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The asymptotic efficiency of the x:-test for a balanced incomplete block design* 
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Friedman (1937) has shown how n treatments can be compared on the basis of the rankings of m 'ob
servers'. This method has been extended by Durbin ( 1951) to cover a balanced incomplete block design, 
i.e. the case when each observer ranks k .,:; n treatments exactly once and each treatment is compared 
with any other treatment exactly A times. We want to find the asymptotic (m ➔ oo) relative efficiency 
(in the sense of Pitman, see e.g. Hannan, 1956) ofDurbin's test with respect to the usual analysis of 
variance test for a balanced incomplete block design. 

We note for future reference that 
A: l(k-1), 

n-1 
(1) 

where l is the total number of times a given treatment is used (replications). 
The asymptotic relative efficiency is most easily obtained with the help of a formula given explicitly 

for the first time by Hannan ( 1956). It may be stated roughly in the following way. If both test statistics 
have, under the alternative hypothesis, non-central x-square distributions with the same number of 
degrees of freedom, the asymptotic relative efficiency of one test with respect to the other test is equal 
to the ratio of the two non-centrality factors after the alternatives have been set equal. 

Essentially, then, all we have to do is to compute the two non-centrality factors which we shall denote 
by d: and d; for the rank and F-tests, respectively. The conditions for the applicability of Hannan's 
formula can be shown to hold provided the underlying distributions satisfy some very general regularity 
conditions. These details will not be presented in this paper, since similar considerations have been given 
in several other papers, e.g. Andrews (1954), Benard & van Elteren (1953) and Bradley (1955). 

Before computing the non-centrality factors, we have to specify the mathematical model which we 
are going to consider. The usual analysis of variance model suggests the following approach. 

Let F(x) be a continuous cumulative distribution function with density functionf(x) = F'(x). Let 
x_pv (µ = 1,2, ... ,m; v = 1,2, ... ,n)t be the chance variable associated with the observation of the µth 
observer (block, in the analysis of variance) on the vth treatment. It is then assumed that the dis-
tribution .Fµv(x) ofxµvis given by Fµv(x) = F(x+Bv+'f/µ), 

where, without loss of generality, we may assume that~ 0v = 0. The null hypothesis to be tested is that 
V 

01 = 02 = ... = 0,. = 0. The alternatives to be considered specify that for a given number of replica-
tions l, /J. 

0v = Bvi = Ji• 
where the /J.v are given constants satisfying 

~li.v=O. 
V 

For this model, we find (e.g. Anderson & Bancroft, 1952, §19·3) that 

a;= l0~0:i1u2 = O~li.;Ju2
, 

V V 

where u 2 is the variance associated with F(x) and 

O=n(k-1) 
k(n-1) 

(2) 

(3) 

(4) 

is the efficiency factor of the given incomplete block design. The fact that for large m, F has approximately 
a non-central x-square distribution follows from an argument similar to that given in Andrews (1954). 

For computing a:, let us introduce the following notation. Let r µv stand for the rank which the µth 
observer assigns to the vth treatment (assuming that he considers the vth treatment), and let Rv = ~Mr µv 
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where l;<vJ denot.es summation over those l observers who have rated tre<!.~ment v. If we then set 

uv = ~- ½l( k + I), Durbin 's test statistic is, except for a constant factor given by 

2 12 n 2 
Xr = nA(k+ l) v~i u., 

which, for large l, has approximately a non-central x-square distribution with (n- 1) degrees of freedom. 
We then have 12 

d; = nil(k+ l); {C(Up)}
2

• 

Now C(Ri) = ~<t> L P{xµ, > xµJ<µi}+l, (5) 
µ j(µ)+i 

wherej(p,) refers to the treatments rated by the µth observer. Since 

P{xµi > Xµ;r.µi} = f F(x+B;r.µ>+1/µ)f(x+B,+1/µ)dx 

= f F(x+B;:µi-B;)f(x)dx = f F(x+ 
8
i\µ.J7

8
')J(x)dx ~ ~+ 

8i<✓7 8; f j2(x)dx, 

and since every treatment occurs exactly A times together with every other treatment, (5), in view of 
(1) and (2), becomes · 

C(R;) ~ \;
1 
[~+ 8r;/' f j2(x)dx] +l = l(k;l) _ ~: a,J j2(x)dx. 

Thus i+i t!(u,,) ~ - ~: 8; f J2(x)dx, 

d2 ~ i2n(k-l) [f12(x)dx]2~82. (6) 
and, finally, r (k+ l)(n- l) ;' v 

From (3), (4) and (6), the asymptotic relative efficiency Ek of the x:-test with respect to the F-test is 

found to be 12k [ J ]2 
Ek= k+ l u j2(x)dx • (7) 

It is interesting to note that (7) depends only on the block size k, and not on the nwnber of treatments. 
We obtain the relative efficiency of the Friedman test by replacing k by n in (7). · 
In the special case whenf(x) is normal, (7) becomes 

3k 
Ek(N) = -k-, (7N) 

1T( + 1) 
some values of which are tabulated below: 

2 3 
0·64 0·72 

4 

0•76 
5 

0·80 

6 

0·82 
7 

0·84 
8 

0·85 
9 

0·86 
10 

0·87 
17 

>0·90 

CX) 

0·95 

When k = 2, we have the case of paired comparisons where each observer is asked to compare only 
two treatments. In this case, (7) becomes 

and (7N), 

E 2 = s[u f j2(x)dxJ, (8) 

2 
E 2(N) = - = 0·637. 

1T 
(8N) 

The problem of paired comparisons has been of considerable interest during the last few years and 
many methods for treating the problem have been offered. It is easy to show that the x~-test fork = 2 
is equal to the asymptotic form of the Bradley-Terry test discussed by Bradley (1955). 

Bradley finds n/{1r(n- l)} as the asymptotic efficiency of his T-test relative to the analysis of variance 
test in case of normality where, following our notation, n is the number of treatments involved. The 
difference between Bradley's result and our own result (SN) is due to the fact that Bradley assumes a 
one way classification for the analysis of variance with l observations in each class instead of the balanced 
incomplete block design which we have considered. Since the variance o-2 in (8) clearly refers to the 
within block variability, the latter model seems to be more appropriate. 

If we multiply Bradley's result by 1/0, where O is given by ( 4) with k = 2, lO being the effective number 
of replications of the balanced incomplete block design, we get (SN). 

As far as the x:-test is concerned, instead of the model 

Fµv(x) = F(x+Bv+1/µ), 
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we could have considered the more general model 

Fµv(x) = Fµ(x+Ov), 

where, for differentµ, the Fµ(x) may be different cumulative distribution functions. Nothing much is 
gained as long as we are interested in an incomplete block design, since the non-centrality parameter 
d:, and therefore the power of the x:-test, will depend on which particular k treatments are put in which 
particular· block. However, in the case of Friedman's test when k = n, easy computations show that 

~ = 2:2: l) [ ~ J 1:<x) dxJ2 t 8:. m n p,=l v=l 
(9) 

where/ µ(x) = F~(x). (9) can be used to compute the asymptotic power of Friedman's test for this more 
general alternative. 

For k = n = 2, the x:-test is equivalent to the two-sided sign test, a test whose properties have been 
more thoroughly investigated than those of any other distribution-free test. (8) then becomes the 
asymptotic efficiency of the sign test relative to the t-test, a quantity which is usually given ( e.g. Hodges 
& Lehmann, 1956) as E,,t = 4u3/2(0). (10) 

The explanation is that (10) refers to the one-sample sign test while (8) refers to the two-sample sign 
test, a distinction which is rarely made. (10) can be used for the two-sample case if.! is interpreted as 
the density of x -y, where x and y are the two chance variables under consideration. From a practical 
point of view, it is more important to know the efficiency in terms of the individual distribution of x 
and y. Then the answer is given by (8). As far as the two-sample sign test is concerned, it is, of course, 
easy to obtain (8) directly without reference to the x:-test. 

The results obtained in this paper are asymptotic, i.e. valid for large numbers ofreplications. Nothing 
seems to be known about the relative efficiency of the x~-test for small numbers of replications except 
in the case k = n = 2. Since in this particular case the relative efficiency for a small number of replications 
is known to be much higher (in the case of normality) than indicated by the asymptotic formula, it seems 
reasonable to assume that the asymptotic values derived in this paper can be considered minimum values 
for the corresponding efficiencies. 
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