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Summary 

Given a sequence of positive integer-valued Markov-dependent 

random variables y0 ,y1 ,y2 , ... , one may ask whether the well-known 

renewal-theorems still apply. Two theorems are proved, which v~ry 

closely resemble the classical results for independent random 

variables. 

Resume 

Pour une chafne de Markoff y0 ,y1 ,y2 , ... avec variables alea­

toir.es positives et entieres, on prouve deux theoremes qui res­

semblent parfaitement aux resultats classiques de la theorie de 

renouvellement pour variables aleatoires independantes. 

Conventions 

1. Random variables are underlined. 

2. The set of all integers is denoted by I, the set of all 

integers > O by N, the set of all int_egers >-1 by N 1 , the set of 

all integers > 2 by N11 and the set of all integers ~ 3 by N 111 • If 

at the end of a numbered line a symbol like i EN" is added, this 

means that the preceding equation holds for all i ~ N11
• 
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1. Introduction, basic assumptions 

Let t O,!1,t2 , .•• be a sequence of random integers, also described 

as points on a time-axis, which are called moments of renewal, with 

( 1 .1) 

(1.2) 

(1.3) 

( 1. 4) 

(1.5) 

The renewal-intervals are denoted by y, where -n 

d~,f t - t 
Yn -n+1 -n 

For any integers r, n c N we define 

nr 
def n if !n ~ r< tn+1;} 

def r-t if n n., u = -r -n -r 

V 
def 

tn+1-r if n n!J = -r -r 

hence we have in particular 

( 1. 6) uo = -!o , 

( 1. 7) VO = t1 , 

(1.8) Yo = uo+vo· 

n € N. 

These quantities have a physical interpretation: n denotes the 
-r 

number of renewals in the (left open, right closed) interval (O,r], 
-

ur is the distance between rand the last moment of renewal before r, 

and v is the distance between rand the first moment of renewal after -r 
r. 

We say that the interval [a,b) covers time c, if a< c < b. 

Hence [tO,!1 ) covers time O, because t O~O<!r It is often convenient 

to renumber the intervals [!0 ,!1 ), [t1,!
2

), •.•• We may start by 
giving the number Oto the interval covering timer, where r is any 
nonnegative integer. Accordingly we define 

(1.9) def 
if n =n and k+n c N., -r 

otherwise 

The ~O,y1,y2 , ..• are (simple) Markov~dependent random variables, 

i.e. there is given a set Y=[Y( 1 ),y( 2 ),···} of states, which are here 
integers, with 

(1.10) 1<y( 1 )<y( 2 )< ..• , 

an initial probability distribution 
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qy (O) d~f Pf Yo= y} y E. y, 

and a set of transition probabilities (independent of n) 

(1.12) p d~f Pfy ,1 = z I y = YJ y,z -n+1 -n Y€Y, zcY. 

In this paper 

numbers pk,> 0 

probabilities 
Q) 

a probability distri·-y,_t~:"..on is any sequence of real 

with ke:N', such that E, pk= 1. A set of transition 
V='i is any set of real numo.ars p. ·> O with i.,j t: N' and 

1,J 

;. p. . = 1 for 
j~ 1.,J 

all i. The probabiJ.ities may be indexed in a dif-

ferent manner. 
We may now introduce 

(1.13) ( . . ) def n 1., J = n -r if n =<1, u
0
=i and v 0=j. -r - -

Clearly n (i,j) denotes the number of renewals in (o,r] under the 
-r 

condition u0=i, ~o=j. 

It is also assumed, that thrre exists an invariant distribution 
to the sequence of random variables y0 ,y

1
,y

2
, ••• (which is further ' 

called the Markov chain M1 ). This means, that there exists a 
probability distribution TIY with y € Y, such that 

(1.14) 
~ 

L.:, TT p =TI 
yE Y y y,z z 

z €.. y, 

with 

(1.15) ?1 d~f yl;_,Y y l[ y < oo . 

Sequences ! 0,!1,!2, ..• of thA foregoing description have been 
used extensively in the author's thesis to describe the moments of 
arrival of customers at a counter (cf. Ru:1nenburg (1960)). The as­
sumption of Markov dependence rather thsn independence was intro­
duced as a useful generalization and a certainly more realistic 
description. 

The material given here is ezt~acted from the author's thesis. 
The restric;tions impose:d (integer valued random variables!) have been 
chosen in order to make the results easily presentable and accessible. 
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2. Stationary situation 
In this section we show., that a proper choice of the distri­

b~tion of u
0 

and v
0 

leads to a stationary covering of the time-axis 

with renewal-intervals. 
Theore111 2.1. If the Markov chain M1 ., i.e. the sequence Y0=u0+v0 , 

~1,y2 ., .•. is given the initial distribution 

( 2 .1) P[ . "} def 1 ~1 Uo=l,Vo=J = ,/C.1 li+j ic N., j c N 1 .,i+jc:- Y., 

then fo:;:, any re: N the sequence y0 ='.Jr+v , y1 ,y2 , ••. is also. a - .,r - -r - ,r - .,r 
Markov chain with transition probabilities p and invariant dis-y.,z 
tribution TC ., while y 

(2.2) P[u =i.., V =j 7 = 1 
-r -r [ ;U-1 TC. • 

l+J 
i E NJ j €. NI., i+j € y. 

Also for any i < j 
co n-1 n 

( 2 • 3 ) L P [ v r + L Y k., r =i' v r + L Y k., r = j } = /:
1 

TT j -i 
n=1 k=1 k=1 /~ 

re N, i c N 1 ., j c Nn, j-i e Y., 

hence in particular (sum in (2.3) over j~i+1 for fixed i) 

(2.4) 
co n-1 

n
L= P[vrJ. L y =i} = _l 
?I k=1 --k., r _?-1 

n 
Remark 2.1. From (2.4) we conclude, that if the points tn+1=v0+I: yk 
1'lith n ~ N are moments of renewal., then the expected number of k=1 

l . 1 0 ...., . r . d d t . f th d . t ' r2newa_.s i;:-1 \ ,r-J lf:i --- , provi e v
0

.,y1 ,y2 ., ..• sa is y econ 1 1on13 
-0 th 2 1 /U.1 0.1.. , _eo-::·e111 , .. 

~emark 2.2. Inste~d of (2.1) we could have used (equivalently) 

(2.5) 
y € y, 

ic: N., yf. Y, 0 si c..y, 

as can easily be verified. 

Proof of th~orem 2 .1. FirRt note that for any i c N., re N and j € N 1 

[ 
P{u0=i-r, 7 o=j+r} if i> r., 

(2.6) P[u =i.,v =jl = co n-1 n -r -r J I: P{ v 0+ Z: Yk=r-i., v 0+ L Yk=r+j} if i < r. 
•· n=1 k=1 k=1 

Th r, ne::.q110·1ce ~r -r ~r .. ~, . .., ..,,...," ,·o ;;,·1 ,,02 , •.• - .,r-- .,r - .,r 
holds. From (2.S) ~e find., that 

has the described properties, if (2.2) 
(2.2) is trivially true for i) r. For 

i < r there remains to prove 
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(2.7) 
n 

""' ·} 1 TC VO+ L, Yk=r+J = - . +. 
- k=1- ;l(1 1 J 

r-i c N' ,r+j € N11
, i+j € Y, 

i.e. equation (2.3) for r=O. 

Now for any n c N11
, h e: Nn, 1 e N 111 with h < 1 ( and TT"i def O for 

i/Y) 

(2.8) 
n-1 n 

P{v0+ E Yk=h,vO+ L 
k=1 k=1 

h-1 
1 " - - !.__i 

,;t<.1 j=1 

h-1 n-1 
L P{;: 
j=1 k=1 

oo n-1 
~ P{ L Yk=j, 

i=O k=1 

n-1 
Pst{ L Y = J, 

k=1 -k 

n 
L yk=l-h+J[ y 0=i+h-j} 1\+h-J = 

k=1 

t Yk=l-h+j} + 
k=1-

where we have written Pst instead of P to indicate that the pro­

bability between brackets must be evaluated using the invariant 

probability distribution TI y. Write 

h-1 -1 t n-1 n } 
(2.9) -1.. ~ . I:. Ps { L Yk=J, r:. Yk=l-h+J, YO=i+h-j = 

/<.1 J=1 l=-J+1 k=1 k=1 

1 h~1 -1 
=- L L 
/1 j=1 i=-j+1 

On applying the transformation 

(2.10) i' = ith, j 1 = i+h-j, 

the right-hand side of (2.9) changes to 

(2.11) __1 
,?-1 

h-1 1 1 -1 n-1 n } 
I: L P

st
{ 2 Yk=i', r7 Yk=l-h+i 1 , yO=J 1 = 

i 1 =1 j 1 =1 k=O k=O 

h-1 n-1 n } 
1 >:-7 Pst_f -:;:-r • , '\' 1 h · , = - ~ ) Li. Yk=l , G Yk= - +1 . r i , =1 l k=O k=O . 

·( n-1 n ) 
For the stationary chain the vector L yk., [: yk has the same 

k=O k=O 
~ ( n n+1 ) 

distribution as the vector [: yk., L yk • Hence we find, combining 
k=1 k=1 

(2.8), (2.9), (2.10) and (2.11) 
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(2.12) 

which holds for n c: Nn., ht: N 11 and 1 e: N"' with h < 1. For n=1, ht. N 1 

and 1 E N11 Nith h < l we find in a similar way 

(2.13) 

From (2.12) and (2.13) we have for mcN 1 

m n-1 n 
= 1} = (2.14) I'. P { :Y.o+ r_: yk = h., VO + L Yk 

n=1 k=1 k=1 

1 1 h-1 m m+1 
Yk=l-h+j} = TC - - L Pst{ L yk = j., r;_ ., 

f<-1 
l-11 

jL1 j=1 k=1 k=1 

the last sum being equal to O form) h. Hence we may take m ➔ oo or 

(2.3) has been proved for r=O. 

In prov:Lng (2.2) we have shown (2.3) to be true for r=O. But 

then (2.3) holds for> any rE"N as the distributions of the variables 

involved do not depend on r., if both (2.1) and (2.2) hold. 

This crnnpletes the proof of theorem 2.1. 

3. Renewal theorem for Markov-dependent renewal-intervals 

It will be convenient to make use of the notion of a returnpath. 

For the Markov chain M1 with transition probabilities p and states y.,z 
ye. Y, zc:- Y., a path from state y to state z of order n with length.A 

is by definition a sequence of n+1 states y0 .,y1 ., ... ,Yn with Yo=Y and 

y =z., where n€N'., such that p >0 for vc:[1.,2., ... .,n} and 
nn Yv-1'Yv 
Z: Yv =A. A returnpath from state y to state y is a path from state 

lJ=1 
y to state y of arbitrary order and of arbitrary length, such that 

none of the inter:nediate states (i.e. y1 .,y2 , ... .,yn_1 if the order is 
n) is the state y. 

Theorem 3.1. If the Markov chain M1 , i.e. the sequence y0=u0+v0 , 

y1 ,y2 ., ... , has the following properties 

(a) the chain M1 is irreducible, 

(b) the greatest common divisor of the lengths of the returnpaths ofat 
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least one state y of the chain M1 is equal to 1, then 

( 3 .1) ) def CD { n-1 
ur(i.,j I: P v0 + ~ 

n=1 k=1 
satisfies 

(3.2) lim U (i.,j) = J_ 
r /vl.-1 r --1?>- 00 / I 

while for all z./~-Y with -ct.~v~r , where 0( ,(3,l>))E.N., z 0=i+j, i,i'c=:N., 
j.,j 1c::N 1 and i 1 +j 1E y 

(3.3) lim P[y =Z 
r -1>--CO -y.,r Y 

1 
=-

/1 
In particular we have (foro<=p= 0) 

(3.4) r:!~ rfur=i, vr=j/u0=i', v0==j'} =µ~ rrz
0 

/ 

Remark 3.1. For the inverse chain to the chain M1 (with the in­
variant distribution as initial distribution) the transition pro­

babilities Py.,z are given by 1 ) 

( 3. 5) 
def Tr zPz.,y 

Py,z = 
ny 

y,ze:.Y. 

The limit in (3.3) can be obtained from a stationary process, defined 
in the following way. For the sequence of random variables •.• , y _1 ,y0 ., 

y1 ., ••. taking only positive integer values,l> we define 

(3.6) Yo= uo + vo, 

( 3. 7) i+j E: y., 

( 3. 8) n,:;: N.,ye:: Y,z£ Y, 

(3.9) nE.N_,yEY,zc:Y., 

and we assume that under the condition Yo=Y€ Y the sequences 

Y0 ,Y_1 ,Y_ 2 ~··· and y0 ,y1 ,Y2,.,. are independent (simple) Markov 
chains for each YE Y. 

We may now calculate 

1) It will be seen that TCY> 0 for YE Y. 
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(3.10) 

which is equal to the limit in (3.3). This result is by no means 
trivial, because y0 does not have the invariant probability dis­

tribution (cf. (2.5) for y0 ), i.e. P{Yo=Yj /Tfy. 

Remark 3.2. From theorem 3.1 the weaker 

1 OJ n-1 . l 1 
( 3 • 11 ) 1 im r L P { v O + L y k ~ r / uO = 1., v O = j S =/l-1 

r -1,>0J n=1 k=1 , 
i+j E. y., 

is a trivial consequence. It may be formulated in terms of nr(i.,j). 

The equivalent of (3.11) is 

(3.12) 

because 

(3.13) 

lim 
r -\)i> OJ 

00 
'\--, 

= L, 
n=1 

Instead of (3.2) we may write 

(3.14) 1 . S>-0 (· ·) ? (· .)1 1 1m ) \__.) n 1., J - (___; n 1 1., J j = -
r------\?> OJL -r -r- /11 

i+j<=-Y, 

i+j 6. Y. 

We have here extended two well-known theorems from renewal 
theory to what can be called renewal theory for Markov-dependent 

renewal-intervals. If 

(3 .15) P = Tl y.,z z Ye Y, ZE.Y., 

then the y0 ,y1 ,y2 , ..• are independent random variables, all having 
~ 

the same distribution function. F~r these variables (3.12) and (3.14) 
hold if the conditions of theorem 3.1 apply. Condition (a) is 
trivially satisfied, condition (b) can be simplified to Feller's: 

the greatest common divisor of the y( 1 ).,y( 2 ).,··· is equal to 1. c·f. 
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Feller (1950), theorem 3 on page 244 and problem 7 on page 262. 

Two further results are known for independent i 0 ,y1 , ... , they also 

appear as problems in Feller (1950). Cf. problems 10 and 11 on 

page 263. In t~e present notation they read 

(3.16) 

and 

(3.17) 

where 

(3.18) IL d~f ;--: 2 _ 
F -2 - y E.. y y I Ly . 

i+j E Y., 

i+j i;;_ y, 

Similar results hold for Ma rlrnv-dependent renewa 1-interva ls 

if a further restriction to finitely many states is made. They can 

be proved with the technique of the next proof (cf. also Runnen­

bu1"g ( 1961)) . 

Proof of theorem 3.1. First we summarize part of the relevant 

theory from Feller (1950)., Chapter 15, on Markov chains. 

Consider an iPreducible Markov chain with states yE.. Y., initial 

probability distribution qy(O) and transition probabilities Py,z· 
The chain is called ir~educible, because it is possible to reach 

every state from any state in a finite number of steps with positive 
probability. The absolute probabilities q (r) of reaching state y 

t:h y 
at the r - step are then such., that for each y €. Y 

(3.19) IT d;;f 1::1-m 
y r __,_. co 

_1 t q (k) 
r k=1 y 

exist3 and is independent of the initial probabilities q (O) for z 
all Z€ Y. If th2 chaj_n is aperiodic, the Cesaro limit in (3.19) may 

be replaced by an ordinary :!_im1t. Furthermore, for all yG. Y 

(3.20) 
\ rry > 0, 

L n :--=o y 

:'. v L 'iT p = TI and L TC =1 if the chain is 
zE:Y z z,y y ZEY z 

ergodic., 
if the chain is not ergodic, 

If the chain is ergodic, then to any solution xy with y 6. Y of 

( 3. 21 ) I: Ix I< co Y€.. y y , 

there exists a constant c with x =C TT for all z. Hence the TI are z z z 
the unique n olution o? ( 3. 21), for which y "f,y TT y=1. 
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Theorem 1 in Foster (1953) may be reformulated so it holds for 

periodic Markov chains too. Here we only need: An irreducible Markov 

chain is ergodic if there exists a nonnegativi nonnull solution xy 

with y€. Y of 
~ v 

Y 
~ y~ X p =X , L X / 00 • 
c yy,z z yE.Y ye...... (3.22) 

Regarding the foregoing as known, consider the Markov chain M1 . 

We assumed in section 1 the existence of an invariant distribution 

rry. These Tr Y a re unique and equal to the IT y defined in ( 3 .19) · 
because of the quoted theory and assumption (a) of theorem 3.1. 

Moreover, the chain is ergodic, because the invariant distribution 

of section 1 provides a nonnull solution of ( 3. 22). Hence Try> 0 

for y f;_ Y. 

From the chain M1 we construct a Markov chain M
2 

with states 

(y.,i), where yr::. Y., iE: N' and i..s:;y. The chain M
2 

is the chain of 

random vectors (y
0 

.,v ) • Hence chain M2 is in state (y,i) at the 
th . - ,r -r . 

r step if y
0 

=Y and v =l. It is easily verified, that chain M2 - .,r -r 
has tPansit:Lon probabilities (defined only for Y6.. Y., z €Y and 
iE:N 1 ., jE. N 1 ) 

(3.23) p . . y_.i;z,J 
def 

if Y=Z and j=i-1., 

if i=1 and j=z., 

otherwise. 

Because M1 is irreducible, the same holds for M
2

• Now consider 

the equaticns equ1valent 'co (3.22) 

(3 .24) L t xy Ji Py, i: z, J. = xz., Jo , 
y €. Y i=1 , 

where j _{ z, zcY and jEN!. With ( 3 . 23) they can be replaced by 

(3 25) L X Py.,z = X y~Y y,1 z,j , 

where j ~ z, z cc: Y and j £ N l. Any solution of (3.25) must satisfy 

(3.26) X • = C TC z,J z j~z, ZE"Y., jE:N', 

as the chain M1 is ergodic. If we take c>O, then by Foster 1 s result 
1 the chain ~M2 is ergodic. If we take c= /4 , then 

(3.27) def 1 
= TL 

z 

/ 1 

j~z, zc:Y., jEN 1 , 

is indeed a probability distribution. Hence; similar to (3.19) 
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(3.28) 
_1 f. (k) 
r ~ qz J

0 

' 

k=1 ' 

for any initial probability distribution q(O~ . y,i 

The Markov chain M2 is aperiodic, if at least one state is 

aperiodic, because the chain is irreducible. By assumption (b) of 

the theorem an aperiodic state of M2 exists. Therefore M2 is aperiodic 

(although M1 may be periodic!) and (3.28) holds for the ordinary 

limit. In particular we have for the r-step transition probabilities 
p ~ r) . of the chain M2 y,i;z,J 

(3.29) TC . = Z,J lim 
r-i,,-oo 

p ~r) . 
y.,i;z,J 

for all states (z,j), independent of the initial state (y,i). 
As 

(3.30) lim inf L p ~ r) > L lim inf p ( r) 
Z€Y y,i;z,z ZcY y,i;z,z r --l> co r ---f>- co 

= 

and 

(3.31) L P C:) z= z-1 
p (:) . ~ lim sup = 1 - lim inf r: 

r~oo ZEY y,i;z.,z r-oo ZEY j=1 y,i;z,J 

~1- -1. E zl'1 
TC 1 

=-
~ ;c1 2 € y j=1 z /1 

, 

for all states (y,i) of the chain M2 we have 

( 3 . 3 2 ) 1 im L p ~ r ) = 1 
z E Y y,i;z,z µ-1 

r------t>--CO / 1 

If now we note that for i+j € Y 

(3.33) 

combination of (3.32) and (3.33) yields (3.2). Because 

Pf Yv,r = zy for -o<(,---v~r,, ur=i.,vr=j / u0=i', v0=j'} = 

- (s) 1f1 
-Pi'+J01 J01 ·z z -,,=_o<.Pz z ' , , -0<, -J\. )I., v+1 

(3.34) 

' -1 

wheres def r - 'E ,zv-i, by (3.27) and (3.29) we have (3.3). Hence 
)) =-0( 

theorem 3.1 is proved. 
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