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Summary

Given a sequence of positive integer-valued Markov-dependent
random variables Jos¥4s¥ps e+ ONE May ask whether the well-known
renewal-theorems still aprly. Two theorems are proved, which very
closely resemble the classical results for independent random

variables,
Résumé

Pour une chafne de Markoff Yos¥4s3ps -+ BVEC variables aléa-
toires positives et entiéres, on prouve deux théorémes gul res-
semblent parfaitement aux résultats classiques de la théorie de
renouvellement pour variables aléatoires independantes.

Conventions

1. Random variables are underlined.

2. The set of all integers i1s denoted by I, the set of all
integers > O by N, the set of all integers >1 by N', the set of
all integers > 2 by N" and the set of all integers > 3 by N', If
at the end of a numbered line a symbol like 1€ N'" is added, this
means that the preceding equation holds for all ie¢ NV,
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1. Introduction, basic assumptions

Let t sT.5t be a sequence of random integers, also described

,‘3 2;«00
as points on a time-axis, which are called moments of renewal, with

(1.1) <0<t << .

The renewal-intervals are denoted by Iy where

(1.2) Iy = Lpoq - &y n € N,

For any integers r,n €N we define

(1.3) n, = n if t, <r<t, 45
(1.%) u, 98 vy irn, =,
(1.5) V. def fppq-r if 0, =n,
hence we have 1in particular

(1.6) Yy = =5 »

(1.7) Vo= b4

(1.8) Yo = Lo™¥p-

These quantities have a physical interpretation: n, denotes the
number of renewals in the (left open, right closed) 1nterval (O,r] ,
Un, is the distance between r and the last moment of renewal before r,
and Vo is the distance between r and the first moment of renewal after
r.

We say that the interval [a,b) covers time c, if agec <b.
Hence [20,34) covers time O, because EOéZO<<§43 It is often convenient
to renumber the intervals [30,31), [34,32),.,. . We may start by
giving the number O to the interval covering time r, where r is any
nonnegative integer, Accordingly we define
” sor Yiein if n,=n and k+n ¢ N,

.9) Iy, p 2
0 otherwise
The 3%o:¥4s¥ps -+ are (simple) Markov-dependent random variables,

i.e, there is given a set Yz{y(q),y<2),,.,} of states, which are here

integers, with

(/l°/lo) 14:‘](1)<y(2)< s s @ 9
an indtial probabllity distribution




-3 =

(1.11) a,®) 9 oy, = v} yey,

and a set of transition probabilities (independent of n)

d
(1.12) Py ef P{yn+1 = z{ I, = y} veY, ze€¥Y.

In this paper a probability distrﬁﬂi*ion is any sequence of real
numbers pk> 0 with ke N', such that LQ P = 1. A set of transition

probabililities is any set of real numoers Py J>-O with i,jée N! and
m 9

ZZ pi j = 41 for all i, The probabilities may be indexed in a dif-
J=1 =

ferent manner,

We may now introduce

(1.13) n,(1,5) ¢ n

if D=7, Eo:i and Vo=d -

Clearly Ep(i’j) denotes the number of renewals in (O,r} under the
condition u =1, v,=J.

It is also assumed, that there exists an invariant distribution

to the sequence of random variables JosXqsTpseee (which 1s further
called the Markov chain M,). This means, that there exists a
probabllity distribution Tty with y € Y, such that

T . T _TC
(1.14) JE Y y“/“ v27 “yPyz = z € Y,
with
def Z: T
(1.15) //% = V6Yy7ty<m,
Seqguences to,tq,tg,,., of the foregoing description_haVe been

used extensively in the author's thesis to describe the moments of
arrival of customers at a counter (cf. Runnenburg (1960)). The as-
sumption of Markov dependence rather than independsnce was intro-
‘duced as a useful generalization and a certainly more realisﬁic
description.

The material given heré is extracted from the author's thesis,
‘The restrigtions imposed (integer valued random variables!) have been
chosen in order to make the results easily presentable and accessiblé.
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2, Stationary situation
In this section we show, that a proper choice of the distri-
bution of Yy and Yo leads to a stationary covering of the time-axis

with renewal-intervals.

Theorem 2.1, If the Markov chain M,, 1l.e. the sequence y, =u +v.,

/]J
is given the initial distribution

21522_’-0-

(2.1) Plug=1, vo=i} def 1 4. . 1EN, JeN',irje ¥,
s
then for any re< N the seguence lo,régrfzr’ Xﬂ,r’z2,r’°" is also. a

Markov chain with transition probabilities py ” and invariant dis-
3

tribution Tty, while

(2.2) P{Erzi;zrzj} =/iL Tti+j ieN, jeN', i+je Y.
’ 1
Also for any 1<
80 n--1 1
(2.3) ég; { + Z? Ty, p=ls Tt 2: Ty, p = J} = — th—i

k=1 yzz

réeN, 1e¢N', jJeN", j-i€Y,
hence in particular (sum in (2.3) over j> i+1 for fixed 1)

(e) 50 Py 5
o, P{V-’ 57y =i}_--~ reN, 1N,
Lk, ?
ﬁiﬁ k=" ’ /04
n
Remark 2.1. From (2.4) we conclude, that if the points t il _O+§Z Iy
k_

with n €N are moments ol renewal, then the expected number of

renewals in \O,Lj is 75 , provided VosdgsTpsese satisfy the conditions
of theorem 2.1, Vst

Remark 2,2, Instend of (2.1) we could have used (equivalently)

(2.5) {P{Vo =y} = LT vey,

T
P{E():ifyo y}" ¥ ieN, ye¥, 0<idcy,

as can eagily be verified.
Proof of thszorem 2.71. First note that for any 1<¢N, rEN and j& N

P{ny=i-r, vo=—.j+r~} if 1y v,
(2.6) P{ —1,v = } @ n-1
ZJP{_O+.7’ y,=r-i, v +:ZZy‘_r+j} if i¢rp.
. n=1 k=" k=
The sequence 9,024 ,rodo) r"" has the described properties, if (2.2)

holds, From (2, o) we find, that (2.2) is trivially true for i} r. For
i <r» there rcmains to prove
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n-="1 n
P{v + ). yo=r=1l, VAt ¥ =P+jj}= AT,
Yot & ¥ Yot Tk S

e

(2.7)

n="1

il

r-ieN',r+je N", i+je ¥,
i.e. equation (2.3) for r=0.
Now for any ne N", heN", 1leN'" with h<1 (and W& def o for

n--1 ~Q
<208) P{VO‘I' Z y_k'—‘hjy_o'*' é_) —Y-k = 1} =
k= k=1
=— /[ L P2 y.=] Ly =1—h+j[3‘=i v =h-j§ ¢, s =
A 120 j=1 Lz TETT gt 0~ =0 i+h-]
y Q;j Qo %i? i? -
= — ) P{ V=i, ¥ =l-h+j{z =i+h—j} T L=
S g= 120 L ETR ol 0 1+h-J
h-1 n--1 n
- PSt{lZf S D zk:l-h+j} ¥
//%1 =1 k=" k=1
TR R n
- e Ty =g, My =l-hed, yosien-glo
A J=1 d== 4 k=" k=1
£

where we have written pS instead of P to indicate that the pro-
bability between brackets must be evaluated using the invariant

probability distribution Tty. Write

B S g ] o,
(29) Lz T P T oyeds Iyeiened, yg-ieeg) -
1§21 12T k=" k=1
p h-"1 -] st n-"1 e
=L 5 7 { 1 yy=ieh, 20y =ivl, yo=ien-jl o
S 3= i==g k=0 k=0
On applying the transformation
(2.10) 1" = i+h, j' = i+h-j3,
the right-hand side of (2.9) changes to
p h-1 if-1 st n--1 N
(2.11)  — 2. P {'Zj y=i's 20 y=1-h+it, zo=j'} =
/Abﬂ i'=1  j'=1 k= k=0
h-1 n--1 n
- S pStf 2 Y=Lty sz_=l—h+1'}
iz Lo k=0

yn=1 n
For the stationary chain the vector ( 77 Ve Zj_zk) has the same
n

k=0 "% k=0
. R L +1
distribution as the vector z_xy R Ty . Hence we find, combining
P o s

(2.8), (2.9), (2.10) and (2.11)
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n--1 n
(2.12) P{y_0+ Y y=hs vt 2.__ 4}
k="1 le="1
h-1 n-1
SR A8 DI Tyklhw}wh
S 5= k=1
h-1 n n+1
. 77 PSt{ Ly ¥,=3 N ¥,=1- h+3}
S =1 k=" k=1

which holds for neN", heN" and 1eN" with h <1l. For n=1, heN!
and 1eN" with h<1 we find in a similar way

~ _ st 1 st . _
(2.13) P{izo—h, Zo+lq—l} /aq P {_1 =1~ h} /&; y P {21‘33Z1f22“

From (2.12) and (2.13) we have for me N'

(2,14 2 Plv+ ). ¥y, =h, Vo + 2.¥ =1}=
e I RO Yo R O P L
h-1 m m+1
-4 IL1~h .4 PSt{_Z:.Xk =3, 2! zk=1-h+jk s
ya& /41 5= k=1 k=1

the last sum being equal to O for m;;h. Hence we may take m-—p» o or
(2.3) has been proved for r=0.
; In proving (2.2) we have shown (2.3) to be true for r=0., But
then (2.3) holds for any re N as the distributions of the variables
involved do not depend on r, if both (2.1) and (2.2) hold.

This completes the proof of theorem 2.1.

3. Renewal theorem for Markov-dependent renewal-intervals

It will be convenient to make use of the notion of a returnpath,

For the Markov chain M,1 with transition probabilities py ” and states
3

ye Y, z€ Y, a path from state y to state z of order n with 1ength>\

is by definition a sequence of n+1 states VgV qseeesVp with Yo=Y and

y. =z, wnere n< N', such that p >0 for 196{1 2, ,g,n} and
N Yy =>\. & returnpath from state y to state y is a path from state

y to state y of arbitrary order and of arbitrary length, such that
none of the intermediate states (i.e. qsVpseeesVy_1 if the order 1is
n) is the state y.

Theorem 3.1, If the Markov chain Mq,
TqsTosenes has the following properties

i,e. the seqguence ZO?EszO’

(a) the chain M, is irreducible,

g

(b) the greatest common divisor of the lengths of the returnpaths of at
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least one state y of the chain M,I is equal to 1, then

-~
(3.1) v (1,5) %€F Z Py + Z’ =r|ug=ts Vo=if irJe¥,ieN,JeN',peN,

satigfies

(3.2) lim U (1,5) = - $+JeY,1eN, jeN',
r —» QOO0 /A/]

while for all %F'Y with -o<¥< 3 , where « sBsYeN, zo=i+j, i,1'e«N,

j,JEeN' and i'+jle Y

il
(3.3) 1lim P{y =z for -dévep , u =1,V :j;u =1, v=3'] =
¥y, =%, Up=1,¥,=0 |Ug=1 sy
T —p 00 v (=1

- L T TTop )
1 Zogv=_x Zys%, 4
In particular we have (forc%:{%: 0)
; 1 — . .
(3.%) 1lim P{ﬁ =i, v =j{u =i', v =j'} = - TC zeY,i'+je Y,
PO e R o =0 2 =0 yz zO 0

Remark 3.1, For the inverse chain to the chain M,l (with the in-

variant distribution as initial distribution) the transition pro-
babilities Ey , are given by 1)
P
5 def W:zpz,y
Vs4 TC
v

The 1limit in (3.3) can be obtained from a stationary process, defined
in the following way. For the sequence of random variables ...,y 1,yo,

(3.5) v,z2€Y,

taking only positive integer values, we define

/Ijaol

(3~6) ZO=EO+Z—O s

(3.7) P{Eozi: E():j} =/Zj‘/]‘ TC:U_J) i+je ¥,

(3.8) P{i_n_q_zjj n=y} = 5&52 ne N,ye Y,ze Y,
(3.9) P{ym -z|7, =yj = by, neN,ye¥,ze ¥,

and we assume that under the condition §O=ye Y the sequences
EO,E_q,ﬁ_gi... and io’iﬂ’z2"" are independent (simple) Markov
chains for each ye¢ Y.

We may now calculate

e R T

1) It will be seen that TTy>>O for ye Y.
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(3.10) P{Xv = z, for —Mé‘ﬂéP s Uy =1, Vo= J(=
— ey . . _ = 1 — —
- P{ZP - Z)) =% _P*_O = 1, -Y—O = J S P{Eo“la Vo"J} =
0 p-
v =m0t =1) Zg’zw-1'v=o vazv+1/aﬂ 20
N 4 TT 1 -

which is equal to the limit in (3.3). This result is by no means
trivial, because z does not have the invariant probability dis-
tribution (cf. (2.5) for ¥5). i.e. P{io=y§ %7{&

Remark 3.2. From theorem 3.1 the weaker

. 1 s )

(3.11) lim - ZZ + Z:? V., L© =i, v —J} i+je Y,
r—»c0 © n=1 { =k I =07 =0 /AC

is a trivial consequence. It may be formulated in terms of Er(i’j)°

The equivalent of (3.11) is

(3.12) lim -;—chgr(i,j) -4 it+j€ ¥,
r—s 00 /ch
because
| o @ N e
(3.13) bgr(l,a) = ) nP{gP(l,wwj - 0 P{_lzr,(l,J)>/nj=
n="1 n=
&2 Lo %
n _1 v, =j} = ) P{v + . Y& rlua=1i,v, =j} .
{ Xe + 2o Lo 10T ey K lug=1.74

Instead of (3.2) we may write

(3.14) 1lim lﬁ;’ -<ijgr-1(i’j)} = 1
r—& CO /a’i

We have here extended two well-known theorems from renewal
theory to what can be called renewal theory for Markov-dependent

it+je¥.

renewal-intervals., If

(3.15) Py 5 = 77; ye¥, ze¥,

then the Yos¥qs¥ps... ATE independent random variables, all having

the same distribution function. Fer these variables (3.12) and (3.14)
hold if the conditions of theorem 3.1 apply. Condition (a) is
trivially satisfied, condition (b) can be simplified to Feller's:

the greatest common divisor of the y(q),y(g),,.. is equal to 1. CT,
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Feller (1950), theorem 3 on page 244 and problem 7 on page 262,
Two further results are known for independent JosTqseses they also
appear as problems in Feller (1950). Cf. problems 10 and 11 on
page 263. In the present notation they read

' ' + .
(3.16) 1im {Cizhjjdj)- Ji.}:’fg;;%._ - itjey,
rTm e /e 2y /A
and P 5
(3.17) lim 4 var n (1,3) = 27/ itje VY,
r —r' 3
r — QO /,(/1
where
def Y7 2
(3'/18) = JAEN Vool .
/2 veEY Y

Simllar results hold for Markov-dependent renewal-intervals
if a further restriction to finitely many states is made. They can
be proved with the technique of the next proof (cf. also Runnen-
burg (1961)).

Prool of theorem 3.1, First we summarize part of the relevant
theory from Feller (1950), Chapter 15, on Markov chains.
Consider an irreducible Markov chain with states ye Y, initial

probability distribution qy<o) and transition probabilities py .
g

The chain is called irreducible, because it is possible to reach

every state from any state in a finite number of steps with positive

(r)

probability. The absolute probabilities g of reaching state y

at the rtﬁ step are then such, that for each yeyY
. def .. 1 = (k)
(3.19) ., "= 1lim = 2] g
v P ° k=1 Y

exists and is independent of the initial probabilities qz(o> for
all z& Y, If the chain is aperiodic, the Cesaro limit in (3.19) may
be replaced by an ordinary limit. Furthermore, for all ye Y

ixa 7. Wp =T Ti TT =1 i in i
Ty> 0, 2, Top, =10, and &y 70 =1 if the chain is

(3.20) z ergodic,
T =0 if the chain is not ergodic,

If the chain is ergodlic, then to any solution Xy with yeY of

5 5

(3.27) veY *y Py,z = %z y@?Y\Xyl<‘a)’

there exists a constant ¢ with x,=c T, for all z. Hence the TC are

the unique solutilon of (3.21), for which yégyfty=1.

z
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Theovrem 1 in Foster (1953) may be reformulated so it holds for
periodic Markov chains too, Here we only need: An irreducible Markov
chain is ergodic if there exists a nonnegative nonnull solution Xy
with ye Y of

\—"7

.22 . -x_, (- )
(3.22) ye¥ yPy, a7z oy Xy <P

™)

Regarding the foregoing as known, consider the Markov chain Mq.
We assumed in section 1 the existence of an invariant distribution
H&. These TTy are unique and equal to the TC_ defined in (3.19)"
because of the quoted theory and assumption (a) of theorem 3.1.
Moreover, the chaln is ergodic, because the invariant distribution
of section 1 provides a nonnull solution of (3.22). Hence 77y3>0
for yeY,.
we construct a Markov chain M, with states

; 1 2
(y,1), where yc Y, 1e N' and 1< y. The chain M, is the chain of

From the chain M

random vectors (Xo,r’zr)' Hence chain M, is in state (y,1) at the

rth step if Yo =Y and vr=i. It is easily verified, that chain M2
, A

has transition probabilities (defined only for ye ¥, z&Y and

1eN', je N')

1 1f y=z and j=i-1,
def A .
(3.23) by 4,,5 = b, , If 1=1 and j=z,
0 otherwise,

Because Mq is irreducible, the same holds for M2° Now consider
the equaticns equivalent %o (3.22)

Y ok, b - x
(3.24) ey dzq Y.1TV.iiz.g T Tz,§ 7

where j<z, zc¥Y and je N', With (3.23) they can be replaced by

(3.25)

X p = X_ .
1 %y,z 2,3 °

where j<z, z€Y and j€ N', Any solution of (3.25) must satisfy

(3.26) X, =c TC, j<z, ze¥Y, jeN',

as the chain Mq is ergodic, If we take ¢ >0, then by Foster's result

the chain‘M, is ergodic. If we take c= - . then

2 k]
/4

(3-27) TE;? | dgf"j’ T jéz: ZEY: jEN':

£

" d Mg
/
is indeed a probability distribution. Hence, similar to (3.19)
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_qiw A0S0 (k)
(3.28) th’j _r%igaa r ﬁiyqz’j ’
(0)

for any initial probability distribution qy 3
2

The Markov chain M2 is aperiodic, if at least one state is
aperiodic, because the chain is irreducible. By assumption (b) of
the theorem an aperiodic state of M2 exists. Therefore M2 is aperiodic
(although M, may be periodic!) and (3.28) holds for the ordinary
limit, In particular we have for the r-step transition probabilities

(r) ;
py,i;z,j of the chain M2

(3.29) T .= 1im p (r)

2,0 o0 Yoiizsd

for all states (z,Jj), independent of the initial state (y,i).

As
X <77
.30 . lim inf _ 4s (r) > Z 1im inr (r =
(3 30) L 0O zery,lgz,z zeY r*lioo py,lgz,z
I I S
A zeY Z /aq
and
v ., Z=1
.31 vim sup . p (T) L4 D iimoanr L o (P) g
(33) ﬁmezeYlﬁﬂgmz 00 ZéYJ=1p%lﬂ“]
Z:‘v/l
<1- L 2 LH T o=
/aq ze¥Y J= Z /Qq
for all states (y,i) of the chain M, we have
(3.32) 1im EZY o §?) -1
r—00 °°€ Votid,z /"1
If now we note that for i+je¥Y
P 1) - M (r)
(3.33) Upli,3) = 5y Piyd o 5o
combination of (3.32) and (3.33) yields (3.2). Because
(3,34) P{"Y‘V_,l" = Z)) for -*lXSVQ(:’; 5 Er=ijy_P=j EO:i" onjl} =
="
_ (s) T
pi'+j',j’32_o(:z__9.\ V@t va:Zy+1 s
f -1
where s 9&f n ~j}§_dzv—i, by (3.27) and (3.29) we have (3.3)., Hence

theorem 3.1 1s proved,
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