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by 

J. TH. RUNNENBURG 

INTRODUCTION 

In this paper some known f ormulre, which Qre of importance for the 
theory of queueing with one server, are derived by means of a probabilistic 
interpretation of generating and moment generating functions, according to a 
method introduced in ( 1 ) Van Dantzig ( 194 7, 1948) and applied to some 
problems in these and later publications (Van Dantzig (1955, 1957)., Van Dantzig 
and Scheffer (1954), Van Dantzig and Zoutendijk (1959) ), and to queueing 
problems in Kesten and Runnenh11rg (1957). In particular the present paper 
contains the answers to questions recently put in the Royal Statistical Society 
by D. R. Cox, D. G. Kendall and F. G. Foster, concerning the possibility of 
giving a probabilistic interpretation to some f ormulre occuring in queueing 
theory. 

In the three applications we treat here, the following situation is consi
dered ( described for the non-equilibrium case). 

Customers are served at a counter in the order in which they arrive from 
time t = 0 onwards, !:r is the time of arrival of the r th customer, r = 1, 2, ... 
and s,,. his servicetime ( 2 ). If -

y,,. def '!_,,.-!_,,._1 for r = 1, 2, ... (with !o = 0), (1) 

then the y,,. and §.r are taken to he non-negative independent random variables, 
with all y,,. having the saine distribution function 

A (y) def 
1 - e-.iv if y > 0 

0 if y ¾ 0, 

(*) Report SP 66 of the Statistical Department of the Mathematical Center. 

( 1 ) See the list of references at the end of this paper. 

(2) 

( 2 ) Random variables are distinguished from numbers ( e.g. from the values they take in 
an experiment) by underlining their symbols. 
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where .,\ is a positive constant, and all !.r having the same known distribution 
function B(s), with B(O-) = 0. By choosing an appropriate unit of time we 

assume without restriction A = I. We further assun1e, that S1 exists and -
define ( 3 ) 

p def (b ~1 • 

Let Wr denote the waitingtin1e of the rt 11 customer. Define ( 3 ) 

C,,. ( W) def p w,,. < W • 

(3) 

(4) 

Following Takacs we introduce a function !f:'(t), denoting the time needed 
to complete the service of all those present at time t. 

Further ( either with or without a suffix on both sides) 

00 ,. 
(Re~> 0), (5) 

• 
0-

00 

(6) 

0-

A. -

In Takacs (1955), a theorem is proved (theorem 2), which we shall prove 
here in a slightly less general form. (From (2) we have that the probability 
that a customer arrives in the interval dt is .,\ dt + o( dt), where .,\ is a constant ; 
Takacs assumed that .,\ is a function of t). The theorem as we prove it, reads 

The Laplace-Stieltjes transform 

00 

(7) 

o-

of the function 

F(t,w) def P w(t) ¾ w (8) 

may he written in the forro 

t 

cf, ( t, ~) = e~t-[1-pc~> J t I - (9) 

0 

where F(u, 0) denotes the probability, that at time u the counter is free. 

0~ denotes the mathematical expectation of a 
for the probability of event A. 

stochastic variable x, P A - is written 
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Takacs first derived an integro-diff erential equation for F ( t,w) and then 
passed to the Laplace-Stieltjes transform cf, ( t,~). We obtain his theore1n with 
the help of a probabilistic interpretation, which might equally well have been 
used to derive his more general result. To do this we write (9) in the equivalent 

form 

t 

e-t[ 1 -P(E)l = e-~t cj,(t, ~) + e-(t-u)[1-P(~)J F(u, 0) ge-;u du. (10) 

0 

Let !: , !;,... he moments at which catastrophe E~ occurs ( 4 ), these 
catastrophes being in no way connected to the problem under discussion, with 

(II) 

all y'r being independent random variables, drawn from the distribution 
-

1 - e-~v if y > 0 

0 if y ¾ 0., (12) 

where ~ is a positive constant. 

We now introduce the three events 

def no E~ occurs d111·ing the time the counter is occupied by 
customers, who arrive before t, (13) 

def E~ occurs for the first time after all customers arriving 

before t have been served, (14) 

def E~ occ11rs for the first time before t at a moment u at which 

the counter is free and after that no E~ occurs d1.1ring the 
re,,1aining servicetime of the customers who arrive before 

t, 0 < u < t. (15) 

If exactly n customers arrive before t ( an event with probability e-t. 
t"/n! ), the probability, that no E~ occ1.1rs during the servicetime of anyone 
of these customers is equal to {3(g) ", as these servicetimes are mutually 
exclusive and stochastically independent. Therefore 

p 00 tn 
~ e-t __ 

n=o n! 
p(g) 11 = e-tc1-p(~)l. (16) 

(17) 

0-

(
4

) This is an example of the kind mentioned in Cox ( 1957). 
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From (16) we have for the probability, that no E~ occurs during the time 
the counter is occupied by customers, who arrive in the interval (u, t) 

e-( t-u) [1-p(~) J (18) 

while F ( u, 0) is the probability, that at time u the counter is free. Therefore 

t 

p e-(t-u) [l-,8(~)] F ( u, 0) ~ e-~u du. (19) 
0 

As event 
,;..., 

is clearly the conjunction of the disjoint events and 
we have 

p = p - +P ' (20) 

which combined with (16), (17) and (19) leads to (IO). 

Therefore Takacs' result has now been derived by a probabilistic inter
pretation, for the relation ( 10) holds for all ~ with Re g > 0 by analytic 

• • cont1nuat1on . 

B. POLLACZEK'S FORMULA (5 ) 

Let E be an incident (catastrophe), which happens with probability 1-X 
to a customer, these events being independent for the different customers and 
fro1n each other. Consider the events 

'-' 

,,. def E does not happen with respect to any of the customers 

arriving in w,,. + !r, 

,,. def E happens with respect to customer r + I and does not 

happen with respect to any of the customers arriving in 
to,,. + ~,,. ( or equivalently) = E happens with respect to 

customer r + I and Wr+1 = 0, 

-- ,,. def E does not happen with respect to customer r + I and does 

not happen with respect to any of the customers arriving in 

(21) 

(22) 

Wr+1 ( where either Wr+-i = 0 or Wr+t > 0). ( 23) 

Because 
have 

p 

r is the conjunction of the disjoint events 

=P r + p r • 

,,. and ._.. ,,. we 

(24) 

If tis the length of an interval, the probability of no customer arriving in 
that interval with respect to whom E happens, is given by (see (16) and its 
derivation) 

(
5

) The results under Band C were obtained in collaboration with Prof. Dr. D. van Dantzig. 
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co tn xn 
~ e-t ___ = e-t(t-X) 

n! , (25) 

so 

p = ,_ e -(w., + ~,.) (1-X) == yr(l-X),8r(l-X), (26) 

because of the independence of Wr and !r• Further 

p = ( 1 - X) P Wr+l == 0 (21) 

and 

p == X Yr+1(l-X). (28) 

If we write 

=1-X, 

then we have by (24), (26), (27) and (28) 

= EP Wr+l = 0 + (1-~) Yr+l (~). (29) 

If we consider the stationary situation connected with the process described 
on page 1, we may drop ( 0

) the suffixes r and r + I from (29) to obtain 

y(~)/3(~) =~P w=O + (1-f)y(~). (30) 

This identity holds not only for O < X ¾ I ( or O < ~ < 1), hut for all ~ 

with Re~> 0. From (27) we find by differentiation with respect to ~' upon 
taking E == 0 

P w=O (31) 

from which we see, that p ¾ I is necessary for stationarity. As is well known 
p < I is the necessary and sufficient condition (see e.g. Kendall (1951)) for a 

• stationary system. 

From the relation (24) we have thus derived the well known Pollaczek
formula ( 30) ( 7 ). An equivalent form of ( 30) is 

py(E) 1-fi(E) 
(32) 

s -

( 6 ) In Kesten and Runnenburg ( 1957) the details of this procedure are given. By speciali
zation of the derivations given there to the case of one priority, a slightly less direct 
proof of (29) is obtained by the same method as is used here. 

( 7 ) This for1nula was given in Pollaczek ( 1930) for the first time, see footnote on page 105 
in Pollaczek ( 1957). For another probabilistic interpretation, see Foster's comment in 
Kendall ( 19S7), page 213. 
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KENDALL'S DECOMPOSITION 

If we consider the incident E in B as a mark, which a customer may have, 
where again the probability of a customer having that mark is 1-X, we can 
infer a « principle » from equation ( 32), which can he used to give a probabi
listic interpretation to the decomposition in components, as indicated in Kendall 
(1957) (see first footnote on page 208 and the corresponding passage in the 
text). 

We suppose the system to he in statistical equilibrium. Arriving customers 
take a seat in a waitingroom, in which they stay during their waitingtime, i.e. 
from the moment they arrive until the counter can attend to them. Call a 
customer having mark E an E-customer. The « principle » can now he stated : 
the probability, that during the waitingtime of a customer, K 0 say, no E
customer enters the waitingroom equals the probability, that no E-customer 
leaves that roon1 d11ring that time. As « statistical equilibrit1n1 » may he regarded 
as « statistical equilibrium in the waitingroom ». this principle seems quite 
natural. One can prove that it is true by making use of the truth of ( 32). 

For the event 

0 def during the waitingtime of K 0 no E-customer enters the 
waitingroom 

clearly 

p = y(g) 

holds. 

We further consider the events 

during Ko's waitingtime no E-customer leaves the wai-
• tingroom, 

customer K 0 finds an empty counter on arrival (in which 
case during his waitingtime certainly no customer, be it 
an E-customer or otherwise, leaves the waitingroom), 

customer K 0 finds the counter occupied by a customer 

K-1, and no E-customer is present in the waitingroom ( or 
equivalently) = customer K 0 finds the co11nter occupied 
by a customer K_1 , and no E-customer arrived during 
K_1's waitingtime nor during that part of K-1's servicetime 
which lies before Ko's arrival. 

(33) 

(34) 

(35) 

(36) 

(37) 

If K 0 finds the counter occupied on ar1·ival, we call the customer who is 
served at that moment customer K_1 • Customer K_1 may he called the « ances
tor » of customer Ko, in distinction of the « predecessor • of customer Ko, who 
is the last one arriving be£ ore K 0 • H w_1 is the waitingtime of K_1 and ~-1 the 
time between the start of K_1's service and K 0's arrival, then W-1 and ~-1 are 
independent random variables. The probability, that Ko finds the counter occu-
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pied and that no E-customer leaves the waitingroon1 during K 0 's waitingtime is 
trivially equal to the probability, that neither during K_1 's waitingtime w .. 1 nor 
during the time ~-1 spend by K_ 1 at tl1e countc1· before Ku's arrival an E
customer enters the waitingroom. The probability, that no E-customer enters 
d1.1ring a given interval of length t is e-t (i-.x) (see (25) ). 

Take the mo1,1ent of K_1 's arrival as the initial point of this interval. The 
probability, that a customer enters during an interval dt is dt -t- o ( dt). Hence 

the probability that K 0 enters during K-1's servicetime !-i and that no E
customer has entered after K_1's and before K 0 's arrival is given by 

p e-t(t-X) dt = 

= y(l-X) l-{3(1-X) 

because W-1 and ~-1 are independent. 

For 

Again 

~ we have (see (31}) 

p 

...... 

p , 
0 

Because of (38), (39) and (40) 

(l-X)-1 = 

= I-p. 

p 

p 
- p + ---------

,.,,.... s -........ 

so we have proved with the help of ( 32) 

p =P 

which is just the « principle > stated earlier. 

p y (t) 1 {3(/;) 
---~---, (38) 

f; ,,,..... §_ 

, 

0 • ........, 

(39) 

(40) 

(41) 

(42) 

If we substitute for y(~) on the right hand side in (32) the whole right 
hand side of that equation and iterate this proeed11re, we obtain Kendall's 

deco1oposition of (32) 

00 

y(~) ~ (l-p) p" 
n=O 

This relation shows, that 
written (with w = 0 if!!= 0) 

the 

1-fi(g) n 

• (43) 
s -

waitingtime w of any customer may he 
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n -
w= (44) 

i=l 

where the ~i are independent random variables, all having the same dist1·ibution 
function, the Laplace-Stieltjes transform of which is 

1-/3(~) 
(45) 

and !!: has a geometric distribution, with 

Pn=n - ( 1 - p) pn ( n · 0, 1, ... ) . (46) 

So far we considered only customers Ko and K-1, K_1 being the ancestor of 
Ko, if such an ancestor ex.is·ted. Let K-i he the ances·tor of K-·i+1 if K-·i+i has an 
ancestor, i.e. if the counter is occ11pied upon K-i+1's arrival, we call the customer 
who is served at that moment K-i• Then n is defined to he the number of ances--
tors of customer Ko. K_n is thus the first customer ( going hack from K0 to K_1 .... 
etc.), who found an empty counter on arrival. Now 

Pn=n - = (1- p) pn (n = 0, 1, ... ) (47) 

because whether K-i+1 finds the counter occupied or not does not depend on 
what happens in his servicetime, so K-i+i finds with probability p that customer 
K_i is being served and with probability I - p an empty counter, whence ( 47) 
holds. 

Let w_i be the waitingtime of customer K-i and ~-i the time from the start 
of K_i's service until K-i+1's arrival, then one can proceed in the following man
ner, the details of which are omitted. 

The « principle » can he generalised (for n > I) to 

P no E-customer leaves in ivo I !! = n 

== P no E-customer arrives in W-1 + ~-1 I !! = n , (48) 

where ( W-1 I !!: == n) and (~-1 I !! = n) are still independent random variables, 
so (for n > 1) 

P no E-customer leaves in w 0 I !! = n 

== P no E-customer arrives in w_1 [ !! = n . 

P no E-customer arrives in ~-1 I !! = n . (49) 

For n ~ I we also have 

P no E-customer arrives in w_1 I !! = n 

== P no E-customer arrives in wo I !! = n - I (50) 

and because Wo = 0 if n = 0 -

' ' 
' 
' 
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P no E-customer arrives in w 0 I !! = 0 

while further £or n > I 

P no E-customer arrives in ~-1 I !! = n 

11 

== I, (51) 

=== P no E-customer arrives in ~-1 • ( 52) 

Therefore because of (48), (49), (50), (51) and (52) 

P no E-customer leaves in Wo I !! = n 

IT P no E-customer arrives in x_,i -i-=1 

1-/3(~) , (53) 

which means that we may take 

(54) 

and that we have found a prohalistic interpretation of ( 43). This formula may 
now he read : the probability, that during the waitingtime w 0 of a customer 

K0 no E-customer arrives is equal to the probability, that no E-customer arrives 
n -

during the time ~ ~-i, where !! is the number of ancestors of Ko and ~-i the 
i=l 

time between the start of K-i's service and K-i+1's arrival. 
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RESUME 

Dans cet article quelques foi:mules connucs. importantes pour la th&>rie d·attente a un 
gu1cl1et, sont deriv>ttS i l'aide d'une interpretation probabilistique des fonctions generatrices 
et des fonctions genera.trices des mon1ents. sui"viant une methode introduite par Van D:antzig 
( 1 ) (1947. 1948) et appliquee a que]ques problemes dans ces pt1blications et d'autrt.~ (Van 
Dantzig (1955. 1957), Van Dantzig and Scheffer (1954), Van Dantzig and Zoutendijk 
( 1959) et a de,s problemes d'attente dans Kesten and Runnenburg ( 1957). En particulier on 
a traite quelques questions ' spar D. R. Cox. D. G. Kendall et F. G. Foster dans le « Jour .... 
nal of the Royal Statistical Society », concernant la possibilite de telles interpretations. 

Dans le present article on donne une interpx·etation probabiliste pour la fo11nule (9), 
due a L. Tik:acs (Takacs (1955) ). la formule (32). due a F. Pollaczek (Pollaczek ( 1930)) 
et la decomposition de (32) comme donnee par ( 43), due a D. G. Kendall (Kendall 
( 1957)). 

{ 1 ) Une liste bibliographique se trou,,e a la fin de l'article. 


