STICHTING
MATHEMATISCH CENTRUM
2e BOERHAAVESTRAAT 49
AMSTERDAM
STATISTISCHE AFDELING otyde

Report S 283 [VP 16 ; SP 76]

Renewal theory for Markov-dependent random variables by

Dr. J. Th. Runnenburg

Summary

Given a sequence of positive integer-valued Markov-dependent random variables $\underline{X}_{0}, \underline{X}_{1}, \underline{X}_{2}, \ldots$, one may ask whether the well-known renewal-theorems still apply. Two theorems are proved, which very closely resemble the classical results for independent random variables.

Résumé

Pour une chaîne de Markoff $\underline{y}_{0}, \underline{\underline{y}}_{1}, \underline{X}_{2}, \ldots$ avec variables aléatoires positives et entières, on prouve deux théorèmes qui ressemblent parfaitement aux résultats classiques de la théorie de renouvellement pour variables aléatoires independantes.

Conventions

1. Random variables are underlined.
2. The set of all integers is denoted by I, the set of all integers $\geqslant 0$ by N, the set of all integers $\geqslant 1$ by N^{\prime}, the set of all integers $\geqslant 2$ by $N^{\prime \prime}$ and the set of all integers $\geqslant 3$ by $\mathbb{N}^{\prime \prime \prime}$. If at the end of a numbered line a symbol like $i \in \mathbb{N}^{\prime \prime}$ is added, this means that the preceding equation holds for all i $\in \mathbb{N}^{\prime \prime}$.
3. Introduction, basic assumptions

Let $\underline{t}_{0}, \underline{t}_{1}, \underline{E}_{2}, \ldots$ be a sequence of random integers, also described as points on a time-axis, which are called moments of renewal, with

$$
\begin{equation*}
\underline{t}_{0} \leqslant 0<\underline{t}_{1}<\underline{t}_{2}<\ldots \tag{1.1}
\end{equation*}
$$

The renewal-intervals are denoted by \underline{y}_{n}, where

$$
\begin{equation*}
\underline{y}_{n} \stackrel{\operatorname{def}}{=} \underline{t}_{n+1}-\underline{t}_{n} \tag{1.2}
\end{equation*}
$$

$n \in \mathbb{N}$.

For any integers $r, n \in \mathbb{N}$ we define

$$
\begin{array}{ll}
\underline{n}_{r} \stackrel{\operatorname{def}}{=} n & \text { if } \underline{t}_{n} \leqslant r<\underline{t}_{n+1} \\
\underline{u}_{r} \stackrel{\operatorname{def}}{=} r-\underline{t}_{n} & \text { if } \underline{n}_{r}=n, \tag{1.4}\\
\underline{v}_{r} \stackrel{\operatorname{def}}{=} \underline{t}_{n+1^{-r}} \text { if } \underline{n}_{r}=n,
\end{array}
$$

hence we have in particular

$$
\begin{align*}
& \underline{u}_{0}=-\underline{t}_{0}, \tag{1.6}\\
& \underline{v}_{0}=\underline{\underline{t}}_{1}, \tag{1.7}\\
& \underline{y}_{0}=\underline{u}_{0}+\underline{v}_{0} . \tag{1.8}
\end{align*}
$$

These quantities have a physical interpretation: $\underline{n}_{\mathrm{r}}$ denotes the number of renewals in the (left open, right closed) interval ($0, r$], \underline{u}_{r} is the distance between r and the last moment of renewal before r, and V_{r} is the distance between r and the first moment of renewal after r 。

We say that the interval $[a, b)$ covers time c, if $a \leqslant c<b$. Hence $\left[\underline{t}_{0}, \underline{t}_{1}\right.$) covers time 0 , because $\underline{t}_{0} \leqslant 0<\underline{t}_{1}$. It is often convenient to renumber the intervals $\left[\underline{t}_{0}, \underline{t}_{1}\right),\left(\underline{t}_{1}, \underline{t}_{2}\right), \ldots$. We may start by giving the number 0 to the interval covering time r, where r is any nonnegative integer. Accordingly we define
(1.9) $\quad \underline{y}_{k, r} \xlongequal{\operatorname{def}} \begin{cases}\underline{y}_{k+n} & \text { if } \underline{n}_{r}=n \text { and } k+n \in N, \\ 0 & \text { otherwise }\end{cases}$

The $\underline{y}_{0}, \underline{y}_{1}, \underline{y}_{2}, \ldots$ are (simple) Markov-dependent random variables, i.e. there is given a set $Y=\{y(1), Y(2) \cdots\}$ of states, which are here integers, with

$$
\begin{equation*}
1 \leqslant y(1)<y_{(2)^{<}}^{<\ldots,} \tag{1.10}
\end{equation*}
$$

an initial probability distribution

$$
\begin{equation*}
q_{y}(0) \operatorname{def}_{=} p\left\{\underline{y}_{0}=y\right\} \tag{1.11}
\end{equation*}
$$

$$
Y \in Y
$$

and a set of transition probabilities (independent of n)

$$
\begin{equation*}
p_{y, z} \quad \operatorname{def} p\left\{\underline{y}_{n+1}=z \mid \underline{y}_{n}=y\right\} \quad y \in Y, z \in Y \tag{1.12}
\end{equation*}
$$

In this paper a probability distriorton is any sequence of real numbers $p_{k} \geqslant 0$ with $k \in N^{\prime}$, such that $\sum_{k=1}^{\infty} p_{k}=1$. A set of transition probabilities is any set of real numbers $p_{i, j} \geqslant 0$ with i, $j \in \mathbb{N}^{\prime}$ and $\sum_{j=1}^{\infty} p_{i, j}=1$ for all i. The probabilities may be indexed in a different manner.

We may now introduce

$$
\begin{equation*}
\underline{n}_{r}(i, j) \text { def } n \text { if } \underline{n}_{r}=0, \underline{u}_{0}=i \text { and } \underline{v}_{0}=j \text {. } \tag{1.13}
\end{equation*}
$$

Clearly $\underline{n}_{r}(i, j)$ denotes the number of renewals in ($\left.0, r\right]$ under the condition $\underline{u}_{0}=i, \underline{V}_{0}=j$.

It is also assumed, that there exists an invariant distribution to the sequence of random variables $\underline{y}_{0}, \underline{y}_{1}, \underline{E}_{2}, \ldots$ (which is further called the Markov chain M_{1}). This means, that there exists a probability distribution π_{y} with $y \in Y$, such that

$$
\begin{equation*}
\sum_{y \in Y} \pi{ }_{y}=1, \quad \sum_{y \in Y} \pi{ }_{Y Y} p_{Y, z}=\pi_{z} \tag{1.14}
\end{equation*}
$$

with

$$
\begin{equation*}
\mu_{1} \text { def } \sum_{y \in Y} y{ }_{y}<\infty \tag{1.15}
\end{equation*}
$$

Sequences $\underline{t}_{0}, \underline{t}_{1}, \underline{t}_{2} \ldots$ of the foregoing description have been used extensively in the author's thesis to describe the moments of arrival of customers at a counter (ci. Rumenburg (1960)). The assumption of Markov dependence rather than independence was introduced as a useful generalization and a certainly more realistic description.

The material given here is extracted from the author's thesis. The restrictions imposed (integer valued random variables!) have been chosen in order to make the results easily presentable and accessible.
2. Stationary situation

In this section we show, that a proper choice of the distribution of \underline{u}_{0} and \underline{v}_{0} leads to a stationary covering of the time-axis with renewal-intervals.
Theorem 2.1. If the Markov chain M_{1}, i.e. the sequence $\underline{y}_{0}=\underline{u}_{0}+\underline{v}_{0}$, $\underline{y}_{1}, \underline{y}_{2}, \ldots$ is given the initial distribution
(2.1) $P\left\{\underline{u}_{0}=i, \underline{v}_{0}=j\right\} \quad \operatorname{def}_{=} \frac{1}{\mu 1} \pi_{i+j} \quad i \in N, j \in N^{\prime}, i+j \in Y$,
then for any $r \in N$ the sequence $\underline{y}_{0, r}=\underline{u}_{r}+\underline{v}_{r}, \underline{y}_{1, r}, \underline{y}_{2}, r \ldots$ is also. a Markov chain with transition probabilities $p_{y, z}$ and invariant distribution πy, while

$$
\begin{equation*}
P\left\{\underline{u}_{\mathrm{R}}=i, \underline{V}_{\mathrm{r}}=j\right\}=\frac{1}{\mu_{1}} \pi_{i+j} \quad i \in N, j \in N^{\prime}, i+j \in Y \tag{2.2}
\end{equation*}
$$

Also for any $\leq<j$
(2.3) $\sum_{n=1}^{\infty} P\left\{\underline{v}_{r}+\sum_{k=1}^{n-1} \underline{y}_{k, r}=i, \underline{V}_{r}+\sum_{k=1}^{n} \underline{y}_{k, r}=j\right\}=\frac{1}{\mu_{1}} \pi_{j-i}$

$$
r \in \mathbb{N}, i \in \mathbb{N}^{\prime}, j \in \mathbb{N}^{\prime \prime}, j-i \in Y,
$$

hence in particular (sum in (2.3) over $j \geqslant i+1$ for fixed i)

$$
\begin{equation*}
\sum_{n=1}^{\infty} P\left\{\underline{v}_{r} \cdot \sum_{k=1}^{n-1} \underline{y}_{k, r}=i\right\}=\frac{1}{\mu 1} \quad r \in \mathbb{N}, i \in N^{\prime} \tag{2.4}
\end{equation*}
$$

Remark 2.1. From (2.4) we conclude, that if the points $\underline{t}_{n+1}=\underline{v}_{0}+\sum_{k=1}^{n} \underline{y}_{k}$ with $n \in \mathbb{N}$ are moments of renewal, then the expected number of renewals in $(0, r]$ is $\frac{p}{1}$, provided $\underline{V}_{0}, \underline{V}_{1}, \underline{y}_{2}, \ldots$ satisfy the conditions of theorem 2.1.
Remark 2.2. Instend of (2.1) we could have used (equivalently)

$$
\left\{\begin{array}{l}
P\left\{\underline{v}_{0}=y\right\}=\frac{y}{\mu_{1}} \pi \tag{2.5}\\
P\left\{\underline{u}_{0}=i \mid \underline{y}_{0}=y\right\}=\frac{1}{y} \quad y \in Y, \\
\end{array} \quad i \in N, \quad y \in Y, \quad 0 \leq i<y,\right.
$$

as can casily be verified.
Proof of theorem 2.1. First note that for any $i \in N, r \in N$ and $j \in N$ '
(2.6) $P\left\{\underline{u}_{r}=i, \underline{v}_{p}=j\right\}= \begin{cases}P\left\{\underline{u}_{0}=i-r, \underline{J}_{0}=j+r\right\} & \text { if ivr, } \\ \sum_{n=1}^{\infty} P\left\{\underline{V}_{0}+\sum_{k=1}^{n-1} \underline{y}_{k}=r-i, \underline{v}_{0}+\sum_{k=1}^{n} \underline{y}_{k}=r+j\right\} & \text { if i<r. }\end{cases}$

The sequence $\underline{Z}_{0}, r^{r} 1, r, y_{2}, r^{\prime} \ldots$ has the described properties, if (2.2) holds. From (2.6) we find, that (2.2) is trivially true for i> r. For $i<p$ there romains to prove
(2.7) $\sum_{n=1}^{\infty} P\left\{\underline{v}_{0}+\sum_{k=1}^{n-1} \underline{y}_{k}=r-i, \underline{v}_{0}+\sum_{k=1}^{n} \underline{y}_{k}=r+j\right\}=\frac{1}{\mu 1} \pi{ }_{i+j}$

$$
r-i \in \mathbb{N}^{\prime}, r+j \in \mathbb{N}^{\prime \prime}, \quad i+j \in Y,
$$

i.e. equation (2.3) for $r=0$.

Now for any $n \in \mathbb{N}^{\prime \prime}, h \in \mathbb{N}^{\prime \prime}, l \in \mathbb{N}^{\prime \prime \prime}$ with $h<I$ (and π_{i} def 0 for $i \notin \mathrm{Y})$

$$
\begin{align*}
& P\left\{\underline{V}_{0}+\sum_{k=1}^{n-1} \underline{Y}_{k}=h, \underline{v}_{0}+\sum_{k=1}^{n} \underline{y}_{k}=l\right\}= \tag{2.8}\\
= & \frac{1}{\mu_{1}} \sum_{i=0}^{\infty} \sum_{j=1}^{n-1} P\left\{\sum_{k=1}^{n-1} \underline{y}_{k}=j, \sum_{k=1}^{n} \underline{y}_{k}=1-h+j \mid \underline{u}_{0}=i, \underline{V}_{0}=n-j\right\} \pi_{i+h-j}= \\
= & \frac{1}{\mu_{1}} \sum_{j=1}^{n-1} \sum_{i=0}^{\infty} P\left\{\sum_{k=1}^{n-1} \underline{y}_{k}=j, \sum_{k=1}^{n} \underline{y}_{k}=1-h+j \mid \underline{y}_{0}=i+h-j\right\} \pi_{i+h-j}= \\
= & \frac{1}{\mu_{1}} \sum_{j=1}^{h-1} P^{s t}\left\{\sum_{k=1}^{n-1} \underline{y}_{k}=j, \sum_{k=1}^{n} \underline{y}_{k}=1-h+j\right\}+ \\
- & \frac{1}{\mu_{1}} \sum_{j=1}^{h-1} \sum_{i=-j+1}^{-1} P^{\text {st }}\left\{\sum_{k=1}^{n-1} \underline{y}_{k}=j, \sum_{k=1}^{n} \underline{y}_{k}=1-h+j, \underline{y}_{0}=i+h-j\right\},
\end{align*}
$$

where we have written $P^{s t}$ instead of P to indicate that the probability between brackets must be evaluated using the invariant probability distribution πy. Write
(2.9) $\frac{1}{\mu_{1}} \sum_{j=1}^{h-1} \sum_{i=-j+1}^{-1} P^{s t}\left\{\sum_{k=1}^{n-1} \underline{y}_{k}=j, \sum_{k=1}^{n} \underline{y}_{k}=1-h+j, \quad y_{0}=i+h-j\right\}=$

$$
=\frac{1}{\mu_{1}} \sum_{j=1}^{h-1} \sum_{i=-j+1}^{-1} P^{s t}\left\{\sum_{k=0}^{n-1} \underline{y}_{k}=i+h, \quad \sum_{k=0}^{n} \underline{y}_{k}=i+1, \underline{y}_{0}=i+h-j\right\}
$$

On applying the transformation

$$
\begin{equation*}
i^{\prime}=i+h, \quad j^{\prime}=i+h-j, \tag{2.10}
\end{equation*}
$$

the right-hand side of (2.9) changes to
(2.11) $\frac{1}{\mu 1} \sum_{i=1}^{h-1} \sum_{j^{\prime}=1}^{i}-1 \quad P^{s t}\left\{\sum_{k=0}^{n-1} \underline{y}_{k}=i^{\prime}, \sum_{k=0}^{n} \underline{y}_{k}=1-h+i^{\prime}, y_{0}=j^{\prime}\right\}=$

$$
=\frac{1}{\mu} \sum_{i^{\prime}=1}^{h-1} P^{s t}\left\{\sum_{k=0}^{n-1} \underline{y}_{k}=i^{\prime}, \sum_{k=0}^{n} y_{k}=1-h+i^{\prime}\right\} .
$$

For the stationary chain the vector $\left(\sum_{k=0}^{n-1} \underline{y}_{k}, \sum_{k=0}^{n} \underline{y}_{k}\right)$ has the same distribution as the vector $\left(\sum_{k=1}^{n} y_{k}, \sum_{k=1}^{n+1} \underline{y}_{k}\right)$. Hence we find, combining $(2.8),(2.9),(2.10)$ and (2.11)
(2.12)

$$
\begin{aligned}
& P\left\{\underline{v}_{0}+\sum_{k=1}^{n-1} y_{k}=h, \underline{v}_{0}+\sum_{k=1}^{n} y_{k}=1\right\}= \\
= & \frac{1}{\mu_{1}} \sum_{j=1}^{h-1} P^{s t}\left\{\sum_{k=1}^{n-1} \underline{y}_{k}=j, \sum_{k=1}^{n} y_{k}=1-h+j\right\}+ \\
- & \frac{1}{\mu} \sum_{j=1}^{h-1} P^{s t}\left\{\sum_{k=1}^{n} \underline{y}_{k}=j, \quad \sum_{k=1}^{n+1} y_{k}=1-h+j\right\},
\end{aligned}
$$

which holds for $n \in \mathbb{N}^{\prime \prime}, h \in \mathbb{N}^{\prime \prime}$ and $l \in \mathbb{N}^{\prime \prime}$ with $h<1$. For $n=1, h \in \mathbb{N}^{\prime}$ and $l \in N^{\prime \prime}$ with $h<I$ we find in a similar way

$$
\text { (2.13) } P\left\{\underline{v}_{0}=h, \underline{v}_{0}+\underline{y}_{1}=1\right\}=\frac{1}{\mu_{1}} P^{s t}\left\{\underline{y}_{1}=1-h\right\}-\frac{1}{\mu_{1}} \sum_{j=1}^{h-1} P^{s t}\left\{\underline{y}_{1}=j, \underline{y}_{1}+\underline{y}_{2}=\right.
$$

From (2.12) and (2.13) we have for $m \in \mathbb{N}^{\prime}$

$$
\begin{align*}
& \sum_{n=1}^{m} P\left\{\underline{v}_{0}+\sum_{k=1}^{n-1} \underline{y}_{k}=h, \quad \underline{v}_{0}+\sum_{k=1}^{n} \underline{y}_{k}=1\right\}= \tag{2.14}\\
= & \frac{1}{\mu_{1}} \pi_{1-i}-\frac{1}{\mu_{1}} \sum_{j=1}^{n-1} P^{s t}\left\{\sum_{k=1}^{m} y_{k}=j, \sum_{k=1}^{m+1} \underline{y}_{k}=1-h+j\right\},
\end{align*}
$$

the last sum being equal to 0 for $m \geqslant h$. Hence we may take $m \rightarrow \infty$ or (2.3) has been proved for $r=0$.

In proving (2.2) we have shown (2.3) to be true for $r=0$. But then (2.3) holds for any $r \in \mathbb{N}$ as the distributions of the variables involved do not depend on r, if both (2.1) and (2.2) hold.

This completes the proof of theorem 2.1.
3. Renewal theorem for Markov-dependent renewal-intervals

It will be convenient to make use of the notion of a returnpath. For the Markov chain M_{1} with transition probabilities $p_{y, z}$ and states $y \in Y, z \in Y$, a path from state y to state z of order n with length λ is by definition a sequence of $n+1$ states $y_{0}, y_{1}, \ldots, y_{n}$ with $y_{0}=y$ and $y_{n_{n}}=z$, where $n \in N^{\prime}$, such that $p_{y_{\nu, 1}}, y_{\nu}>0$ for $\nu \in\{1,2, \ldots, n\}$ and
$\sum_{\nu=1}^{n} y_{\nu}=\lambda$. A returnpath from state y to state y is a path from state y to state y of arbitrary order and of arbitrary length, such that none of the intermediate states (i.e. $y_{1}, y_{2}, \ldots, y_{n-1}$ if the order is n) is the state y.

Theorem 3.1. If the Markov chain M_{1}, i.e. the sequence $\underline{y}_{0}=\underline{u}_{0}+\underline{v}_{0}$, $\underline{X}_{1}, \underline{y}_{2}, \ldots$ has the following properties
(a) the chain M_{1} is irreducible,
(b) the greatest common divisor of the lengths of the returnpaths of at
least one state y of the chain M_{1} is equal to 1 , then
(3.1) $U_{r}(i, j) d e f \sum_{n=1}^{\infty} P\left\{\underline{v}_{0}+\sum_{k=1}^{n-1} \underline{y}_{k}=r \mid \underline{u}_{0}=i, \underline{v}_{0}=j\right\} \quad i+j \in Y, i \in N, j \in N^{\prime}, r \in \mathbb{N}$, satisfies

$$
\begin{equation*}
\lim _{r \rightarrow \infty} U_{r}(i, j)=\frac{1}{\mu_{1}} \tag{3.2}
\end{equation*}
$$

$$
i+j \in Y, i \in \mathbb{N}, j \in \mathbb{N}^{\prime},
$$

while for all $z_{\nu} \in Y$ with $-\alpha \leqslant \nu \leqslant \beta$, where $\alpha, \beta, \nu \in \mathbb{N}, z_{0}=i+j, i, i \in \mathbb{N}$, $j, j \in \mathbb{N}^{\prime}$ and $i^{\prime}+j^{\prime} \in Y$
(3.3) $\lim _{r \rightarrow \infty} P\left\{\underline{y}_{\nu, r}=z\right.$, for $\left.-\alpha \leqslant \nu \leqslant \beta, \underline{u}_{r}=i, \underline{v}_{r}=j \mid \underline{u}_{0}=i^{\prime}, \underline{v}_{0}=j{ }^{\prime}\right\}=$

$$
=\frac{1}{\mu_{1}} \pi_{z_{-\alpha \nu}=-\alpha}^{\frac{\beta-1}{l} p_{z_{\nu}, z_{\nu+1}}}
$$

In particular we have (for $\alpha=\beta=0$)
(3.4) $\lim _{r \rightarrow \infty} P\left\{\underline{u}_{r}=i, \underline{V}_{r}=j \mid \underline{u}_{0}=i^{\prime}, \underline{V}_{0}=j^{\prime}\right\}=\frac{1}{\mu_{1}} \pi z_{0} \quad z_{0} \in Y, i^{\prime}+j \in Y$.

Remark 3.1. For the inverse chain to the chain \mathbb{M}_{1} (with the invariant distribution as initial distribution) the transition probabilities $\bar{p}_{y, z}$ are given by

$$
\begin{equation*}
\bar{p}_{y, z} \operatorname{def}^{\pi_{z} p_{z, y}} \frac{\pi_{y}}{} \tag{3.5}
\end{equation*}
$$

$$
y, z \in Y
$$

The limit in (3.3) can be obtained from a stationary process, defined in the following way. For the sequence of random variables ..., $\overline{\bar{Y}}_{-1} \cdot \overline{\underline{\bar{y}}}_{0}$, \bar{z}_{1}, \ldots taking only positive integer values, we define

$$
\begin{array}{cc}
\underline{\bar{y}}_{0}=\overline{\underline{u}}_{0}+\underline{\bar{v}}_{0}, \\
P\left\{\underline{\underline{u}}_{0}=i, \overline{\mathrm{v}}_{0}=j\right\}=\frac{1}{\mu} \pi_{i+j} & i+j \in Y, \\
P\left\{\underline{\underline{y}}_{-n-1}=z \mid \overline{\underline{y}}_{-n}=y\right\}=\bar{p}_{y, z} & n \in N, y \in Y, z \in Y, \tag{3.8}\\
P\left\{\overline{\underline{y}}_{n+1}=z \mid \overline{\underline{y}}_{n}=y\right\}=p{ }_{y, z} & n \in N, y \in Y, z \in Y,
\end{array}
$$

and we assume that under the condition $\underline{\bar{y}}_{0}=y \in Y$ the sequences $\overline{\underline{y}}_{0}, \underline{\bar{I}}_{-1}, \overline{\underline{y}}_{-2}: \ldots$ and $\underline{\underline{y}}_{0}, \overline{\underline{y}}_{1}, \overline{\underline{y}}_{2}, \ldots$ are independent (simple) Markov chains for each $y \in Y$.

We may now calculate

1) It will be seen that $\pi_{y}>0$ for $y \in Y$.
(3.10) $P\left\{\overline{\underline{y}}_{\nu}=z_{\nu}\right.$ for $\left.-\alpha \leqslant \nu \leqslant \beta, \underline{\underline{u}}_{0}=i, \overline{\underline{v}}_{0}=j\right\}=$ $=P\left\{\underline{\bar{y}}_{\nu}=z_{\nu}\right.$ for $\left.-\alpha \leqslant \nu \leqslant \beta \mid \cdot \underline{\underline{u}}_{0}=i, \overline{\underline{v}}_{0}=j\right\} P\left\{\underline{\underline{u}}_{0}=i, \quad \overline{\underline{v}}_{0}=j\right\}=$ $=\prod_{\nu=-(\alpha-1)}^{0} \bar{p}_{z_{\nu}, z_{\nu-1}} \prod_{\nu=0}^{\beta-1} p_{z_{\nu}, z_{\nu+1}} \frac{1}{\mu 1} \pi_{z_{0}}^{\beta-1}{ }^{\frac{1}{2}}=$

$=\frac{1}{\mu_{1}} \pi_{z_{-\alpha}} \prod_{\nu=-\alpha}^{-1} p_{z_{\nu}, z_{\nu+1}}$,
which is equal to the limit in (3.3). This result is by no means trivial, because $\overline{\underline{y}}_{0}$ does not have the invariant probability distribution (cf. (2.5) for \underline{y}_{0}), i.e. $P\left\{\overline{\underline{y}}_{0}=y\right\} \not \equiv \pi_{y}$.

Remark 3.2. From theorem 3.1 the weaker

$$
\text { (3.11) } \lim _{r \rightarrow \infty} \frac{1}{r} \sum_{n=1}^{\infty} P\left\{\underline{v}_{0}+\sum_{k=1}^{n-1} \underline{y}_{k} \leqslant r \mid \underline{u}_{0}=i, \underline{v}_{0}=j\right\}=\frac{1}{\mu 1} \quad \quad i+j \in Y
$$

is a trivial consequence. It may be formulated in terms of $\underline{n}_{r}(1, j)$. The equivalent of (3.11) is

$$
\begin{equation*}
\lim _{r \rightarrow \infty} \frac{1}{r} \int \underline{n}_{r}(i, j)=\frac{1}{\mu_{1}} \tag{3.12}
\end{equation*}
$$

because

$$
\begin{align*}
& \bigcup \underline{n}_{r}(i, j)=\sum_{n=1}^{\infty} n P\left\{\underline{n}_{r}(i, j)=n\right\}=\sum_{n=1}^{\infty} P\left\{\underline{\underline{n}}_{r}(i, j) \geqslant n\right\}= \tag{3.13}\\
& =\sum_{n=1}^{\infty} P\left\{\underline{n}_{r} \geqslant n \mid \underline{u}_{0}=i, \quad \underline{v}_{0}=j\right\}=\sum_{n=1}^{\infty} P\left\{\underline{v}_{0}+\sum_{k=1}^{n-1} \underline{y}_{k} \leqslant r \mid \underline{u}_{0}=i, \underline{v}_{0}=j\right\} .
\end{align*}
$$

Instead of (3.2) we may write

$$
\begin{equation*}
\lim _{r \rightarrow \infty}\left\{\bigcup \underline{n}_{r}(i, j)-\varrho \underline{n}_{r-1}(i, j)\right\}=\frac{1}{\mu_{1}} \quad i+j \in Y \tag{3.14}
\end{equation*}
$$

We have here extended two well-known theorems from renewal theory to what can be called renewal theory for Markov-dependent renewal-intervals. If

$$
p_{y, z}=\pi_{z}
$$

$$
\begin{equation*}
X \in Y, \quad Z \in Y, \tag{3.15}
\end{equation*}
$$

then the $\underline{y}_{0}, \underline{\underline{y}}_{1}, \underline{y}_{2}, \ldots$ are independent random variables, all having the same distribution function. For these variables (3.12) and (3.14) hold if the conditions of theorem 3.1 apply. Condition (a) is trivially satisfied, condition (b) can be simplified to Feller's: the greatest common divisor of the $y_{(1)}, y(2), \ldots$ is equal to 1 . Cf.

Feller (1950), theorem 3 on page 244 and problem 7 on page 262. Two further results are known for independent $\underline{y}_{0} \underline{y}_{1}, \ldots$, they also appear as problems in Feller (1950). Cf. problems 10 and 11 on page 263. In the present notation they read

$$
\begin{equation*}
\lim _{r \rightarrow o d}\left\{C \underline{n}_{r}(i, j)-\frac{r}{\mu_{1}}\right\}=\frac{\mu_{2}+\mu_{1}}{2 \mu_{1}^{2}}-\frac{j}{\mu_{1}} \quad 1+j \in Y, \tag{3.16}
\end{equation*}
$$

and
(3.17)

$$
\lim _{r \rightarrow \infty} \frac{1}{r} \operatorname{var} \underline{n}_{r}(i, j)=\frac{\mu_{2}-\mu_{1}^{2}}{\mu_{1}^{3}}
$$

$$
i+j \in Y \text {, }
$$

where

$$
\begin{equation*}
\mu_{2} \stackrel{d e f}{=} \sum_{y \in Y} y^{2} \pi_{y} . \tag{3.18}
\end{equation*}
$$

Similar results hold for Markov-dependent renewal-intervals if a further reatriction to finitely many states is made. They can be proved with the technique of the next proof (cf. also Runnenburg (1961)).

Proof of theorem 3.1. First we summarize part of the relevant theory from Feller (1950), Chapter 15, on Markov chains.

Consider an ipreducible Markov chain with states $y \in Y$, initial probability distribution $q_{y}(0)$ and transition probabilities $p_{y,} z^{\circ}$ The chain is called irreducible, because it is possible to reach every state from any state in a finite number of steps with positive probability. The absolute probabilities $q_{y}(r)$ of reaching state y at the $r^{\text {th }}$ step are then such, that for each $y \in Y$

$$
\begin{equation*}
\pi_{y} \operatorname{def}_{r \rightarrow \infty} \lim _{r \rightarrow \infty} \frac{1}{r} \sum_{k=1}^{r} q_{y}(k) \tag{3.19}
\end{equation*}
$$

exists and is independent of the initial probabilities $q_{Z}(0)$ for all $z \in Y$. If the chain is aperiodic, the Cesăro limit in (3.19) may be replaced by an ordinary limit. Furthermore, for all $y \in Y$ (3.20) $\left\{\begin{array}{l}\pi_{y}>0, \sum_{z \in Y} \pi_{z} p_{z, y}=\pi_{y} \text { and } \sum_{z \in Y} \pi_{z}=1 \text { if the chain is } \\ \pi_{y}=0 \quad \text { if the chain is not ergodic. }\end{array}\right.$

If the chain is ergodic, then to any solution x_{y} with $y \in Y$ of

$$
\begin{equation*}
\sum_{y \in Y} x_{y} p_{Y, z}=x_{z}, \quad \sum_{y \in Y}\left|x_{y}\right|<\infty, \tag{3.21}
\end{equation*}
$$

there exists a constant c with $x_{z}=c \pi_{z}$ for all z. Hence the π_{z} are the unique solution of (3.21), for which $\sum_{y \in Y} \pi y=1$.

Theorem 1 in Foster (1953) may be reformulated so it holds for periodic Markov chains too. Here we only need: An irreducible Markov chain is ergodic if there exists a nonnegative nonnull solution x_{y} with $y \in Y$ of

$$
\begin{equation*}
\sum_{y \in Y} x_{y} p_{y, z}=x_{z}, \sum_{y \in Y} x_{y}<\infty . \tag{3.22}
\end{equation*}
$$

Regarding the foregoing as known, consider the Markov chain M_{1}. We assumed in section 1 the existence of an invariant distribution π_{y}. These π_{y} are unique and equal to the π_{y} defined in (3.19) because of the quoted theory and assumption (a) of theorem 3.1. Moreover, the chain is ergodic, because the invariant distribution of section 1 provides a nonnull solution of (3.22). Hence $\pi_{y}>0$ for $\mathrm{V} \in \mathrm{Y}$ 。

From the chain M_{1} we construct a Markov chain M_{2} with states (y, i), where $y \in Y, i \in N^{\prime}$ and $i \leqslant y$. The chain M_{2} is the chain of random vectors $\left(\underline{Y}_{0}, r, \underline{V}_{r}\right)$. Hence chain M_{2} is in state (y, i) at the $r^{\text {th }}$ step if $\underline{X}_{0, r}=\bar{y}$ and $\underline{V}_{r}=i$. It is easily verified, that chain M_{2} has transition probabilities (defined only for $y \in Y, Z \in Y$ and $\left.i \in \mathbb{N}^{\prime}, j \in \mathbb{N}^{1}\right)$
(3.23) $p_{y, i j z, j} \underset{=}{\operatorname{def}}\left\{\begin{array}{cl}1 & \text { if } y=z \text { and } j=i-1, \\ p_{y, z} & \text { if } i=1 \text { and } j=z, \\ 0 & \text { otherwise. }\end{array}\right.$

Because M_{1} is irreducible, the same holds for M_{2}. Now consider the equations equivalent to (3.22)

$$
\begin{equation*}
\sum_{y \in \mathbb{Y}} \sum_{i=1}^{Y} x_{y, i} p_{y, i ; z, j}=x_{z, j}, \tag{3.24}
\end{equation*}
$$

where $j \leqslant z, z \in Y$ and $j \in \mathbb{N}$. With (3.23) they can be replaced by

$$
\begin{equation*}
\sum_{y \leqq y} x_{y, 1} p_{y, z}=x_{z, j}, \tag{3.25}
\end{equation*}
$$

where $j \leqslant z, z \in Y$ and $j \in N^{\prime}$. Any solution of (3.25) must satisfy

$$
\begin{equation*}
x_{z, j}=c \pi_{z} \quad j \leqslant z, z \in Y, j \in N^{\prime}, \tag{3.26}
\end{equation*}
$$

as the chain M_{1} is ergodic. If we take $c>0$, then by Foster's result the chain ${ }^{*} M_{2}$ is ergodic. If we take $c=\frac{1}{\mu_{1}}$, then

$$
\begin{equation*}
\pi_{\pi, j} \stackrel{\operatorname{def}}{=} \frac{1}{\mu_{1}} \pi_{z} \quad j \leqslant z, \quad z \in Y, j \in N^{\prime}, \tag{3.27}
\end{equation*}
$$

is indeed a probability distribution. Hence, similar to (3.19)

$$
\begin{equation*}
\pi_{z, j}=\lim _{r \rightarrow \infty} \frac{1}{r} \sum_{k=1}^{r} q_{z, j}^{(k)}, \tag{3.28}
\end{equation*}
$$

for any initial probability distribution $q_{y, i}^{(0)}$.
The Markov chain M_{2} is aperiodic, if at least one state is aperiodic, because the chain is irreducible. By assumption (b) of the theorem an aperiodic state of M_{2} exists. Therefore M_{2} is aperiodic (although M_{1} may be periodic!) and (3.28) holds for the ordinary limit; In particular we have for the r-step transition probabilities $p_{y, i ; z, j}(r)$ of the chain M_{2}

$$
\begin{equation*}
\pi_{z, j}=\lim _{r \rightarrow \infty} p_{y, i ; z, j}(r) \tag{3.29}
\end{equation*}
$$

for all states (z, j), independent of the initial state (y,i). As

$$
\begin{align*}
& \liminf _{r \rightarrow \infty} \sum_{z \in Y} p_{y, i}(r) Z, z \geqslant \sum_{z \in Y} \lim _{r \rightarrow \infty} \inf p_{y, i ; z, z}(r)= \tag{3.30}\\
& =\frac{1}{\mu_{1}} \sum_{z \in Y} \pi_{z}=\frac{1}{\mu_{1}}
\end{align*}
$$

and
(3.31)

$$
\begin{aligned}
& \lim _{r \rightarrow \infty} \sum_{z \in Y} p_{Y, i ; z, z}(r)=1-\lim _{r \rightarrow \infty} \inf _{z \leqslant Y} \sum_{j=1}^{z-1} p_{Y, i j z, j} \leqslant \\
& \quad \leqslant 1-\frac{1}{\mu_{1}} \sum_{z \in Y} \sum_{j=1}^{z=1} \pi_{z}=\frac{1}{\mu_{1}}
\end{aligned}
$$

for all states (y, i) of the chain M_{2} we have

$$
\begin{equation*}
\lim _{r \rightarrow \infty} \sum_{z \in Y} p_{y, i ; z, z}(r)=\frac{1}{\mu 1} . \tag{3.32}
\end{equation*}
$$

If now we note that for $i+j \in Y$

$$
\begin{equation*}
U_{r}(i, j)=\sum_{z \in Y} p_{i+3}(r), z, z, \tag{3.33}
\end{equation*}
$$

combination of (3.32) and (3.33) yields (3.2). Because

$$
\begin{align*}
& P\left\{\underline{y}_{\nu, r}=z_{\nu} \text { for }-\alpha \leqslant \nu \leqslant \beta, \underline{u}_{r}=i, \underline{v}_{r}=j \mid \underline{u}_{0}=i^{\prime}, \underline{v}_{0}=j^{\prime}\right\}= \tag{3.34}\\
= & p_{i}+j^{\prime}, j^{\prime} ; z_{-\alpha} z_{-\alpha} \nu^{\prime}=-\alpha p_{z_{\nu}, z_{\nu+1}},
\end{align*}
$$

where s def $r-\sum_{\nu=-\alpha}^{-1} z_{\nu}-i$, by (3.27) and (3.29) we have (3.3). Hence theorem 3.1 is proved.

References

Feller (1950), W., An introduction to probability theory and its applications, Wiley, New York, 1950.

Foster (1953), F.G., On the stochastic matrices associated with certain queueing processes, Ann. Math.Stat. 24 (1953) , 355-360.

Runnenburg (1960), J.Th., On the use of Markov processes in oneserver waiting-time problems and renewal theory, thesis, Poortpers, Amsterdam, 1960.

Runnenburg (1961), J.Th., An example illustrating the possibilities of renewal theory and waiting-time theory for Markov-dependent arrival-intervals, Report S 285, Mathematical Centre, Amsterdam, 1961.

