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The use of Markov processes as a tool for solving stochastic 

oo-stage decision problems is well known. 
In many papers situations are discussed in which at given 

discrete points of time decisions have to be made. 

In this paper, however, we will consider a more general problem 

in which decisions may be taken at any timepoint. In a mainly verbal 

exposition we will make some remarks about this problem. In an other 
publication I hope to give the proofs of the results mentioned here. 

In an oo-stage decision problem we meet a system, the states of 

which can be described with state variables or, what is the same, 

can be identified with a point in a so called state space. This space 

will be indicated by 'I' . 
In the problem we have in mind the system, subjected to a 

Markov process, takes a random walk through the state space yr. In 

each time interval the system produces losses. These losses, which 

are additive, depend only on the states of the system during that 

time interval and are independent of the states of the system out­

side that interval. 

It will be clear that the decisionmaker, who is in charge, 

wants to prevent or at least wants to make improbable some of the 
system's most expensive excursions through state space. 

In this paper it will be assumed that there are states in state 
space~ in which the decisionmaker can intervene. An intervention 

results in a transition of the system from the intervention state 

(i.e. the state at the moment of intervention) into a new state. 
The new state does not belong to the intervention set with probabil­

ity 1. From this state the system continues its walk. Each inter­
vention however produces losses too. 

In order to let the argument be as general as possible we sup­

pose that on the intervention point the decisionmaker cannot fix the 
transition completely. He can merely choose from a class of transition 

distributions. These distributions fix the probabilities of the 
transition from the intervention states into sets of new initial 

states. 

The choic~ of a set of intervention states and of a transition 
distribution for each of these intervention states will be called a 
strategy." 

Obviously the original Markov-process indicated by sO, is no 

longer suitable for describing the behaviour of the system. The 

application of a strategy t creates a new stochastic process in the 
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state space 'Y, which will be called the adjusted process S( X,). 

For more than one reason it will be convenient to introduce 

a series of adjusted processes Sn( X) which are generated as fol­

lows: 
a) The first n times interventions in the original process 

take place according to the strategy X. 
b) After these interventions we let the process go on un­

disturbed. 

From the ''point of view" of the system the processes Sn ( Jl ) 
are alternative. The reD.lisations of the processes Sn( X) are equal 
up to the (n+1) st intervention point. From that point on only one 

of both processes can exist. 

With the aid of the series of processes Sn( X,) the Marl-rnv 
property of the adjusted process S( ~) can be proved under rather 
weak assumptions concerning the nature of the original process s0 
and that of the strategy applied, 

If we pay attention to the states of the intervention set 

only, the adjusted process then induces a time discrete Markov 

process. 

The next problem to be considered is: 11 How to compare alter­
native strategies". As usual we will use the expected loss as a 

criterion for optimality. 

In calculating the expected loss in an oo-stage decision 
problem with given discrete time points of intervention, one general­
ly first computes the expected losses in time intervals between the 
interventions and then adds them either weighted or unweighted. It 
happens very often that in more complex situations this procedure 
leads to rather difficult probabilistic problems. 

In order to avoid these problems we consider a product space 
y; *of a denumberable set of spaces y,

1 
. (i=0,1, ... ) and the space 

,l 
y.,11 ., which are all congruent to the space y . 

Let us construct mathematically a new process s*'( X) in such a 
way that the state of a system, subjected to this process, can be 
identified with a point of Y' ,..., 

The process s*( fa) can be defined if we impose among other 
properties the following: 

1) The process S *( 'j.; ) ind·uces in the subspace. 'If I, 0 of y -1t- an s0 
process. 
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2) The process S 1r( X ) induces in the subspace Yr . of ·y;~ an S. ( X, ) 
,l l 

process. 

3) The process S *"( K. ) induces in the subspace ·iy II of -y,,*· an S ( X, ) 
process. 

4) According to the definition of an Sn( X) process the induced paths 
of the system in the subspaces yr

1 
and 1jl' are congruent ,n I,n+1 

up to the (n+1) st intervention point. 

5) From the (n+1) st intervention point the processes Sn( t) and 

Sn+k( X) (k==1, ... ) are completely independent. 

The process s*( X) is a mathematical abstraction .and has no 
physical interpretation. 

Next we introduce a new set of states in the state spacey 
called the stopping set and indicated by E. The purpose of this set 
will be explained below. The decisionmaker is more or less free in 

the choice of this set. It is only subjected to the condition that 

from each initial state the system will almost surely arrive in the 

stopping set after a finite period of time. 

Let us consider a new series of ad justed processes Sn ( X, ;E) 

generated as follows: 

a) The first n times interventions in the original process take 

place according to the strategy X. 
b) At the (n+1) st intervention point we do not intervene but 

let the process go on indisturbed until a state of the stop­
ping set is reached, where the process will be stopped. 

The process s0(J ;E) arises if we wait till the moment the 
system reaches a point of the intervention set and stop the process 
after that point of time as soon as the system takes on a state of 
the stopping set. 

In this way we obtain a series of processes S (i ;E) with the n 
following properties: 

The processes Sn( 1/, ;E) and Sm(;X'.. ;E) (m < n) are identical up to 
and including the (m+1) st intervention point. From that point onwards, 
before the intervention, the system in the Sn(~ ;E) process goes on 
as a system subjected to an S ( t ;E) process, while the system in n-m 
an Sm(~ ;E) process continues its walk through state space like a 

system subjected to an s0 (X ;E) process. 

If in a finite time interval a finite number of interventions 
take place with probability 1 the adjusted process can be regarded as 
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the 11 limit 11 of a series of processes Sn( -y., ;E) with n~ oo. 

,Let us return to the process s""( X,). If a realisation of this 

process is given then one can easily verify that the realisation of 

each of the processes Sn(X ;E) is also given. This means that with 

probability 1 for each realisation of the process s( '"f) and for each 

ta value nO can be found such that the corresponding realisations 

of the processes S(X) and Sn(X ;E) are identical in the period (O,t), 

if n? nO. 
Let us suppose that the loss connected with a realisation of a 

process Sj(~ ;E) (j=O,1, ..• ) can be established and let us indicate 
this loss by 1 .. The loss 1, connected with a realisation of an 

J n 
Sn(X ;E) process, satisfies the obvious relation: 

n 
ln=lO + L (1.-1, 1). 

j=1 J J-
( 1 ) 

If the realisation of the process s*( X ) is not given then the 

difference 1.-1. 1 is, under certain measurability conditions, a 
J J-

stochastic variable. In that case the expected loss of an Sn(X ;E) 
process satisfies the relation: 

n 
t ln = ~ lo + ~ ~ U:. j - 1 J. -1 ) • 

J=1 
(2) 

According to the definitions of the processes S.(~ ;E) and 
J 

S. 1 (X ;E) and of the losses of their realisations, the difference 
J-

1 .-1. 1 -J -J-
( 3) 

in (1) does not depend on the states of the system before the j th 

intervention point. 

Furthermore it follows from the definitions of the processes 

S. ( X, ;E) and S. 1 ( X, ;E) that from and including the j th intervention 
J J-

- point they go on like the processes s1 ( ~ ;E) and sO( X, ;E) respectively. 

If the realisations of the processes S. (? ;E) and S . 1 ( y., ;E) a re given 
J J-

~ then the realisations of the corresponding processes s1 (~ ;E) and 
sO(X ;E) are also known. Consequently the difference in (3) can also 
be considered as the difference in loss corresponding to these last 

mentioned realisations. 

If ttle iffi intervention state is indicated by I., let c(I .; V) J J ,., 
be the difference in expected losses of the processes s1(~ ;E) and 

sO(~ ;E) with initial state Ij. 
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From this definition it follows that: 

(4) 

where I 0 is the initial state of the process. 

Let c(I
0

; X) be the expected loss to be incurred by the system 

in an s0 (X ;E) process with initial state I 0 . Then the expected loss, 
~ 1 , to be incurred in an S ( -v ;E) process, from now indicated by -n n ~ en ( I 0 ; X, ) , will be equa 1 to: 

.... n } 
cn(I0 ; /J) = ~ t{c(I .; -y,) I I 0 • 

J=O J 

Let us suppose that the duration of each 
a process Sj(X ;E) can be established and let 
duration by dj then of course we have: 

n 
d n = d O + L ( d . -d . -1 ) 

j=1 J J 

(5) 

given realisation of 
us indicate this 

( 6) 

If the itl1 intervention state is indicated by Ij., let t(Ij; 'J..) 
be the difference in expected durations of the processes s1(~ ;E) 
and s0 ( X, ;E) with initial state Ij. 

In the same way as we derived the relation (5) we can prove 
the following result: 

If I 0 is the initial state of the process and t(I0 ; X,) is the 
expected duration of an s0 (X ;E) process with that initial state 

~hen the expected duration of an Sn(~ ;E) process, indicated by 
tn ( I 0 ; X ) , will be equal to: 

V n 
tn(I 0 ; X) = ~ c{t(Ij; J,) I I 0 }. (7) 

J=O 

Let us suppose that it is possible to put out to contract the 
charge of the system and suppose we have to pay in those circumstances 
a premium of 0< per unit of time. It will be cheaper to handle the 

system, subjected to an Sn(J ;E) process, ourselves if we have: 
n n 
~ c {c(IJ.; X) I I 0 } ~ <X ~ t{t(.!_.; X )I r 0 } (8) 
J=O J=O J 

or n 
1 Lt{c(I.; X )!I0} -n j=O J ~ « . (9) n 
1 ~ t { t ( I j; ? ) I I 0 } -n J=O 
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We have already stated that under rather weak assumptions the 
adjusted process induces a time discrete Markov process in the inter­
vention set. If the functions c(I; ~) and t(I; ~) are defined for 
each I belonging to the intervention set,then we can restrict our 
attention to the time discrete Markov process mentioned above. 
Whether or not this process has a stationary absolute probability 
distribution depends on certain hypotheses concerning the structure 
of the process, e.g. Doeblin's hypothesis. 1 ) If with respect to 
this probability distribution the expected values of the functions 

jc(I;X,)j and !t(I;;G)I 

exist then the expressions: 
n n 

.1 L c ( I . ; ~ ) and .:l L t ( I "; X ) 
n j=O -J n j=O J 

(10) 

converge with probability 1 for n tending to infinity 2 ). 
Both limits depend on the ergodic set, in which the system 

11 jumps". 
If I 0 belongs to an ergodic set let the rune tion c( I 0 ; /.J ) and 

t(I0 ; Y,) be the expected values of c(I; y,.) and t(I; 'f.,) respectively, 
with respect to the stationary absolute probability distribution 
corresponding to that ergodic set. 

It can be proved that the following relations are true with 
probability 1: 2 ) 

1 n 
lim Lc(I.; 'X,) = c(r0 ; -x,) (11) 

n~oo n j=O J 
1 n 

lim 2.:t(I.;J:,) = t(I0; ;v) (12) 
n -?I oo n j=O J 

Let us suppose that there are k different ergodic sets and let 
r0h (h=1, ... k) be states in these sets. If I is a transient state 
and phis the probability of entering the htR ergodic set from this 
state, then the limits of 

~ t c(Ij; Y,) and ; f t(IJ.; ~) 
J=O j=O 

are stochastic quantities, which take on the values 

respectively with probability ph. 
Let ph be the probability of entering the h th ergodic set from 

a state I 0 c- VfJ, then we have: 

1) cf. J.L. Doob, Stochastic processes~ p.192, 
2) cf. J.L. Doob, Stochastic processes, p.220, 
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1 t [ lim -n n~oo 

n 
L c ( I . ; "'f ) \Io] 
j=O J 

tot ( I . ; Y., ) t IO J 
J J 
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= LPhc(Ioh'X-) 
h=i 

k 
= L Ph t(IOh; 't) 

li=1 

(13) 

(14) 

Let us assume that I
0 

belongs to an ergodic set and that the 

following inequalities are valid 

for some if > 0 . 

~ { l c ( _!_; )'., ) I 2 + rJ} < co 

t f I t(!, r) I 2+o }< oo 

(15) 

(16) 

The expected values in (15) and (16) are taken with respect 

to the stationary absolute probability distribution corresponding 

to the ergodic set of I 0 • 

It can be proved that 3 ) 
1 n 

1 im 1/n L [ c ( Im; X, ) - t c ( Im; X, ) ] 
n -?-00 m=O 

(17) 

is, for any initial distribution of I 0 (thus also for ,!0=I0 ) 

normally distributed with zero mean and finite variance. 

From (17) it follows: 

1 n } 'c, { 1 im n L [ c ( Im_; ~ ) - i c ( !m; r ) ] = 0 
n ➔OO m=O 

(18) 

or n n 
t ( 1 im 1 L c ( I_ ; ~ )] = 1 im 1 L t c ( I ; "X, ) • 

n -i,. oo n m=O -rn n -?-CO n m=O -m 
(19) 

In the same way we can prove: 
n . n 

t [ 1 im .J. L t ( I ; Y ) ] = 1 im .J. L ~ t ( I _; 'Y, ) • n -m t' n -m 1'· n----+ oo m=O n --J,,,, co m=O 
(20) 

If I 0 is a transient state and if for each of the ergodic sets 

the inequalities (15) and (16) are satisfied then it can be proved 

that the relations (19) and (20) remain true. 
Up to now we have made a number of assumptions concerning the 

nature of the process., the strategy applied and some special 

functions. 
Strategies which do satisfy all these assumptions will be 

named admissible strategies. 

Let us return to the inequality (9) and let us use the results 

expressed in the relations (13), (14), (19) and (20). 

If~ is an admissible strategy and n tends to infinity 1, then 

3) cf. J.L. Doob, Stochastic processes, p,228 and p.232. 
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the inequality ( 9) chang2s into: 

k 
L pn c(IOh;'/4) 

h=1 
~ 0( 

l,{ (21) 
~ 

h~ 
p t(Io~1; "'/v) 

If the inequality (21) is true then it will be cheaper to handle 

the system, subjected to an S( X, ) process, ourselves. 

Let us suppose that, if we can show that "help yourself" is 

cheaper the substitute is willing to reduce the premium. If the 

reduced premium is P.qual to the left hand side of the inequality 

(21), then it will be clear that for an S(X) process the admissible 

strategy, which minimizes the left hand side of (21) is the optimal 

one. 
So we have derived for admissible strategies the criterion for 

optimality. The criterion function is given by: 

k 
(22) 

h~1 Ph t( IOh; "j,) 

In some simple problems the optimal strategy can be obtained 

directly from the criterion function. But, generally, the function 

7'.('X, ;I0 ) does not have a simple explicit form. 

In the remainder of this paper we should like to point out the 

fact that in this more general approach of stochastic oo-stage 

decision problem a mathematical iteration procedure, a sc called 
11 policy improvement method" can also be developed. 

In order to illustrate this we will introduce sequences of 

processes Smn( X, 2 ; ~ 1;E) with m >,. 1 and n >,. O. These processes can be 
generated as follows: 

The first m intirventions in the original process will take 

place in accordance with the strategy X2 . After the mth intervention 
the strategy X1 will be applied n times in succession. 

Before the process will be stopped the system has to take on at 

least one other state in the intervention set of the strategy J 1 . 

From this definition of the Smn( X 2 ; ;( 1;E) process it follows that 

the Sm( 'j, '2;E) process may differ from the sm0 ( 'J, 2; X 1;E) process. 
The expected value of the loss incurred in a Smn ( X, 2 ; X, 1 ;E) process 

will be indicated by cmn(Io., 'f2; X1), where Io is the initial state 
of the proces;:.;. 
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If I * is the state just after the m th intervention then the -m 
following relation is easily to verify: 

c mn (Io; 't 2; f' 1 ) = 

= cm(Io; X-2)+ <t{ en(~; X-1)! Io} - t{coC!;, X-2)lio}· ( r3) . 

Let the expected duration of an S ( /J 1; ;., 2 ) process with ,,,, mn 
initial state I 0 be given by tmn ( I 0 ; "j; 2 ; 7, 1 ) J then the following 
relation can be proved: 

tmn(Io; ~2; :t1) = tm(Io; Jl2)+~{ tn(I:_; Jl1)II0} + 

- i { t O ( I;~; ;t 2 ) I I O } • 

Let us suppose we have a class of admissible strategies J with 

the following properties: 

a) The class J contains also the strategy that comes into being 

if vrc have a series of strategies / j e. J with corresponding 

disjunct sets M. of a certain Borel field; 
J 

and if we apply the strategy Y,, 0 always but only in M .. 
J J 

b) If X· e J creates an S ( X, ) process in v,r with k erc;oo ic sets., 
0(/1 

then corre~nondine to each of thcs0 sets thurc is 2 strategy 
'Vi(·' '1 l•) i~ l= , • • • .:\.' 
ergodic set. 

c ) If X 1 {:, J has 
that minimizes 

conform to X. in that set and ,·1ithout nny othc::r 

only one ergodic set then the strategy "t , 

= lim { c1n(IO; "/.,; X- ✓)- 7',( JJ 1;IO)t1n(IO; X,; )',1)-~n(IO; f-1)+ 
n -1>- oo 

+ 7\( Y- 1;Io)tn(Io; X 1)} (25) 

uniformly in I 0 ; belongs also to J. 

Let us start then the 11 policy improvement 11 procedure with an 

arbitrary strategy J1 e J. If we apply the strategy J 1 the adjusted 

process S co ( ~ 1 ) comes into being. The re a re now two possibilities: 

a) The adjusted process has only one ergodic set. 
,. 

b) The adjusted process has more than one ergodic set. 

If the adjusted process has more than one ergodic set, say k 

sets, let ?\j ( )l 1 ) (j=1, ... k) be the corresponding values of the 
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criterion function. If /\. ( Y, 1 ) is minimal for j=ko then the transfer 
of the system to the k1t~ ergodic set has preference. 

According to the property b) of the class J there is at least 

one strategy J ~ that does not differ from X 1 inside the k
0 
th 

ergodic set and that has no other ergodic sets. 

If the adjusted process has only one ergodic set we choose 
I . 

Y, 1 ~qual to ;t 1 . 

Our first step in the 11 policy improvement 11 procedure is to 
I 

replace 'j 1 by 'j., 
1

. 

Next we look for the strategy, indicated by ;t 2 , that minimizes: 
I 

Ho( Io; "t2; i 1) = 

{ 

I/ I I u l 

n~co c1n(lo; Y..2, :X,1)- i\(X1)t1n(Io; t- 2; 11) + 

-~n(Io; X,~)+ 7-( X, ~)tr/Io; X-~)} ( 26) 

uniformly in I
0

• 

According to the property c) of the class J the strategy ~ 2 
belongs to J. 

By induction we can prove that the following inequality holds 

uniformly in I
0

: 
V I V 

cm(Io,X2)- i\(X1)tm(Io;X2) + 

- i { c' o C~-1~, 12 ) l Io } + {\ ( '/v ~ ) c { to ( I;, l 2 ) } Io } + 

+ lim t { [ ~n-m ( I;, ), ~) - 7\ ( X, 1) tn-m ( I;, 1 ~ )1 } I 0 } + 
n ~co J 

0 (27) 

If we pay only attention to the states just after an intervention 

it can be proved that under certain conditions, the adjusted process 

S
00

( -Y., 2) induces a new time discrete Madrnv process with states I~ 
in state space. 

Since the inequality mentioned above is valid for all I
0

, we 

may assume that r0 is distributed like one of the stationary absolute 
probability distributions of the new time discrete Markov process. 

If we talre the expected value of the left hand side of (27) we will 
find: 

.J!. [ v I V ] 

G en/Io' f' 2) - i\ ( X 1 ) tm C!;-0; J 2) + 

- t [ ; 0 ( I;, 1 2 ) - 7\ ( ~ ~ ) t O ( r;; ;, 2 ) ] ~ o . (28) 
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From the conditions imposed it follows that for m ..+ m this 

inequality is, with probability 1, equivalent to: 

~c (Io;X-2) · 
lim .., m ~ 7\ ( ~ ~ ) 

m -+ oo ~ tm ( r0 ; ~ 2 ) 
( 29) 

and consequently for each of the ergodic sets of S
00 

( J 2 ): 

(30) 

This result implies that the strategy X,...., has to be preferred 
c:. 

to the strategy X ~. 
An iteration method will be obtained if we restart the whole 

procedure with the strategy X 2 instead of J ,
1 

and carry on in this 

way. 
I The iteration procedure thus produces a sequence X, n. For each 

n the inequality 

(31) 

holds. 

Consequently the values of the criterion function corresponding 

to the sequence X, ~ converge to a value., to be indicated by 'h 0 • 

We still have to prove that ~
0 

is the value of the criterion 

function for the optimal strategy of J. 

Suppose that the class J of admissible strategies has the ad­

ditional property: 

d) For each sequence of strategies f 1~ obtained from a 11 policy 

improvement" procedure the limit (ink) of 

n3!1m { ~1n(Io; A'~+1' 1~)- 7'.(X, ~)t1n(Io; 'f l~VI; X,~)} (3 2 ) 

and of 

11 
1-=: 

00 
{ ~ n + 1 ( IO; ~ l~) - 7'. ( X ~ ) t n + 1 ( IO ; '/- 1

1

: ) } ( 3 3 ) 

converge uniformly in r
0 

and are equal. 

From the definition of X ~ it follows, that for each k, for each 

strategy J, €. J and for each initial state r
0

: 

•H(Io; Y-; f ~)-H(Io; ~ k+1; :t l~) = 

=
11

::;_m
00 

{ ~1n(Io; Y,; ;l~)- °A(/' {)t1n(Io; J; t {) + 

v I I I V I } 

- c1n(Io; Y, k+1; f'k)+ °A(;, k)t1n(Io; Y-1~+1 2 Y-k) ~ o. (34) 
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If ~ is the optimal strategy then from property d) it follows 

that for each €. > 0 a value k0 can be found such that for k > k0 and 

for each I 0 we have: 
V ' V 

1 im { c 1 n ( IO; 'J ; 'J ~) - 71. ( X 11 
) t 1 n ( IO ; X ; 'Jl k) + 

n~oo c 
v ( r r " r } 

- cn+1 Io; X k)+ /\( 'fv k)tn+1 (Io; ? k) ~ - t (35) 

F~om this inequality we can deduce for each ergodic set of the 

Seo ( "/,) process: 

(36) 

and consequently 

(37) 

Postscript. 
In this paper we have more than once used the expression 11 under 

certain conditions". The investigation with respect to these con­

ditions is not yet fully completed. 
The purpose of this paper is merely to outline a new method for 

solving some stochastic oo-stage decision problems. In a number of 

concrete practical problems this method has already proved to be 
very useful. 
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Resume 
Dans cet article on considere des problemes de decision Markoviennes, 

dans lesquelles on a la liberte de choisir sans restrictions les mo­

ments de decision. 
La systeme consideree est soutenue d 1un processus naturel de Markov. 

Si 1 1 on prend une decision selon une politique fixee on peut troubler 

~ le processus naturel et par consequence un processus nouvel s 1eleve. 

Sous des conditions speciales imposees au processus naturel et a la 

politique appliquee le processus nouveau est de nouveau un processus 

de Markov. 

Un criterium pour comparer les politiques est derive et une methode 

iterative pour estimer la politique optimale est discutee. 


