \in E_{v}(v=1, \ldots, K),\end{cases}
$$

then (2.11) is identical with

$$
\begin{cases}1 . & \sum_{i \in M} \delta_{i}\left(w_{M}-w_{i}\right)=0 \quad \text { for each } M \subset E_{v}(v=1, \ldots, K), \tag{2.20}\\ 2 . & \delta_{i}>0 \quad \text { for each } i \in E .\end{cases}
$$

Further it follows from lemma II in [3] and theorem IV in [2] that the maximum of $\sum_{i \in E_{0}} L_{i}\left(y_{i}\right)$ in D^{\prime} may also be found by maximizing, for $\nu=1, \ldots, K, \sum_{i \in E_{v}} L_{i}\left(y_{i}\right)$ in the domain ${ }^{7}$)

$$
D_{\nu}^{\prime}:\left\{\begin{array}{l}
\alpha_{i, j}\left(y_{i}-y_{j}\right) \leqq 0 \tag{2.21}\\
y_{i} \in I_{i}
\end{array} \quad\left(i, j \in E_{\nu}\right)\right.
$$

Further the fact that $\delta_{1}, \ldots, \delta_{k}$ satisfy (2.20) entails that the minimum of $\sum_{i \in E_{i}} \delta_{i}\left(y_{i}-w_{i}\right)^{2}$ in D_{v}^{\prime} coincides with the maximum of $\sum_{i \in R_{v}} L_{i}\left(y_{i}\right)$ in $D_{\nu}^{\prime}(\nu=1, \ldots, K)$. This proves the theorem under condition (2.11).

Remark 1:
In the proof of theorem I the fact has been used that the maximum of L in D coincides with the maximum of L in the domain

$$
\begin{equation*}
\left.B \stackrel{\text { def }}{=} D^{\prime \prime} \cap \bigcap_{v=1}^{\pi} D_{v}^{\prime} .{ }^{8}\right) \tag{2.22}
\end{equation*}
$$

The same holds for the minimum of Q.
Theorem II: If $\delta_{1}, \ldots, \delta_{k}$ satisfy (2.11) and if $t_{i} \neq w_{i}$ for at least one value of $i \in E$ then the ellipsoid

$$
\begin{equation*}
\sum_{i=1}^{k} \delta_{i}\left(y_{i}-\frac{t_{i}+w_{i}}{2}\right)^{2}=\sum_{i=1}^{k} \delta_{i}\left(\frac{t_{i}-w_{i}}{2}\right)^{2} \tag{2.23}
\end{equation*}
$$

touches the domains B (and D) in the point $\left(t_{1}, \ldots, t_{k}\right)$.

[^2]Proof:
If $t_{i} \neq w_{i}$ for at least one value of $i \in E$ then $\left(t_{1}, \ldots, t_{k}\right)$ is a borderpoint of B and $\left(w_{1}, \ldots, w_{k}\right) \notin B$. Further, if $0<\beta \leqq 1$, then

$$
\left\{\beta w_{1}+(1-\beta) t_{1}, \ldots, \beta w_{z_{c}}+(1-\beta) t_{k}\right\} \notin B .
$$

This may be seen as follows. From lemma I in [2] it follows that

$$
\sum_{i=1}^{k} L_{i}\left\{\beta w_{i}+(1-\beta) t_{i}\right\}
$$

is a monotone increasing function of β in the interval $0 \leqq \beta \leqq 1$. Thus if $0<\beta \leqq 1$ then

$$
\sum_{i=1} L_{i}\left\{\beta w_{i}+(1-\beta) t_{i}\right\}>\sum_{i=1}^{k} L_{i}\left(t_{i}\right) .
$$

The fact that L attains its maximum in B in the point $\left(t_{1}, \ldots, t_{k}\right)$ then implies $\left\{\beta w_{1}+(1-\beta) t_{1}, \ldots, \beta w_{k}+(1-\beta) t_{k}\right\} \notin B$.

Now let

$$
\left\{\begin{array}{l}
y_{i}^{\prime} \stackrel{\text { def }}{=} \sqrt{\delta_{i}}\left(y_{i}-\frac{t_{i}+w_{i}}{2}\right) \tag{2.24}\\
w_{i}^{\prime} \stackrel{\text { def }}{=} \sqrt{\delta_{i}}\left(w_{i}-\frac{t_{i}+w_{i}}{2}\right)-\sqrt{\delta_{i}} \frac{w_{i}-t_{i}}{2}, \quad(i=1, \ldots, k) \\
t_{i}^{\prime}=\sqrt{\text { def }} \sqrt{=} \sqrt{\delta_{i}}\left(t_{i}-\frac{t_{i}+w_{i}}{2}\right)=-\sqrt{\delta_{i}} \frac{w_{i}-t_{i}}{2}
\end{array}\right.
$$

then (2.23) reduces to

$$
\begin{equation*}
\sum_{i=1}^{k} y_{i}^{\prime 2}=\sum_{i=1}^{k} t_{i}^{\prime 2}\left(=\sum_{i=1 i}^{k} w_{i}^{\prime 2}\right) \tag{2.25}
\end{equation*}
$$

and B reduces to a domain B^{\prime}. Further ($t_{1}^{\prime}, \ldots, t_{k}^{\prime}$) is a borderpoint of $B^{\prime},\left(w_{1}, \ldots, w_{k}\right) \notin B^{\prime}$ and, for each β with $0<\beta \leqq 1$,

$$
\left\{\beta w_{1}^{\prime}+(1-\beta) t_{1}^{\prime}, \ldots, \beta w_{k}^{\prime}+(1-\beta) t_{k}^{\prime}\right\} \notin B^{\prime}
$$

From (2.24) follows

$$
\begin{equation*}
\sum_{i=1}^{k} \delta_{i}\left(y_{i}-w_{i}\right)^{2}=\sum_{i=1}^{k}\left(y_{i}^{\prime}-w_{i}^{\prime}\right)^{2} . \tag{2.26}
\end{equation*}
$$

From theorem I and remark 1 then follows that $\sum_{i=1}^{k}\left(y_{i}^{\prime}-w_{i}^{\prime}\right)^{2}$ attains its minimum in B^{\prime} in the point $\left(t_{1}^{\prime}, \ldots, t_{k}^{\prime}\right)$, thus the sphere (2.25) touches B^{\prime} in ($t_{1}^{\prime}, \ldots, t_{k}^{\prime}$); i.e. the ellipsoid (2.23) touches B in $\left(t_{1}, \ldots, t_{k}\right)$.

We now prove the following lemma:
Lemma II: Let C be a convex domain and S a point on its boundary. Let K_{S} be an ellipsoid touching C on the outside in S and let the diameter of K_{S}, passing through S, intersect K_{S} in a point U. Let further Y be a point inside C or on its boundary and K_{Y} an ellipsoid with diameter $Y U$, with axes parallel to those of K_{S} and with the length of the axes proportional to those of K_{S}. Then S lies inside or on K_{Y}.

Proof:
We apply a linear transformation such that K_{S} reduces to a sphere K_{S}^{\prime}; then K_{Y} reduces to a sphere K_{Y}^{\prime}, C to a convex domain C^{\prime}, S to a point S^{\prime} on the boundary of C^{\prime} and Y to a point Y^{\prime} inside or on the boundary of C^{\prime}. The sphere K_{S}^{\prime} touches C^{\prime} in S^{\prime} and it may easily be seen that S^{\prime} lies inside or on K_{r}^{\prime}.

Theorem III: If $\delta_{1}, \ldots, \delta_{k}$ satisfy (2.11) then
(2.27) $\sum_{i=1}^{k} \delta_{i}\left(t_{i}-w_{i}\right)\left(t_{i}-Y_{i}\right) \leqq 0$ for each point $\left(Y_{1}, \ldots, Y_{k}\right) \in B$.

Proof:
If $t_{i}=w_{i}$ for each $i \in E$ then (2.11) reduces to

$$
\begin{equation*}
\delta_{i}>0 \text { for each } i \in E . \tag{2.28}
\end{equation*}
$$

Then the theorem is immediately clear.
If $t_{i} \neq w_{i}$ for at least one value of $i \in E$ then (cf theorem II) the ellipsoid (2.23) touches B in the point (t_{1}, \ldots, t_{k}). Thus if (Y_{1}, \ldots, Y_{k}) is a point in B then it follows from lemma II that $\left(t_{1}, \ldots, t_{k}\right)$ lies inside or on the ellipsoid

$$
\begin{equation*}
\sum_{i=1}^{k} \delta_{i}\left(y_{i}-\frac{w_{i}+Y_{i}}{2}\right)^{2}=\sum_{i=1}^{k} \delta_{i}\left(\frac{w_{i}-Y_{i}}{2}\right)^{2} \tag{2.29}
\end{equation*}
$$

i.e. t_{1}, \ldots, t_{k} satisfy

$$
\begin{equation*}
\sum_{i=1}^{k} \delta_{i}\left(t_{i}-\frac{w_{i}+Y_{i}}{2}\right)^{2} \leqq \sum_{i=1}^{k} \delta_{i}\left(\frac{w_{i}-Y_{i}}{2}\right)^{2} \tag{2.30}
\end{equation*}
$$

and (2.30) is identical with

$$
\begin{equation*}
\sum_{i=1}^{k} \delta_{i}\left(t_{i}-w_{i}\right)\left(t_{i}-Y_{i}\right) \leqq 0 \tag{2.31}
\end{equation*}
$$

Further it follows from the foregoing that the following theorem holds.
Theorem IV: If $\delta_{1}, \ldots, \delta_{k}$ satisfy (2.11) then there exists exactly one point $\left(y_{1}, \ldots, y_{k}\right) \in B$ satisfying the inequalities

$$
\begin{equation*}
\sum_{i=1}^{k} \delta_{i}\left(y_{i}-w_{i}\right)\left(y_{i}-Y_{i}\right) \leqq 0 \quad\left(Y_{1}, \ldots, Y_{k}\right) \in B \tag{2.32}
\end{equation*}
$$

Thus if $\delta_{1}, \ldots, \delta_{k}$ satisfy (2.11) and are independent of t_{1}, \ldots, t_{k} then the estimates t_{1}, \ldots, t_{k} may also be found by minimizing $Q\left(y_{1}, \ldots, y_{k}\right)$ in D or by solving the inequalities (2.32) with $\left(Y_{1}, \ldots, Y_{k}\right) \in D$.
3. Examples

If (cf. section 1)

$$
\begin{equation*}
\mathrm{P}\left[\mathrm{x}_{i}=1\right]=\theta_{i}, \mathrm{P}\left[x_{i}=0\right]=1-\theta_{i} \quad(i=1, \ldots, k) \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{i} \stackrel{\text { def }}{=} \sum_{\gamma=1}^{n_{i}} x_{i, \gamma}, \quad b_{i} \stackrel{\text { def }}{=} n_{i}-a_{i} \quad(i=1, \ldots, k) \tag{3.2}
\end{equation*}
$$

then

$$
\begin{equation*}
w_{M}=\frac{\sum_{i \in M} a_{i}}{\sum_{i \in M} n_{i}}=\frac{\sum_{i \in M} n_{i} w_{i}}{\sum_{i \in M} n_{i}} \tag{3.3}
\end{equation*}
$$

Thus if $\delta_{i}=n_{i}(i=1, \ldots, k)$, then $\delta_{1}, \ldots, \delta_{k}$ satisfy (2.11) and are independent of w_{1}, \ldots, w_{k}; i.e. the estimates t_{1}, \ldots, t_{k} may also be found by minimizing

$$
\begin{equation*}
Q\left(y_{1}, \ldots, y_{k}\right)=\sum_{i=1}^{k} n_{i}\left(y_{i}-w_{i}\right)^{2} \tag{3.4}
\end{equation*}
$$

in D and t_{1}, \ldots, t_{k} satisfy

$$
\begin{equation*}
\sum_{i=1}^{k} n_{i}\left(t_{i}-w_{i}\right)\left(t_{i}-Y_{i}\right) \leqq 0 \quad \text { for each point }\left(Y_{1}, \ldots, Y_{k}\right) \in B \tag{3.5}
\end{equation*}
$$

If \mathbf{x}_{i} possesses a normal distribution with mean θ_{i} and variance σ_{i}^{2} $(i=1, \ldots, k)$, where $\sigma_{i}^{2} / \sigma_{j}^{2}$ is known for each pair of values (i, j) then

$$
\begin{equation*}
w_{M}=\frac{\sum_{i \in M} \frac{1}{\sigma_{i}^{2}} \sum_{\gamma=1}^{n_{i}} x_{i, \gamma}}{\sum_{i \in M} \frac{n_{i}}{\sigma_{i}^{2}}}=\frac{\sum_{i \in M} \frac{n_{i} w_{i}}{\sigma_{i}^{2}}}{\sum_{i \in M} \frac{n_{i}}{\sigma_{i}^{2}}} \tag{3.6}
\end{equation*}
$$

thus $\delta_{i}=n_{i} / \sigma_{i}^{2}(i=1, \ldots, k)$ satisfies (2.11); i.e. the estimates t_{1}, \ldots, t_{k} may also be found by minimizing ${ }^{9}$)

$$
\begin{equation*}
Q\left(y_{1}, \ldots, y_{k}\right)=\sum_{i=1}^{k} \frac{n_{i}}{\sigma_{i}^{2}}\left(y_{i}-w_{i}\right)^{2} \tag{3.7}
\end{equation*}
$$

in D and t_{1}, \ldots, t_{k} satisfy the inequalities

$$
\begin{equation*}
\sum_{i=1}^{k} \frac{n_{i}}{\sigma_{i}^{2}}\left(t_{i}-w_{i}\right)\left(t_{i}-Y_{i}\right) \leqq 0 \quad \text { for each point }\left(Y_{1}, \ldots, Y_{k}\right) \in B \tag{3.8}
\end{equation*}
$$

In the same way it may be proved that $\delta_{i}=n_{i}(i=1, \ldots, k)$ satisfies (2.11) if

1. x_{i} possesses a normal distribution with known mean μ_{i} and variance $\theta_{i}(i=1, \ldots, k)$,
2. x_{i} possesses an exponential distribution

$$
\begin{equation*}
\mathrm{P}\left[\mathrm{x}_{i} \leqq x\right]=1-e^{-\frac{x}{\theta_{i}}} \quad(i=1, \ldots, k) \tag{3.9}
\end{equation*}
$$

In all these cases the estimates t_{1}, \ldots, t_{k} are the ordinary least squares estimates in D.

If on the other hand x_{i} possesses a rectangular distribution "between"
${ }^{9}$) This also follows from

$$
\begin{aligned}
& L\left(y_{1}, \ldots, y_{k}\right)=-\frac{1}{2} \sum_{i=1}^{k} n_{i} \ln 2 \pi \sigma_{i}^{2}-\frac{1}{2} \sum_{i=1}^{k} \frac{\sum_{\gamma=1}^{n_{i}}\left(x_{i, \gamma}-y_{i}\right)^{2}}{\sigma_{i}^{2}}= \\
& \quad=-\frac{1}{2} \sum_{i=1}^{k} n_{i} \ln 2 \pi \sigma_{i}^{2}-\frac{1}{2} \sum_{i=1}^{k} \frac{\sum_{\gamma=1}^{n_{i}}\left(x_{i, \gamma}-w_{i}\right)^{2}}{\sigma_{i}^{2}}-\frac{1}{2} \sum_{i=1}^{k} \frac{n_{i}}{\sigma_{i}^{2}}\left(y_{i}-w_{i}\right)^{2} .
\end{aligned}
$$

0 and $\theta_{i}(i=1, \ldots, k)$ then

$$
\begin{equation*}
w_{M}=\max _{i \in M} \max _{i \leqq \gamma \leqq n_{i}} x_{i, \gamma}=\max _{i \in M} w_{i} \tag{3.10}
\end{equation*}
$$

Thus in this case there are no numbers $\delta_{1}, \ldots, \delta_{k}$ satisfying (2.11).
Note added in proof
If v_{M}^{\prime} is the value of z which maximizes $Q_{M}(z)$ in I_{M} then the theorems I-IV also hold if $\delta_{1}, \ldots, \delta_{l c}$ are chosen in such a way that

$$
\left\{\begin{array}{l}
\text { 1. } \max _{T} v_{T \cap E_{y}}^{\prime}=\min _{S} v_{S \cap E_{\nu}}^{\prime}=v_{E_{y}}(v=1, \ldots, K), \\
\text { 2. } \delta_{i}>0 \text { for each } i \in E .
\end{array}\right.
$$

The proof, which is based on formula (2.5) in [3] will be given in a following paper.

Mathematical Centre, Amsterdam

REFERENCES

1. Aygr, Mirtam, H. D. Brunk, G. M. Ewing, W. T. Reid and Edward Smverman, An empirical distribution function for sampling with incomplete information, Ann. Math. Stat. 26, 641-647 (1955).
2. Eeden, Constande van, Maximum likelihood estimation of partially or completely ordered parameters I and II, Proc. Kon. Ned. Ak. v. Wet. A 60, (1957), Indag. Math. 19, 128-136 and 201-211 (1957).
3. -- Note on two methods for estimating ordered parameters of probability distributions, Proc. Kon. Ned. Ak. v. Wet. A 60, 506-512 (1957), and Indag. Math. 19, 506-512 (1950).

Q2of

[^0]: $\left.{ }^{1}\right)$ Report SP 60 of the Statistical Department of the Mathematical Centre, Amsterdam.
 ${ }^{2}$) The notation in this paper is the same as the one used in [2] and [3].

[^1]: ${ }^{3}$) In the definitions of the domains $D_{1}, D_{2}, D^{\prime}, D^{\prime \prime}$ and D_{ν}^{\prime} (cf. (2.8), (2.9) and (2.21)) the coordinates which are not mentioned may assume any values.
 ${ }^{4}$) If $J_{i}=I_{i}$ for each $i \in E$ then this condition is identical with condition (4.3) in [2].

[^2]: ${ }^{7}$) Cf. footnote 3.
 ${ }^{8}$) The domain D is independent of t_{1}, \ldots, t_{k}, but B depends on these estimates.

