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"fhe Efficiency of Some Distribution-Free Tests 

by Gottfried E. Noether *) 

Samenvatting 
Laten T1 en T2 twee toetsen zijn voor dezelfde hypothese () = 00 betreffende 

de waarde van een parameter 0. Zij verder de onbetrouwbaarheidsdrempel van 
beide toetsen gelijk aan oc en het onderscheidingsvermogen tegen de alternatieve 
hypothese () = 01 gelijk aan 1-{J. Indien toets T1 nu n1 waarnemingen vergt en 
toets T2 n2 waarnemingen, dan wordt de relatieve doeltreffendheid (Eng.: efficiency) 
van toets T1 ten opzichte van tpets T2 (als toetsen voor () = 00 tegen () = 01 ) 

gegeven door: e = n2/n1• Indien men de waarde van 01 op een bepaalde wijze naar 
00 laat convergeren bij toenemende n1, is het in vele gevallen, door gebruik te 
maken van een stelling van P i t m a n, mogelijk om een limiet-waarde voor e 
te vinden, die niet afhangt van oc en fl. Deze limiet-waarde wordt de asymptotische 
relatieve doeltreffendheid (volgens Pitman) genoemd. In dit artikel wordt 
een overzicht gegeven van hetgeen bekend is over de asymptotische relatieve doel­
treffendheid van een aantal verdelingsvrije toetsen ten opzichte van de correspon­
derende standaardtoetsen. 

De conclusie van de schrijver is, dat men bij het gebruik van verdelingsvrije 
methoden met een hoge doeltreffendheid (bijv. de symmetrietoets en de twee-steek­
proeven-toets van W i l c o x o n, de toets van Kr us k a l voor k steekproeven 
en de methode van m rangschikkingen) slechts zeer weinig informatie kan verliezen 
en dat zelfs het gebruik van minder doeltreffende verdelingsvrije methoden ge­
rechtvaardigd kan zijn. 

I. Introduction 

The use of distribution-free or, as they are often called, non-parametric 
tests has steadily increased over-the last years. However, there are still many 
practicing statisticians who automatically rule out any use of distribution-free 
methods on the grounds that their use involves too great a loss of "infor­
mation". It is then of some interest to have an actual comparison between 
distribution-free and the more familiar parametric tests, as well as com­
parisons of distribution-free methods among themselves. 

One possibility of comparing two tests of the same hypothesis is in terms of 
relative efficiency. It is not the purpose of this paper to discuss theoreticai 
aspects of the concept of efficiency of one test relative to another test. The 
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reader interested in such questions is referred to (8] and (13]. Rather, we are 
interested in bringing together in one place the considerable amount of 
information available in the statistical literature concerning the efficiency of 
the more well-known nonparametric methods. Before doing so, however, a 
few remarks concerning the concept of efficiency as applied to tests of hypo­
theses are in order. 

When we say that the efficiency of test T1 relative to test T2 is e, we imply, 
that the power of the first test using n observations is equal to the power of 
the second test using en observations. Or, putting it differently, the first test 
requires 1/e times as many observations in order to achieve as large a power 
with respect to a given alternative as the second test. The latter statement 
implies that the actual value of e may depend on the particular alternative we 
have in mind. Fortunately, this is often not the case, at least as long as we are 
dealing with large samples and alternatives which are reasonably "close" to 
the null hypothesis. In what follows, we shall always have this asymptotic 
local efficiency, as it is sometimes called, in mind. 

In the next section, we shall take up certain classes of problems for which 
distribution-free solutions exist and discuss the kind of information available 
concerning the efficiency of these methods. When stating the efficiency of a 
distribution-free test relative to the corresponding parametric test, it is custom­
ary to assume that all the necessary assumptions for the validity of the latter 
are satisfied. Most of the time this implies that we are sampling from normal 
populations having equal variances. While this kind of comparison gives 
valuable information, it should be remembered that in practice we rarely have 
the assurance that our assumptions are actually satisfied. It then is important 
to know how the relative efficiency of the distribution-free test relative to the 
parametric test changes as a consequence of changed conditions. As far as it is 
available, we shall try to give this information. 

A description of most tests to be discussed can be found, e.g., in [16]. 
Therefore, references will be limited to tests and results not mentioned 
in [16]. 

2. Efficiencies of Distribution-Free Tests 

2.r. One-Sample Tests. The parametric form of the hypothesis tested is 
usually of the type µ = µ0, whereµ is the mean of a supposedly normally 
distributed population. The appropriate parametric test is based on S t u­
d en t's t. The distribution-free version of the hypothesis usually concerns 
the median. · 

The simplest distribution-free test is the sign test. In order to find its 
efficiency relative to the t-test, assume that the underlying distribution is 



symmetric about 0 with density g(x-0), the null hypothesis being 0 = o. 
P i t m a n 1 ) has shown that the efficiency is given by 

(r) 

where a2 is the variance associated with g(x). For the normal distribution, 
this reduces to the well-known value 2/n = .64. Ho d g es and Leh­
m an n [7] have shown that if g(x) is unimodal, e>½, the minimum value 
being attained for the uniform distribution. On the other hand, there is no 
upper bound to e, since the sign test is applicable also for distributions having 
no finite variance. 

A more powerful test of the, same hypothesis is W i l c o x o n's signed 
rank test, whose efficiency relative to the t-test according to Pitman is 

(2) e = rza2 [Jg2(x)dx]2. 

For a discussion of this quantity, see Sect. 2.3. 

If observations become a~ilable sequentially, the sign test can be carried 
out as a sequential test of the hypothesis p = p0 = ½ against the alternative 
p = Pi > ½, say, where pis the parameter of a binomial distribution. Rom an i 
[15] has shown that the efficiency of this sequential sign test relative to the 
(nonsequential) t-test in the case of normal distributions is in the neighborhood 
of r.3, the exact value depending on the probabilities of type I and type II 
errors associated with the sequential test. Not only does this distribution-free 
test require on the average a considerably smaller number of observations than 
the most powerful parametric test, but it is also much simpler from a compu­
tational point of view. 

2.2. Two-Sample Tests (Matched Observations). In practice, the tests of the 
previous section occur most frequently when testing the hypothesis that two 
populations from which we have paired observations are equal against the 
alternative that one population is shifted with respect to the other. If we 
denote the observations from the two populations by Yi and zi, i = I, 2, ... , 

n, respectively, the tests are carried out by_ using the differences xi = Zi-Yi 
as the observed values. If the densities of 1i 3 ) and ~i are denoted by f(u) and 
f(u-0), respectively, the qensity of ~i may be written as 

1) Professor P i t m a n has never published this, as well as the additional results attributed 
to him. They were presented in lectures given at Columbia University during r948. Printed 
references can be found in [7] and [r2]. 

2) For the validity of (r), it is actually sufficient to assume that 0 is the median of g(x-0) 
without g(x-0) being symmetric with respect to 0. However, the assumption of symmetry 
is required for the other statements made in this section. 

3 ) Chance variables are distinguished from observed values by underlining. 
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g(x- 0) = Sf(u + x- 0)f(u) du, 

which is seen to be symmetric in x with respect to the point x = 0. In particu­
lar, if the null hypothesis 0 = o is true, 

g(x) = Sf(u + x)f(u) du. 

The efficiencies given in the previous section now apply with g(x) given by (3 ). 
For the fixed sample sign test, the efficiency relative to the t-test can be 

expressed as a simple function of f(u). Indeed, from (r) and (3), we easily find 

(4) e = 8a2[Jf2(u)du]2, 

where this time a2 refers to the variance associated withf(u). For f(u) normal, 
(4) again becomes 2/n. A direct proof of (4) without the use of (1) can be 
found in the Appendix. 

No simple expression in terms of f(u) seems to be available for the efficiency 
of the W i 1 c o x o n signed rank test, at least in the general case. When sub­
stituting (3) into (2), it should be remembered that the a2 of (2) is double the 
variance associated withf(u). If f(u) is normal, the resulting value of e is 3/n. 

For the sequential sign test, the efficiency statements remain the same as 
those of Section 2. I. 

2.3. Two-Sample Tests ( General Case). In the parametric case, we are inter­
ested in testing the hypothesis h = µ 2 on the basis of two independent 
samples. Again the appropriate t-test is known to be most powerful if the 
necessary conditions for its application are satisfied. The nonparametric 
hypothesis usually takes the form F1(u) = F2(u), where F1(u) and_ F 2 (u) are 
the cumulative distribution functions of the two underlying populations. 

Probably the most useful two-sample test - and certainly the most thor­
oughly investigated - is W i 1 cox o n's test (or Mann-Whitney's 
test as it is often called). The parametric case suggests the following alternative: 
F2(u) = F1(u - 0), i.e., under the alternative hypothesis the two distributions 
differ only with respect to a location parameter. Pitman has investigated 
the efficiency of the W i 1 cox on test relative to the t-test for this class of 
alternatives and. found e to be given by 

Cs) e = 1w2[Jj2(u)du]2, 

where f(u) = F1'(u). In case of normality, e = 3/n = .95. 
Ho cl g es and Le h man n [7] investigated the problem of finding the 

minimum value of (5) considered as a function off and showed that always 
e > .86. We may conclude that whatever the underlying distribution, when 
testing the hypothesis F1(u) = Fiu) against the alternative of a shift m 



location, as far as our concept of efficien~y is concerned, the W i 1 c o x o n 
test is never much worse than the t-test and may be infinitely better. 

In addition, H o d g e s and L e h m a n n considered what they called 
contamination alternatives: 

F1(u) = F(u); F2(u) = (1 - 0) F(u) + 0G(u); G(u) ~ F(u), say. 

Again H0 becomes 0 = o. In this case 

e = i2a2 (J(F -- G) dF)2. 
J(F- G) du 

Since the numerator is bounded while the denominator is not, there does 
not exist a lower boll;nd to e. The further G is to the right of F, the smaller 
is the efficiency of the W i 1 cox on test relative to the t-test in discovering 
this kind of alternative. As H o d g e s and L e h m a n n point out, in 
those cases where the contamination effect is due to gross errors, this low 
efficiency may rather be an advantage than a disadvantage. 

A two-sample test which has found considerable acceptance in statistical 
textbooks is the W a 1 d-W o 1 f ow it z test based on the total number of 
runs of elements in the two samples. While the test is consistent with respect 
to all alternatives for which Fi'(u) ~ F2 '(u), Pitman has pointed out 
that, when the two distributions differ only with respect to the value of some 
parameter, the efficiency of the run test relative to a properly constructed 
parametric test is zero. Even if very little is known about the type of alter­
native to be expected, the K o 1 m o g o r o v-S m i r n o v test based on the 
maximum difference of ,the two sample cumulative distribution functions is 
preferable. 

2+ Analysis of Variance Tests. Krus k al and W a 11 is have given a 
distribution-free equivalent for the one-way classification of the analysis of 
variance. For two samples, their H-test reduces to the corresponding W i l­
e ox on two-sample test. As far as the efficiency of the H-test is concerned, 
A n d r e w s [ r] and H o d g e s and L e h m a n n [ 7] have shown that 
everything said about the efficiency of the W i 1 c o x o n test in connection 
with alternatives involving a shift in location applies equally to the H-test. 

For the two-way classification with one observation in each cell Fried­
m an suggested the x\-test (also known as the method of m rankings) as 
a distribution-free alternative to the usual analysis of variance test. Fried­
m a n's test has been extended by Ben a rd and Van Elter en [2] 
to cover also the case of unequal numbers of observations per cell. A particular 
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important special case is that of a balanced incomplete block design, already 
considered by Durbin [5]. 

Let the total number of treatments (columns) to be compared be t. In a 
balanced incomplete block design, in each block (ranking) only k < ~ treat­
ments are compared on the basis of one observation for each one of the k 
treatments involved. Moreover, considering all m blocks, each treatment is 
combined with any other treatment the same number of times. 

V a n E l t e r e n and N o e t h e r [ 6] found the efficiency (for m -,,. oo) 
of the rank test relative to the corresponding analysis of variance test to be 

12k 
e = --a2 [Sf2(u)du]2, 

k + I . 
(6) 

independent oft. In (6), f(u) refers to the distribution of the error component 
in the underlying model. In particular, iff(u) is normal, as usually assumed in 
the analysis of variance, (6) becomes 

3 k 
e=-.--. 

'TC k+ I 

The efficiency of Friedman's test is obtained by substituting t for 
k in (6) and (7). 

For k = 2, we have the case of a paired comparison test, which is asymp­
totically equivalent to the Br ad le y-T err y test [3], whose efficiency 
thus turns out to be equal to (4). This is not surprising since, for t = 2, the 
F r i e d m a n test is equivalent to the sign test applied to matched observa­
tions. 

2.5. Tests of Independence and Regression. The best known distribution free 
tests of independence are those based on K e n d a 1 l's and S p e a r m a n's 
rank correlation coefficients. Kon ij n [rn] has investigated their efficiency 
relative to the product moment correlation coefficient for the following situa­
tion. Let ~ and ~ be two independent chance variables and define 

V = A1J:'. + ~~' 
'.!:!!_ = A.3~ + A.4~, 

where the A;, i = r, 2, 3, 4, are constants. The hypothesis of independence of 
~ and !:!:! can now be stated as A..2 = A.3 = o. The following examples illustrate 
the kind of results obtained by K o n ij n. If~ and ~ are normally distributed, 
the efficiency of either rank correlation coefficient relative to the product 

moment correlation coefficient is c~r = .9r. For the uniform distribution, 



the efficiency is I, while for the Laplace (symmetric exponential) distribution 

it is (~r = 1.27. 

Either rank correlation coefficient is also highly effective in testing for 
randomness against the alternative of a downward (upward) trend. S t u a r t 
[17] has investigated the efficiency of a great many distribution-free tests of 
randomness against normal regression alternatives. In particular, the efficiency 
of the rank correlation coefficients relative to the usual parametric test based 

on the regression coefficient is (;) ½ = .98. The efficiency of the sign test 

comparing the observations in the first third of the sample with the corre­
sponding observations in the last third is .83. On the other hand, the efficiency 
of the test based on the total number of runs up-and-down is zero. The same 
is true of the W a 1 cl-W o 1 f o w i t z test based on the serial correlation 
coefficient. 

If it is possible to carry out the test sequentially, the author's S,-test [14] 
has efficiency slightly higher than I. 

2.6. Goodness of Fit Tests. The' term goodness of fit test is customarily used 
if the hypothesis to be tested concerns the functional form of the underlying 
distribution, and not only the specific value of a given parameter. The clas­
sical test statistic for such a problem is x2• However, there exist other test 
procedures which can be used under certain conditions. We shall mention 
only the K o 1 m o g o r o v test based on the maximum distance of the 
sample cumulative distribution function from the hypothetical population 
cumulative distribution function, since the distribution of this test statistic 
is better tabulated than the distributions of other similar statistics. The 
K o 1 m o g o r o v test is applicable if the hypothesis tested is simple. In­
vestigations by M a s s e y [II] indicated that the K o 1 m o g o r o v test 
is more powerful than the corresponding x2-test. These indications were 
borne out by a study by Ka c, Kiefer and W o 1 f ow it z [9] in the 
case of tests of normality. While it would require too much detail to state 
their results precisely, the following statement should be sufficient. The three 
writers have shown that if the most powerful x2-test requires n observations in 
order to have power > ½ against a certain class of alternatives close to the 
null hypothesis, the number of observations required by the corresponding 
Ko 1 mo go r o v test has to be only of the order n'I•. This implies that 
the efficiency of the x2-test with respect to the Ko 1 mo go r o v test for this 
kind of problem is zero. 

It may be objected that the K o 1 m o g o r o v test can only be used to 
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test normality when the mean and variance are assumed to be known. Actually, 
K a c, K i e f e r and W o 1 f o w i t z have extended the K o 1 m o g o r o v 
test to cover the case when the mean and variance are estimated from the 
available data. Nothing definite is known about how the two tests compare 
under this more general situation, since the po~er of the x2-test is unknown 
in this case. However, it seems extremely plausibie to assume that the situation 
is not very much changed from that when testing a simple hypothesis. 

3. Conclusion 

As pointed out in the Introduction, the efficiencies given in the previous 
section are asymptotic local efficiencies. The question then arises as to how 
these efficiencies change when we are dealing with small samples and/or 
alternatives relatively far removed from the null hypothesis. 

Not much information is available on these two points except in the case 
of the sign test when the underlying distributions are assumed to be normal. 
For large samples, H o d g e s and L e h m a n n [ 7] have shown that the 
efficiency of the sign test relative to the t-test decreases very slowly from 2/n 
for alternatives close to the null hypothesis to .50 for alternatives far removed 
from the null hypothesis. Thus the value 2/n of the efficiency given in Section 
2. I turns out to be a good approximation for most alternatives of practical 
interest. 

According to an investigation by Dixon [4], the efficiency of the sign 
test decreases as the sample size increases, so that the asymptotic values given 
above actually represent minimum values of the efficiency. 

While it is, of course, dangerous to generalize from results like these, this 
author feels that similar statements are true with respect to the efficiency of 
many tests discussed in Section 2. 

One final remark seems to be in order before concluding the paper. The 
concept of efficiency as discussed in the Introduction is certainly of value 
when designing an experiment and deciding on the method of analysing the 
data to be obtained. On the other hand, once a given number of observations 
is available, it matters little how many more observations are required to make 
a less efficient method of analysis as powerful as a more efficient method. 
What matters then is the actual difference in power of the two methods of 
analysis. It is often true, particularly when large samples are involved, that 
the actual difference in power for a given sample size is quite small, even though 
there is a considerable difference in the efficiency, due to the fact that it may 
take a large number of additional observations to make up for even a small 
difference in power. 

In conclusion, then, we may say that when using distribution-free methods 



.aving high efficiency instead of the more customary parametric methods, very 
ittle information, if any, is lost, and even low-efficiency distribution-free 
tests may have very legitimate uses. 

4. Appendix 

The purpose of this Appendix is to make somewhat more precise the mean­
ing of asymptotic local efficiency and indicate a method for computing its 
value under conditions which are satisfied for many of the more customary 
tests. We shall also give an example of the computations involved. 

4.1. Pitman's Theorem. Let Tn = T(x1, , • • , x,i) be a test statistic for 
testing the hypothesis that a certain param~ter 0 has the value 00• Let ET,. = 
= 'l{J.,(0) and var'£,.= un2(0). Pitman has called the quantity -

R 2(0) = (1fJ',,. (00))2 
" o u2,.(0o) 

the efficacy of I_,. for testip.g the hypothesis 0 = 00 against the alternative 
0 = 0,, = 00 + k/yn where k is an arbitrary, but fixed constant. It is seen 
that the alternative 0,. approaches the null hypothesis 00 closer and closer 
as the sample size n increases. This is the reason for the term asymptotic 
local efficiency. 

If we have two tests of the same hypothesis with efficacies R\,,,(00 ) and 
R2

2,,.(00), we can state Pitman's Theorem 1 ): The asymptotic efficiency 
of the first test relative to the second test is given by the limit of the ratio of 
the two efficacies, 

1
. R\,,.(00) 

e = 1m 
2 

, 
,.._.."" R 2,,.( 0o) 

4.2. Example. In Section 2.2, we considered the sign test for testing the hypo­
thesis that two populations from which we have paired observations are equal 
against the alternative that the second population is shifted with respect to 
the first. More precisely, let the first population have density functionf1(u) = 
= f(u) wheref(u) is an arbitrary density function while the second population 
has density function f2(u) = f(u - 0). We want to compute the efficiency 
of the sign test relative to the t-test for testing the hypothesis 0 = 00 = o, 
where both tests are based on the differences xi= zi -yi,, i = I, ... , n, 
of the paired observations Yi and zi from f1(u) and h,(u), respectively. 

1) For the necessary regularity conditions, see [13]. A more general approach can be found 
in [8], 
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The sign test is based on, say, the number T1,n of positive values among 
the x/s. We easily find 'l/1i,n(0) = np, a\,n(0) = np(r - p) where p = p(0) · 
is the probability that a y-observation is smaller than the corresponding 
z-observation. Thus 

00 z , 

p( 0) = P{t < f} = J J f(y )dy f(z - 0)dz = 
-oo -00 

00 u+e 
= J J f(y)dy f(u)du, 

-00 -co 

so that 

dp(0) I 
d0 0=o 

+oo 
J f 2(u)du. 

-00 

Since p(o) = ½, 

R\ n ( o) = n
2
[Jf2(~ )du ]

2 
= 4n[Jf2( u )du ]2• 

' n/4 . 

Asymptotically, the t-test is equivalent to the test based on the statistic 
- I n 

T2 n = x = - 2: (zi -- Y;), We easily find 
- , - n i=l - -

'l/1;,n (0) = E~ = 0, 

2a2 

a22n (0) = -, , n 

where a2 is the variance associated with f(u). It follows that 

2 _ I _ n 
R 2,n(o) - ~/ - - 2, 

2a n 2a 

and finally, 

e = lim R\n (o) = 8a2[ff2(u)du]2 

n-Ho R22n (o) ·· ' 
as stated in (4). 
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