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Probabilistic interpretation of some formulae in queueing theory 

by J. Th. Runn~nburg 

Introduc ti 011. 

In this paper som~ known formulae, which are of importance for 

the theory of queueing with on0 server, are derived by means of a 

probabilistic interpretation of gen8rating and moment generating 

functions, according to a method Van 

1947, 1948 and applied to somt~ problems in these and later pu

blications Van Dantzig 1955, 1957, Van Dantzig and Scheffer 

1954, Van Dantzig and Zoutendj_jk 1958 , and to queueing pro 

blems in Kesten and RunnEnburg 1957 . In particular the present 

paper contains the answers to questions recently put in the Royal 

Statistical Society by D.R. Cox, D.G. Kendall and F.G. Foster, 

concerning thl"? possibility of"I g~·1.ving a probabilistic interpreta-

tion to some formulae occuring in queueing theoryQ 

In the three applications we treat here, the following situa

tion is considered described for the non-equilibrium case • 

Customers s.re S8rved at a counter in the order in which 

t=O or1vJards !J t is the -r 
time of arrival of arrive fro1n t itnl~ 

th r customer, r=1,2, ... nnd s -r his servicetime 

1 

·then the ,r ,Yr 

variables, 

( 2 

anc1. s -r 
all 

-r - t -r-1 
for r='1, 2, ••• with t =0 

-0 

are taken to bs nonnegative independent 

-'Ay 
1 - e def y~O 

-

0 -
\. 

if y ~ 0 , 

t11.ey 

the 

randorn 

• 

whsre is a positive constant, alls having the same known 
-r 

distributionfunction B s , with 

ate unit of time we assume 

sts 3 a11d d.efine 

3 
Let i1 -r 

denott: the 

i ' 

vJ c1 i ·1c i ngt i rr1e 

,._ - ......... ...._ • Pl W ...... 'll'fltl W ........ - ......... --

of 

s -'1 
t11e 

=O ~ By choosing an appro};:r•i,,, .. 

0 

th r 

=rJ a \~e further 

1 

2 

See the list of references at the end of this paper 
• 

Random variables are distinguished from numbers eog. from the 
values they take in an experiment by underlining their symbols 

ex denotes the mathematical expectation of a stochastic var~a
ble x, PA is written for the probability of event Ao 



2 
def . 

Cw - P vJ <VJ r -r-......:. 4 • 

Following T~kacs we introduce a function wt 

time needed to complete the service of all those 

, denoting the 

present at time 

t. 

Further eiJL.:her vJi·th or \tJi.Ghout a suffix on both sides 

clef -

o-

def 

o-

✓ 

A Takacs forrnula 

00 

Cto 

dB s 

e- w d C w 
r 

Re ~ 0 

• 

In T~kacs 1955, a theorem is proved theorem 2, which we 

shall prove here in a slightly less general form. From 2 we 

have that the probability that a customer arrives in the inter

val dt is Adt+o dt , where A is a constant; Takacs assumed that 

is a functior1 oft • The theorem as we prove it, reads 

The Laplace-StieltJes transform 

t :; 
def 
===--· -· 

- \'v 
e d F t,v-1 

of the function o-

F 

may be written in the form 

g 
-

t- 1-
e t t 1- 0 u F u.,O du 

u 

where F u,O denotes the probatJility, that at time u the counter 
is free. 

T&kacs first derived an integro-differential equation 

F(t,w and then passed to the Laplace-Stieltjes transform 
for 

; 

We obtain his theorem with the help of a probabilistic interpre

tation., vJhich rr1ight eq1l2:11·1y· VJell h.ave been 1J.sed to derive his 

more general resul·to To do this we write 9 in the equivalent 
form 

t 

• 

10 + - t-u e 
1- 0 l 

F u,O - u e du. 
, .,, . 0 

,,,,., ____ ii■ -------·· 

' be moments at which catastrophe E~ occurs , 

This is an example of the kind mentioned in Cox 1957 • 

' 
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these catastrophes being in no way connected to the problem under 

discussion, with _ ,, 

I 

bution 

where 

\~e 

13 

15 

-t1 r=~ 2 Wl0 th =0 -r -r -:r- ,., ,... -o ' 

being independent random variables, drawn from the distri-

F I Y~$, y 
-- 0 if y ~ 0 , 

is a positive constant. 

now introduce the three events 

-

C.., ' ' 1'-' , ~. t: ; ~ 

occurs during the time the counter is occupied 

by customers~ who arrive before t~ 

the first time after all customers ar

riving before t r1c1ve ·i·)ee11 served.., 
I f 

r.1e~: E occurs f··or the first time before t at a moment u 

at which the counter is free and after that no 

occurs during the remaining servicetime of the cus

tomers who arrive 1Jefore t, 0 ~ u ~ t. 
If exactly n customers arrive before t an event with probabi~ 

these servicetimes are mutually exclusive and stochastically in•• 

dependent. Therefore 

.... 

n=o 

For event JV we have 

p ] 

e 
, trl ---t ~ 

nt • 

n -t 1-e 
' t ( -

t - t t - +vJ 
- .. -- • J e d I) vv t ~ vv = e ... a t j 

o-

ing the time the counter is occupied 

the interval _u,t 
1- :> ( 

• 

while F u,O is the probability, that at time u the counter is 

free. rrherefore 



t 4 

0 

- t-u e 1- - u e duo 

As event is clearly the conjunction of the disjoint events 

and , we have 

20 p p 

which combined with ~17 and leads to 

Therefore Takacs' result has now been derived by a probabi

listic interpretation, for the relation 10 holds for all 

with Re ) Oby analytic continuation. 

B Pollaczek's formula 1 

Let Ebe an incident catastrophe, which happens with pro

bability 1-X to a customer, these events being independent for 

the different customers and from each other. Consider the 

events 

21 

22 

23 

r 

r 

r 

- -i, oes nojc happe11 with respect to any of the cus-

c=l e f 
=== 

def 

tomers arrj_ving in w + s -r -r ~ 

E happens with respect to customer r+1 and does 

not happen with respect to any of the customers 

-r 

E does not happen with respect to customer 

and does not happen with respect to any of 

.... 0 ;; 

r+-1 

the 

customers arriving where ei~her wr+1 

Because-.;_,, i .. s tl10 conjunction of the disjoint events r r 
and __ we 11.ave 

24 + P C 1~ • 

Tf' t is the leng·t1-1 of' a11 intervaJ_;i 1che l)robability of' no 

customer arriving in that interval with respect to whom E happens, 

is given by see 16 and its derivation 

so 
n=o n! 

-t 1--x e 

The results unde:r, :s and C ivere ob·l~a.j_nec1 in collaboration with 
Prof. Dr D. van Dantzig. 

• 



r 

- w +s -r -r (~ 
C e 

because of the independence of w 
-T 

27 
r 1-X 

and 

28 r X 
-w 1-X 

9 
-r+1 

If we write 
-- 1-X 

then we have by 24 ; 26 
' 

r r ,• 
t 

y: 1-X 
-

ands . Further --r 

--r+1 0 

X r+1 1-X 

r 

=O + 1- r+1 

5 

1-X 

• 

If we consider the stationary situation 
process described on page 

r+1 from 29 to obtain 

connected with the 

the suffixes rand 

This 

for all 

respect 

31 

--

identity holds not 
\ 

with Re ~o. From 
~ 

to ~~, upon taking 

0 

• 

only for O ( X ~ 1 or O ~ ~ 1 J 

27 we find by differentiation 
-- 0 

1 . ,., 

but 

with 

from which we see, that - ~ 1 is necessary for stationarityc 
' 

As is vJell known - < 1 is the 11ecessary and sufficient condition 

see e.g. Kendall 1951 for a stationary system. 

From the relation 24) we have thus derived the well known 
' 

Pollaczek-formula 30 2 • An equivalent form of 30 is 

{ 

+ 1-
\ 

f s 
• 

.............. ____________ _ 

In Kesten and Runnenburg ~957 the details of this procedure 
are given, By specialization of tl1e derivations given there to 
the case of one priority~ a slightly less direct proof of 29 
is obtained by the same method as is used here. 

2 This formula was given in Pollaczek 1930 for the first time, 
see footnote on page ~05 in Pollaczek ~957 • For another pro
babilistic interpretation, see Fos·ter 1 s comment in Kendall 
1957, page 213. 
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C Kendall's decomposition 

If we consider the incident E in Bas a mark, which a cus

tomer may have, where again the probability of a customer hav

ing that mark is 1-X, we can infer a 11 principle 11 from equation 

32, which can be used to give a probabilistic interpretation 

to the decomposition in components, as indicated in Kendall 

1957 see first footnote on page 208 and the corresponding 

passage in the text • 

tJe suppose the system to be in statistical equilibrium. 

Arriving customers take a seat in a waitingroom, in which they 

stay during their waitingtime, i.e~ from the moment they arrive 

until the counter can attend to theme Call a customer having 

mark E an E::-custon1er. The 11 1:irinciple 1
' can now be stated: the 

probability, that during the waitingtj_me of a customer, K say, 
0 

no E-customer enters the waitingroom equals the probability, 

that no E-customer leaves that l"'oom c1uring that time. As r'sta--
tistical equilibriumt' may be regardecl as ir statistical equili

brium in the wai tingroon1 1
r 3 this 1;rinciple seems qu.ite natural. 

One can prove that it is true by making use of the truth of 32 • 

For the event 

c1ef 
0 

clearly 

34 
holds. 

du1:ing the waitingtime of 

t }1e VJ a it j_ ngr OOlTI 

0 

K 
0 

no E-customer enters 

We further consider the events 
I 

35 ....... 
ll£1 .1 

0 

0 

0 

durir1g }( 1 s V'Ja·j_i:in,gt:irne no :c-customer leavt?S the 0 ,_, 

w a ·1 Jc i r1 gr· o o m ., 

custc)mfr K finds 
0 

an ernpty counter on arrival • ln 

which case during his waitingtime certainly no cus-

tomer, be it an E-customer or otherwise, leaves the 

1,\Tai tinr~room ~ 

customer f·inds the counter occ11pied by a customer 

no 

or equivalently cus Jcomer K 
0 

finds the counter 

during K ~'s waitingtime nor during that part -, 

arrived 

of . 
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arrival. 
- 0 

tamer who is served at that 

be called the 11 a11ce st or ll of customer K, in distinction to the 
0 

11 predecessor 1
' of customer K , 11Jho is 

0 
the last one arriving before 

Ko. 
the 

- 0 -- --
are 

the counter occupied and that no E-customer leaves the waiting-

- - 0 

customer enters the waitingroom. The probability, that no E-cus-
tomer enters during a given incerva~ o eng 1 is e 

see 25 . 
Take the 

interval. The probability, that a customer enters during an inter-

val dt is _ enters during 

- 0 
w _1 +s -'1 

p 

beca.Ltse 

For 

39 

I 

0 

- -'c 
e 

.-1 V 
I - .1\.. dt 

- VJ 1-X - -1 - _s -'1 1-X 
(~ ..... 1 . ..,. - (:; 

-- -1 1 --x --

independent .. 
. ; h 

._.J we ave see 
0 31 

p 
" o5 

"' . 

-1 
1-X --

' 

I 
Again - 0 is the conjunction of the disjoint events 

0
, so 

Because of 38·!} 39 and 4o 

+ p 
I 

0 
0 

' 
' 

• 

,. 

and 
0 

I 



p 
I 

0 
1 - ._. + 

so we have proved 101th the help of 32 

p 
0 

., 

s 

which ·1s jus.lc tl1e 11 f)rinciple 11 stated earlier. 

8 

If we substitu·te for • or1 the right ha11d side in 32 the 

whole right hand side of tha equation and iterate this procedure, 

we obtain Kendall 1 s decomposition of 32 

43 - - ,,.... n 1-
n 

• 
11-0 --

This relation shows, that the waitingtirne w of any customer 

may be written with w=O if n=O 
ST 

w --
i= 

where the z~ are independent random variables, all having the same 
.... ••fl' l . 

distributionfunction, the Laplace-Stieltjes transform of which is 

I 

and n has a Pascaldistribution, with 

P r1 =11.i 
- s 

0 

So far we considered 
0 - -

ancestor of K, if 
0 

~1- f 

at that moment K .• Then n is defined to be the number of ances
-l 

tors ofl 

from etc:. • .3 

n=O, 1, ... 

whether finds the counter 

probability that customer K_ 1 is being served and 

bili ty 1- - an emp·t;y counter:; whence 47 holds. 

arrival. Now 

not does not 

finds with 

vJi th protra-

• 

• 

and x .. 
- -l 

the time 
= 

• 
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from the start service one 
-l -l 

can proceed 

omitted. 

' in the following manner, the details of which are 

The 11 principle 1r can be generalised for n ~1 to 

48 p 11.0 E-c u~s t orr1e r leaves C w in 
-0 

n n 

p E-customer " .. w + no arrives in X n n 1 -1 ..• ,. .... • .,_, b •• • 

where n=n are still independent random 
e I ,.jllo 

variables, so for n ~ 1 

49 p I~-cus torner leaves 
,, 

no in w n .... n 
0 

Pfno E-c.us tamer " 0 arrives in w n n 1 • -
• p 110 E-customer ~ arrives X n n 

- '1 • 1 I • 

For n::;::. 1 vJe also have ...,..,. 

P 110 I~-customer ~ arrives ') 

in 1/>J 

P no E-customer arrives in w n =n-1 
-0 

and because w =0 if n=O -o, 

P 11.0 I~ -c us t on1e1'"' 

while further .for n ~ 1 

• in w n ::::::: 0 

52 

53 

-0 

• p l~-cus·tomer 0 

no arri\res 1n X -'1 
11, 

p ]2 - c us t o tn e r 
~ 0 

·no arrives in X --1 
• 

Theref'ore because 0 f"I 1~[3 ., 1~9 ,, ~o J -

P r10 J~~-c~11stotner leaves in vv n =n 
-0 

1:1 

• 

P no £-customer arrives 1.n x 
t - --1 

i. == ✓1 

t1 

• 

• 

w 111. c t1 rne ans t l1a t we may t a.1-ce 

• -l 

n 

51 

--

• 

1 , 

and 52 

--

and that we have found a probabilistic interpretation of 43 • 
This formula may now be read: the probability, that during the 

waitingtime w of a 
-0 

to the probability, that no E-customer arrives during 

is equal 

the time 



' 

n 

i=1 ' 
of ancestors of K 

0 

10 

and x -i the 
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Resurr1e 

Dans cet article quelques formules connues, importantes 
pour 

d'une interpretation probabilistique des fonctions generatrices 

et des fonctions generatrices des moments, suivant une methode 

introduite par 1947 9 1948 et appliquee a quel-

ques problemes dans ces publications et d 1 autres Van Dantzig 

1955, 1957 3 Van Dantzig and Scheffer 1954 3 van Dantzig and 

8 ' ' t d Zoutendijk 195r et a des problemes cttattente dans Kes en an 

Runn2nburg 1957 e En particulier on a trait~ quelques questions 

posees par D.R. Cox, D.Go Kendall E:,·t F'.G. Foster dans le ''Journal 

of the Royal St2ttistical Society'', concernant la posslbilite de 

telles interpr~tationso 

Dans le present article 

babiliste pour la formule 9, 

on donne une interpretation pro-

la formule 

composition de 

Kendal ~1 '1957 

'- ,/' 

du<:: a Lo Takacs 

::'\ ' F , o.ue a 1 • Pollaczek 

32 " comme donnee par 

Pollaczek 

43, due 

• 

Takacs '1955 , 
'1930 et la de-


