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1. Introduction 

In this paper the results of a further investigation on the maximum 
likelihood estimates of partially or completely ordered parameters will 
be given. One of these results is a generalization of the following in
equality for the binomial case, which may be found in [l] (p. 644). 

If2) 

(1.1) P[xi=l]=0i, P[xi=O]=1-0i (i=l, ... , k) 

and 

(1.2) 

then 

(1.3) 

(i= 1, ... , k), 

for each point (y1 , ... , Yk) ED. 
The inequality (1.3) is equivalent with 

(1.4) A~ ni(ti-Yi) (ti-::)~ 0 for each point (Yi, ... ,'yk) ED. 

In this paper the inequality (1.4) will be generalized for the case of partially 
or completely ordered parameters of other probability distributions. 
The problem will be treated in section 2 and in section 3 some examples 
will be given. 

2. The problem 

In this paper we suppose that, for each subset M of E, there exists a 
pair of values ( i, j) with 

(2.1) 
~ 1. iEM, jEM, 

( 2. IXi.i =/= 0. 

1 ) Report SP 60 of the Statistical Department of the Mathematical Centre, 
Amsterdam. 

2} The notation in this paper is the same as the one used in [2] and [3]. 
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This may be supposed without any loss of generality for if there exists 
a subset M of E not satisfying this condition then (cf. theorem IV in [2]) 
the estimates t1 , ... , tk may be found by separately maximizing 2 L,(y,) 

iEM 
in the domain 

(2.2) j IX·· (y--y-) :S; 0 
D . i.1 i 1 -

1. 
Yi E Ji 

(i, j EM) 

and 2 Li(Yi) in the domain 
iEM 

(2.3) D . \ lXi,i (y,-yi) :;,; 0 
2· ' 

( Y; E Ji 
(i,j EM) 3). 

Let Ji be the set of all values of y for which Fi(xi I y) is a distribution 
function ( i = I, ... , k) ; we suppose J. to be an interval. Let further for 
any subset M of E 

(2.4) 
iEM 

In this paper we suppose that the following condition is satisfied. 

(2.5) Condition: For each M with JMi=O the function LM(z) is strictly 

unimodal in J M· 4) 

Let wM be the value of z which maximizes LM(z) in J Mand let wi denote 
the value of y which maximizes Li(Y) in J;(i= I, ... , k). Then if I; is 
the interval (c;, di) and if (cf. [3], section 2) vM is the value of z which 
maximizes LM(z) in IM 

vM = wM if max C; :;;; wM :;;; min d;, 
iEM iEM 

(2.6) vM = max ci if wM < max C;, 
ieM ieM 

vM = min di if wM > min di. 
iEM iEM 

Now let E0 be a subset of E with 

(2. 7) { 
then 

I. ti i= vi 

2. ti=V, 

for each i E E0, 

for each i E E0, 

Lemma I: The estimates ti, ... , tk may also be found by separately 

maximizing 2 L;,(yi) in the domain 
iEEo 

(2.8) D': ~ IXi,i (y,-yi) :;;; 0 

I Yi E Ji 
(i, j E E0) 

3 ) In the definitions of the domains D 1, D 2, D', D" and n; (cf. (2.8), (2.9) and 
(2.21)) the coordinates which are not mentioned may assume any values. 

4) If Ji = Ii for each i EE then this condition is identical with condition (4.3) 
in [2]. 
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and L L.(y,) in the domain 
iE.Eo 

(2.9) 

Proof: 
The function L L.(y,) attains its maximum in D" for y,=v,=t.(i E E0). 

ie.Eu 

]further the function L(y1, ••• , yk) attains its maximum under the conditions 
y,=t;(i E E0) in D for y,=t,(i= 1, ... , k), i.e. the function ! L,(t,)+ 

iEEo 

+ L L,(y,.) attains its maximum in D for '.y,=t,(i= 1, ... , k). Thus 
iEEo 

L L.(y,) attains its maximum in D' for y.=t,(i E E 0). 
iEEo 

Now let M 0 be a subset of E0 with 

(2.10) t;,=ti for each pair of values (i, i) E M0• 

Theorem I: If c\, ... , b,c satisfy 

{ 

1. ! b;,(wM -w,)=0 for each M 0 C E0 satisfying (2.10), 
(2.11) ieM, • 

2. b,> 0 for each i EE, 

then the function 

(2.12) 

attains its minimum in D for y,=t, (i= 1, ... , k). 

Proof: 
If Mis a subset of Ethen - L ();,(z-w,)2 is a strictly unimodal function 

iEM 

of z; thus, analogous to theorem I in [2], -Q possesses a unique maximum 
in D, i.e. Q possesses a unique minimum in D. 

Every term of the function ! b,(y,-w,)2 (and thus the function 
ieEo 

itself) attains its minimum in D" (cf. (2.9)) for y,=v.=t. (i E E0). Lemma I 
then implies that it is sufficient to prove that the minimum of 

L b,(y, -w,)2 
ieE0 

in D' {cf. (2.8)) coincides with the maximum of ! L;,(y,) in D'. 
iEEo 

We first prove this (by induction 6)) under the following stronger 
condition for b1, ... , bk 

(2.13) l l. 2. 

5) Cf. footnote 3. 

L b.(wM-w,)=0 for each MC E 0, 
ieM 

b,>0 for each i E E0• 

6 ) Cf. the proof of theorem I in [2], which runs along the same ways. 



516 

Let M,(v= 1, ... , N) be subsets of E 0 with 

~ 
N 

1. U M,=Eo, 
•=1 

(2.14} 

? 
2. M,

1 
n M,,=0 for each pair of values 

3. IM +o for each V= 1, ... , N. 
• 

Let further (cf. (4.6) in [2]) 

(2.15) 

and (cf. (4.7) and (4.8) in [2]) 

(2.16) 

and (cf. (4.9) in 

(2.17) 

[2]) 

~ 
QM, (z) def. I bi (z-wi)2 , 

iEM11 

N 

~ Q' (z1, ... , ZN) def.~ QM, (z,) 

D' def D' n G 
N,s- N, 

(v1, v2) with v1 +v2, 

where s denotes the number of essential restrictions defining D'. Then 
the function QM (z) attains its minimum in the interval ( -oo, + oo) for • 

(2.18) (cf. (2.13)) 

and the fact that -QM (z) is strictly unimodal in the interval ( - oo, + oo) 
• 

then entails that QM,(z) attains its minimum in IM, for z=vM (cf. (2.6)). 

The minimum of Q' in GN thus coincides with the maximum of L' in 

GN=D'iv.o• 
Now suppose that it has been proved that the minimum of Q' in D'z.. • 

coincides with the maximum of L' in D'z. .• for each s~s0, for each partition 
M1, .•• , MN of E 0 satisfying (2.14) and for each N. 

We then prove that the same holds for s0 + 1 essential restrictions. 
Consider, for a given partition Mv ... , MN satisfying (2.14) a domain 
D'iv .•• +1 and the domain D'z. .•• which is obtained by omitting one of the 
essential restrictions defining D'z.. ••+i · Let this be the restriction z,

1 
~ z,,,. 

Then D'z.,,.+ 1 C D'z..,,· The minimum of Q' in D'zv.,
0 

coincides with the 
maximum of L' in D'i,,

80 
in (say) the point (z~, ... , zM and the following 

two cases may be distinguished: 
1. z~

1
~z~,; then M, ... , ~) E D'zv,s.+i· Thus in this case the minimum 

of Q' in D'zv. ,.+i coincides with the maximum of L' in D'zv, s,+i. 

2. z~, >z~,; then (cf. theorem II in [2]) Q' attains its minimum (and 
L' its maximum) in D'iv .•• +i for z,, =z,,. The domain D'zv.s,+i reduces, with 
z,, =z.,, to a domain D{J._1_8,, with s~~s0 and the minimum of Q' under
the condition z,, =z., in Dl:r-i.s,' coincides with the maximum of L' under-
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the condition z,
1 
=Z,, in D~_ 1_,

0
,. Thus if l\{i E E0 ) satisfy (2.13) then the 

minimum of Q' in D~.s coincides with the maximum of L' in D~ .•. This 
holds for each N, i.e. it holds for N = k', if k' is the num,ber of elements 
of E 0• Thus if o;,(i E E 0) satisfy (2.13) then the minimum of ! o;,(yi-wi)2 

iEEo 

in D;,,,=D' coincides with the maximum of I L;,(yi) in D'. 
ieE0 

We now prove the theorem under condition (2.11). Let E,(v= I, ... , K) 
be subsets of E0 with 

1. U E,=Eo, 
•=1 

\ 

K 

(2.19) , 2. ti<ti for each pair of values (i, j) with i E E,
1

, 

I j EE,, (v1 <v2 ; Vi, v2= 1, ... , K), 

3. t;,=ti for each pair of values (i, j) E E.(v= 1, ... , K), 

then (2.11) is identical with 

ll. ! oi(wM-w;,)=0 for each MCE,(v=l, ... ,K), 
(2.20) ie.M 

2. oi > 0 for each i EE. 

Further it follows from lemma II in [3] and theorem IV in [2] that the 
maximum of L L;,(yi) in D' may also be found by maximizing, for 

iEEo 

v= 1, ... , K, L L;,(y,) in the domain 7) 

ieE, 

(2.21) n;: ~ °'•.i (Yi -yi) ;;,; 0 
? Yi EI;, 

(i,j EE,). 

Further. the fact that o1, •.. , ok satisfy (2.20) entails that the minimum 
of L o.(y,. - w,) 2 in D; coincides with the maximum of ! L;,(y;,) in 

ieE, ieE, 

D;(v= 1, ... , K). This proves the theorem under condition (2.11). 

Remark I: 
In the proof of theorem I the fact has been used that the maximum 

of L in D coincides with the maximum of L in the domain 

(2.22) 
K 

B def D" n n D;. 8) 

•=1 

The same holds for the minimum of Q. 

Theorem II: If 01, ... , /Jk satisfy (2.11) and if t;,=l=W;, for at least one 
value of i E E then the ellipsoid 

(2.23) ± /J, (Yi_ t;, + W;)2 = ± (Ji (t; - W;,)2 
i=l 

2 
:i=l 

2 

touches the domains B ( and D) in the point (t1, ... , tk)-

7 ) Cf. footnote 3. 
8) The domain D is independent of t1, ••• , tk, but B depends on these estimates. 
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Proof: 
If t,=1=w, for at least one value of i EE then (ti, ... , tk) is a borderpoint 

of B and (w1, .•. ,wk)¢:. B. Further, if 0<(:J-;;;;, l, then 

{(:Jw1 +(1-(:J)ti, ... , f:Jw1c+ (l-(:J)t1c} ¢:. B. 

This may be seen as follows. From lemma I in [2] it follows that 

k 

LL, {(:Jw, + (1-(:J) t,} 
i=l 

is a monotone increasing function of (:J in the interval O-;;;;, (:J-;;;;, I. Thus if 
0<(:J-;;;;, I then 

The fact that L attains its maximum in Bin the point (t1, ... , t1c) then 
implies {(:Jw1 + ( I - (:J)t1, ... , f:Jw1c + ( I - (:J)t1c} </:. B. 

Now let 

'. def ,IJ: ( . _ ti+w•) Y,.- r • Y, 2 , 

(2.24) ,def , 1--g- ( ti+w•). _ Vbwi-ti w.-v • w,--2 - i-2-, 

tdefVJ:(t-- t,+wi) = _ ,!-;f_w,-t; 
.- • • 2 JI u, 2 ' 

then (2.23) reduces to 

(2.25) 2 Y? = 2 t? · = 2 w? k k ( k ) 

i=l i=l i=t: 

(i =I, ... , k) 

and B reduces to a domain B'. Further (t{, ... , t~) is a borderpoint of 
B', (w,_, ... , w1c) ¢:. B' and, for each (:J with 0<(:J-;;;;, I, 

{(:Jw{ + (I -(:J)t;, ... , (:Jw~+ (I -(:J)ta </:. B'. 

From (2.24) follows 

k k 
(2.26) 2 c5; (y.-w.)2 = 2 (y;-w;)2. 

i=l j=l 

k 

From theorem I and remark I then follows that 2 (y;-w;)2 attains its 
i =l 

minimum in B' in the point (t{, ... , t~), thus the sphere (2.25) touches B' 
in (t;, ... , tD; i.e. the ellipsoid (2.23) touches B in (ti, ... , tk). 

We now prove the following lemma: 

Lemma II: Let C be a convex domain and S a point on its boundary. 
Let Ks be an ellipsoid touching C on the outside in S and let the diameter 
of Ks, passing through S, intersect Ks in a point U. Let further Y be a point 
inside C or on its boundary and Ky an ellipsoid with diameter YU, with 
axes parallel to those of Ks and with the length of the axes proportional to 
those of Ks. Then S lies inside or on Ky. 
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Proof: 
We apply a linear transformation such that K8 reduces to a sphere 

K;; then Ky reduces to a sphere K;., C to a convex domain O', S to a 
point S' on the boundary of O' and Y to a point Y' inside or on the 
boundary of O'. The sphere K; touches O' in S' and it may easily be seen 
that S' lies inside or on K;,.. 

Theorem III: If c\, ... , 15k satisfy (2.11) then 
k 

(2.27) L 15,(ti-wi)(ti-Yi)~0 for each point (Yi, ... , Yk) EB. 
i=l 

Proof: 
If ti=wi for each i EE then (2.11) reduces to 

(2.28) !5.> 0 for each i EE. 

Then the theorem is immediately clear. 
If t, =fa w, for at least one value of i E E then ( cf theorem II) the 

ellipsoid (2.23) touches B in the point (ii, ... , tk). Thus if (Y1, ... , Yk) 
is a point in B then it follows from lemma II that (ti, ... , tk) lies inside 
or on the ellipsoid 

(2.29) _! c5i(Yi - Wi!Y;y = .i c5i(Wi;y·Y, 
i=l ,i=l 

i.e. ti_, ... , tk satisfy 

(2_30) i /j.(t- _ wi+Yi)2 < ± (5. (~-Yi)2 
i=l • i 2 = i=l • 2 

and (2.30) is identical with 
k 

(2.31) L <5;, (t, -wi) (ti- Yi) ~ 0. 
i=l 

Further it follows from the foregoing that the following theorem holds. 

Theorem IV: If l5i, ... , bk satisfy (2.11) then there exists exactly one 
point (y1, ••• , Yk) E B satisfying the inequalities 

k 

(2.32) L c5i (yi-wi) (y.- Y;) ~ 0 
i=-1 

Thus if l5i, ... , bk satisfy (2.11) and are independent of ti, ... , tk then 
the estimates ti, ... , tk may also be found by minimizing Q(y1, ... , Yk) in 
D or by solving the inequalities (2.32) with (Yi, ... , Yk) ED. 

3. Examples 
If (cf. section 1) 

(3.1) P[x.=1]=0i, P[x.=O]=1-0i (i=l, ... , k) 

and 

(3.2) b def ; = n.-ai (i = 1, ... , k), 
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(3.3) 
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! ai ! niwi 
WM = _ie_M_ = •-· E=M __ 

!n; !ni 
iEM ieM 

Thus if c\=n, (i= 1, ... , k), then c\, ... , bk satisfy (2.11) and are independent 
of w1, ... , w1,; i.e. the estimates t1, ... , tk may aJso be found by minimizing 

k 

{3.4) Q (yi, · · ·, Yk) = 2, ni (Yi -wi) 2 

in D and t1, ... , tk satisfy 
k 

i=l 

(3.5) 2, ni(t;,-w;) (t;,-Y;,) ~ 0 for each point (Yi, ... , Yk) EB. 
i=l 

If x, possesses a normal distribution with mean 0;, and variance ai 
(i= 1, ... , k), where a1/a1 is known for each pair of values (i, j) then 

(3.6) 

thus <'3;,=n;,/a1 (i= 1, ... , k) satisfies (2.11); i.e. the (:)Stimates t1, ... , tk may 
also be found by mihlmizing 9 ) 

(3.7) 
k 

Q(y1, ... , Yk) = 2, ~ (y;, -w,) 2 

i=l i 

in D and ti, ... , tk satisfy the inequalities 
Tc n 

(3.8) 2, ~ (ti-wi) (t;,-Y;,) ~ 0 for each point (Yi, ... , Y1c) EB. 
i=l i 

In the same way it may be proved that 13;,=n;, (i= 1, ... , kJ satisfies 
(2.11) if 

l. · X;, possesses a normal distribution with known mean µ; and 
variance 0ii= 1, ... , k), 

2. x. possesses an exponential distribution 

"' 
(3.9) P[x;, ~ x] = 1 - e -o; (i= 1, ... , k). 

In all these cases the estimates ti, ... , t1c are the ordinary least squares 
estimates in D. 

If on the other hand X;, possesses a rectangular distribution "between" 

9) This also follows from 
n, 

k k L (x;,. Y - y;,) 2 

L(y1 , •··,Yk) = - ½ 2, n;,ln 2na;-½ 2, .,__1'=-'
1
'--~2--

i=l i=l ai 
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0 and 0;,(i= 1, ... , k) then 

(3.10) wM = max max xi,y = max wi. 
iEM l::S')'::Sn; iEM 

Thus in this case there are no numbers <5i, .•• , Jk satisfying (2.11). 

Note added in proof 

If v~ is the value of z which maximizes QM(z) in IM then the theorems. 
I - IV also hold if bi, ... , b1c are chosen in such a way that 

l l. max vf,,E = min v;,,E =VE (P= 1, ... , K), 
T V s V V 

2. bi> 0 for each i EE. 

The proof, which is based on formula (2.5) m [3] will be given in a 

following paper. 

Mathematical Centre, Amsterdam 
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