Reprinted from Sankhyd : The Indian Journal of Statistics, SeriesA, Vol. 28, Part 1, 1966

ON STABLE TRANSFORMATIONS!
By ASHOK MAITRA?

Mathematisch Centrum, Amsterdam

SUMMARY. Lot T bea meisure preserving transformation of a probability space (Q, A, P)

nto itself. Wo shall say that 7 is a stable transformation if for every 4, B e A, lim P(T-"4NB) exists.
71— 0

Stable transformations are investigated in this article with tho aid of Reény1’s rosults on stable sequences
of events. The concept of a stable transformation generalises that of a mixing transformation.

1. INTRODUCTION

Let (Q, A, P) be a probability space. Let 7 be a measurable transformation
(not necessarily one to one) of Q into itself. Assume further that 7' is measure preo-
serving, that is P(7-14)=P(4) for every Ae_q. Following Rényi (1963), we shall say
that 7" is stable if for every de_qg, {T-" A, n=1, 2, ...} 1s a stable sequence of events,

that 1s, if for every 4, Be 4, lim P(T-"4 (O B) exists. Tho purpose of this article
ft—> 0

i1s to study such transformations.

The concept of stability generalises that of mixing. A mixing transformation
1s, of course, always stable. It will be shown that a stable transformation 7' is mixing
it and only if the o-field of invariant sets is trivial (s measurable set 4 is said $0 be in-

variant 1if 71 4 = A).

As the present investigation relies heavily on the results proved in Rényi
(1963), we shall for the sake of completeness give a résumé of these in Section 2. In
Section 3 the analogues of results for stable sequences of events will be proved for
stable transformations. Examples of stable transformations, including a counter-
example to disprove a reasonable conjecture, will be given in Section 4.

2. RESUME OF RESULTS ON STABLE SEQUENCES OF EVENTS

Let (L2, L7, P) be a probability space and let {4,, n = 1, 2, ...} be a sequence
of events. We shall say that {4,} is a stable sequence of events if for every Be_g

lim P(4, () B) = Q(B)
NP O

exists. c
Theorem 2.1: If {4,} is a stable sequence of events and Q is as above, then Q
18 a measure on (Q, A) and s absolutely continuous with respect to P.

Denote by o« the Radon-Nikodym derivative of @ with respect to P. « is said
to be the local density of the stable sequence of events {An}
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A sequence of events {4,,n =1, 2, ...} is said to be mizing if there exists
#, 0 < B K1, such that for every Be « '

lim P(4, ﬂ B) mﬁ P(B).
e -

f is called the density of the mixing sequence{4,}.
Corollary 2.1 : If {4,} 1s a stable sequence of events with local density a, then
{A4,} ©s mizing if and only if o is a constant almost surely. '

Theorem 2.2 : The sequence of events {4,, n = 1, 2, ...} is stable if and only <f
lim P4, (Y4,)=C, k=1,2,...

N—y &0
exists. If, in addition, P(4;) > 0, k=1,2,..., set ¢, = Q./P(4,), k= 1,2, ..., and

go = lim P(A4,). Then {4,} is mizing if and only if the ¢.’s (k= 0,1, 2, ...) are all
PP OO

equal..

The property of stability is preserved if the underlying probability measure
P is replaced by a probability measure absolutely continuous with repect to it. More

explicitly we have the following theorom.

Theorem 2.3 : Let{4,, n=1,2,...,} be a stable sequence of events with local
density o. on the probability space (Q, &, P). Let P* be a probability measure on (Q, A),
absolutely conlinuous with respect to P. Then {4,} s stable on (Q, _4, P*) with local
density o.

3. SOME GENERAL THEOREMS ON STABLE TRANSFORMATIONS

We shall now prove some theorems about stable transformations.

Theorem 3.1: Lel 7' be a stable measure preserving transformation on (2, _A,P).

Then
lim P(IT"A4 ( B) = :g P(A] 9dP

NP 0
for every A, Be_q. Here Jis the invariant o-field and P(A]J) is the conditional prohabi-
ity of A given J. |
Proof : By definition, the sequence {I'™" A, n =1, 2, ...}, where de_¢«, is
stable. Hence lim P(T-"A(\B) exists for every Be_g. But by the Individual Ergodic

Tl w——p OO
n—1
Theorem, we have : -%-— % I,—k, converges almost surely to P(A4/Y), where I, is the
k=1
. , ] n-1
indicator of the set . Hence, if Be 4, P 2 Iy—k,. Igzconverges almost surely to
k=0

P(Al9) Ip. Apply the Dominated Convergence Theorem. We get

n—1
lim — % P(T-*A (\ B) = [ P(A|9)dP
B

that is, the sequence {P(T~"A(\B)} is Clesaro-summable to [ P(A]9)dP. The result
B
now follows from the remark made at the beginning of the proof.
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ON STABLE TRANSFORMATIONS

Remark : Denote by «, the local density of the stable sequence {I'-"4},
Ae 4. What we have proved then is that [ a,dP = [ P(4/y) dP for every Be_A.
| B B

But «4 and P(4/9) are _g-measurable functions. Hence o, = P(4/J) almost
surely. Theretore the local density of {7-* A4} is simply P(4/Y).

In order to check if a measure preserving transformation 7' is stable, it is in

fact sutiicient to verify that lim P(7"4 (M) B) exists for 4 = Be_A.
NP OO

Theorem 3.2 : A measure preserving transformation T is stable iof and only if

lim P(T"4 (" A) exists for every Ae_A.
N~—P) O

Proof : The ‘“only if”” part is trivial. Consider now the sequence
{I"4,n=1,2, ...}, Ae_4. We want to show that {7"-" 4} is stable. Note that since T
1s measure preserving, P(T*4A N T"A) = P(I* (T-"WPA4(A4)) = P(T-"% 4 (M 4),
where =7 > k. But by hypothesis, lim P(T-"%4 M A4) exists and so lim

N —p 0O 2}~ OO

P(T—*4 (YT"4) exists, k= 1,2,.... Hence, by Theorem 2.2, {T"4} is stable.
This completes the “‘itf’’ part of the proof.

A measure preserving transformation 7' is mixing if for every Ae_«, the
sequence of events {I"4, n =1, 2, ...} is mixing with density P(4), that is, if for
every A, Be_«g _

lim P(T-"A(\B) = P(4). P(B).

n—yo0
Clearly a mixing transformation is stable. When is the converse true ?

Corollary 3.1: In order that a stable transformation T be mixing, it i8 necessary
and sufficient that J, the o- field of invariant sets, be trivial under P.

Proof : Suppose that ¥ is trivial under P, that is, if dey, then P(4) = 0
or 1. By Theorem 3.1, since 7' is stable, we have
lim P(T—"A(\B) = g P(A[9)AP
R Joe

for every A, Be_qg. But as ¢ is trivial, P(4/9) = P(4) almost surely for every de_.

Hence lim P(T-"A(\B) = P(4). P(B) for every A, Be_g, so that ' is mixing. Con-
1P 00
versely assume that 7' is mixing. Let Aey. Then T™ 4 =4 for n =1, 2, ....

But {7-"4,n = 1,2, ...} is mixing. Hence for every B¢ 9, P(A(\B) = P(4). P(B),
that is P(4) = 0 or 1. Therefore, ¢ is trivial, which concludes the proof.

T.et us now turn to the functional form of stability. Let .£,(Q,_4,P) be the
class of complex-valued random variables f on (Q, _«, P) such that [|f|2dP < oo.
Identify all functions £, which differ on a set of measure zero. Then 2, is a Hilbert
space over the field of complex numbers with inner product (f, g) = [f gdP (here Z
is the complex conjugate of ) and norm ||f|| = ([|f|2 dP)}. If T is a measure preserv-
ing transformation of Q into itself, we can define a transtformation U of &, into itself
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as follows : Uf = feoT, fe o5, Then U is an isometry, that is, U is a bounded linear
transformation such that ||Uf]| = ||f|| for every fe £, (see Halmos, 1956, p. 14).
- Denote by U” the n-th iterate of U.

Call a function f e &, tnvariant if Uf = f. Denote by E, the projection on the
closed subspace of invariant functions in ,£,. We can now characterise stability
of 7' as follows.

LTheorem 3.3 : A teasure preserving transformation T is stable if and only

of i (U™f, g) = (E,f, g) for every f, g € £y, that is, U™ converges to B, in the weak operator
PP OO |

topology.
Proof :  Straightforward.

Remark :  Let {f;, j € J} be a complete orthonormal set for ,2,. Then a mea-

Sure preserving tr amfozmamon 7' is stable if and only if lim (U, f;) = (&, f;, f;) for
n—y 0

all 2,5 ¢ J. This follows divectly from the linearity and coutinuity of U.

In the case of mixing, ¢ is trivial so that all invariant functions in £, are
constants. Hence K, f = (f, 1)1 for every fe 2,, where 1 stands for the function
which is equal to one everywhere.

Corollary 3.2 : A measure preserving transformation T s mzxmg of and only
if im (U, g) = ((/, 1) L g) = (f, 1)1, g) for every f, g e 0y

N> 00
We may add here that if 7' is a stable measure preserving transformation, then
U™ converges to K, in the strong operator topology only in a rather trivial and uninter-
esting case. In fact, U" converges to B, if and only if U is the identity. To prove
this statement, note that since U™ converges weakly to A, U" will converge

strongly to B, if and only if lim [|U*f|| = |E, f| for each fe€ .£,. But U™ || = |If]| for

Tl OO

n=1,2,.... Note also that for any f e L,, ||f||2 = || E, fI|2-+]If—E,f||? by the Decom-
position Theorem. Hence ||f|| = ||E, f]] if and only it £,f=f. It follows that U®

converges strongly to &, if and only if U f = f for each f ¢ .,&,.

- The property of stability is preserved if the underlying measure is replaced
by a measure absolutely continuous with respect to it. More explicitly, we have
the following theorem.

Theorem 3.4 : Let T be a stable measure preserving transformation on (Q, A, P).
Let ¢ be a probability measure on (Q, ) absolutely continuous with respect to P on 9.
Assume f@rthe'r that € s preserved by T. Then T is stable on (Q,_4,Q) and for every
Ae g, P(A]9) = Q(A]Y) almost surely [Q].

| Proof : (1) First we prove that @ is absolutely continuous with respect to P
on 4. Let Ae ¢ and P(4) = 0. Since T preserves P, P(lim sup 7-"4) = 0.
But lim sup 77"4 ¢ 9. Hence Q(lim sup 77"4) = 0. It now follows from the fact
that ¢ is preserved by 7' and the Recurrence Theorem (Halmos, 1956, p. 10) that

Qd) =o0.
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(2) Now consider the sequence of events I"A,n=1,2,...}, Ae_« Since
& is absolutely continuous with respect to P on _g, by Theorem 2.3, {7'—" A} is stable
with respect to (. Hence 7' is stable on (Q, _g, Q). Furthermore, by Theorem

2.3, lim Q(IT"4AMNB) --“j P(A4[y) dQ for every A, Be _xg. Hence, by Theorem
Flmd 0O

3.1., we have Bf Q(A[Y) dQ = | P(A[9)dQ forevery 4, B¢ _g. Thisproves the second
B

assertion of the theorem.

Corollary 3.3 : Let P and @ be probability measures on (Q, ). Assume
that 1" vs stable and measure preserving with respect to both P and Q. Then, if P = @
on 4, P = Q on 4.

Proof :  Let u(4) = $P(A)+-31Q(4), A e _xg. It is easy to verify that T is
stable and measure preserving with respect to g. Note that P, @ are absolutely
continuous with respect to u. Furthermore, w=PFP=¢ onJ DBy Theorem 3.4,
w(A/9) = P(A4] ) almost surely [P] for every 4 € 4. Note that the exceptional set
above 1s J-measurable and so must have g-measure zero as well. Again, as P(4/Y)
and u(4/ ) are g-measureble functions, we have

w(d) = (A 9)ip’ = [P4] 9)dP = P(a)

for every A e_g. Here ,u”o, P“a denote the restriction of u, P, respectively to .
This proves the corollary.

Corollary 3.4: Let T be a measure preserving mixing transformation on

(€, A, P). Let @ be a probability measure on (Q, A). Assume that Q is absolutely
continuous with respect to P on I and that it is preserved by T. Then P = Q.

Proof :  Follows directly from Theorem 3.4.

Corollary 3.5 : Let T be measure preserving and mixing with respect to pro-

bability measures P and @ on (Q A). Then either P = Q or P and Q are mutually
singular. '

Proof : "Suppose P £ . Then, by Corollary 3.3., there exists aset 4de g
such that P(4) = @(4). But since 7' is mixing for both P and @, either P(4) = 1

and (J(A) =0 or P(4) =0 and ¢(4) = 1. In either case, P and @ are mutually
singular., '
In the rest of this section, we shall investigate stable transformations which

are not necessarily measure preserving. As before, we shall say that a measurable
transformation 7' on (Q, _A4, P) is stable if lim P(T"A4 () B) exists for every A, Be_x4.

- A—> ©
Under certain additional assumptions, we shall prove that stability of a transformation

makes it potentially measure preserving. Before making this last statement precise,
we need a couple of definitions.

We shall say that a measurable transtormation 7' on (2, _«, P) 1s non-singular
if P(4) = 0 implies P(T* A) = 0. We shall call T conservatrve if A, T 4, T34, ...,
(A e _¥), mutually disjoint implies P(4) = 0.
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We are now in a position to state our theorem.
Theorem 3.5 : Let T be a stable, non-singular, ¢onservative transformdtion on

(Q, A, P). Then there exists a probability measure @ on (Q, &) with the following
properties :

(1) P and Q) agree on J,
(ii) T s a stable, measure preserving transformation on (L2, /¥, &),
(ili) P and @ are equivalent, i.e. they vanish on the same sets,

(iv) lim P(T-"4 (M B) me QA/Y) dP for every A, Be _A.

NP GO

Proof: Define @(4) = lim P(T-"4), A e¢ _A. The existence of the limit is
P OO

guaranteed by the stability of 7. It follows from the Vitali-Hahn-Saks Theorem
(Halmos, 1950, p. 170) that Q is a probability measure. (i) is obvious. Clearly,
Q(A) = Q(T1A4) for every 4 ¢ 4. Furthermore, non-singularity of 7' (with respect
to P) 'implies that @ is absolutely continuous with respect to 2. Now we can use
Theorem 2.3. to conclude that 7' is stable with 1espect to ¢. Thus (11).

Now let @(4) = 0. Since @ is preserved by 7', Q(lim. sup 77"4) = 0. But
lim sup 774 ¢ Y, so that P (lim sup 7-"4) = 0 by (i). Since 7' is conservative
we can invoke the Recurrence Theorem for conservative transformations (Sucheston,
1957, p. 445) and conclude that P(4) = 0. We have already shown that P(4) = 0
implies ¢)(4) = 0. Hence (iii).

(iv) now follows from (iii), Theorem 2.3. and the remark following Theorem
3.1. This completes the proof of Theorem 3.5.

Remark : Conservativeness of 7' was used to prove that P is absolutely conti-
nuous with respect to . If 7' isinvertible and both ways measurable, then the assump-
tion of conservativeness can be dropped from the preceeding theorem. For now

Lj " A plays the role of lim sup 7-"4.

7 wmes OO

4. HKEXAMPLES OF STABLE TRANSFORMATIONS

Erxample 1 : Let T be the identity transic rmation on a probability space
(Q, 4, P). Then 7 is- a stable measure preserving transformation. If _4 is non-
trivial, we get an example of a stable transformation that is not mixing.

Bxample 2 : Let (Q, _¥, be a measurable space and let (Q2,, _¥,) =
(Qq, Ao), =1,2,.... Let (Q, A) = ﬁi(Qﬂ,ﬂn). Denote by w,, (n = 1, 2, ...) the
n-th coordinate of a point w in Q. \;;; shall use the Iollowing notation for finite
(?71)’ — E(iﬂ)), where 1; << << 2y < ... < i,;, is the set

dimensional rectangles : C ( E'1 B

of all @ such that W, el k=1,...,n. Ifi,=k k=1,...,n, we shall write

.
+ .
¥ f



ON STABLE TRANSFORMATIONS

O(E'l . E). Let T be the shift operator on Q, that is, 7 v = ', where
ol =00, n=1 2,... Consider a symmetric probability measure P on (Q _,),
that is, P satisfies the following condition :

(0(1.7}(“), 3 ES")))m P(C(FU‘), 3 E(jn)))

7

foralln =1,2,...,all B, ..., B, e _A, and all sequences of positive integers 1y, ..., ¢
and j4, ..., j, (¢'s all distinct and j’s all distinct).

Then 7' is a stable, measure preserving transformation on (Q, _«, P). Clearly
T is measure preserving. Let B be a measurable {1, ..., m}-cylinder, that Is,

§1t
B=FxQ,.1XQu.2X..., where F is a measurable subset of II Q,. Let b; = T-* B,
k=1

E=1, 2,.... It is clear that B, = Q;X ... XQXF X Qpimi1X Qpimia X o)
that is, B, is a {k-+1, ..., k+m}-cylinder with base F. Hence, as P is a symmetric
measure, for all large n and fixed %k, P(B, ("} B,) = P(D), where D is the {1, ..., 2m}-

cylinder, F XF XQopuiq XQopt+aX .... Therefore, lim P(B; () B,) exists for every
N—> 0

k= 1, 2, .... Consequently, the sequence of events {T* B, k = 1, 2, ...} is stable by
virtue of Theorem 2.2. Now any set 4 ¢ ¢ can be approximated arbitrarily closely
by a measurable {1, ..., m}-cylinder B (for some m), from which it follows that

(T4, n = 1,2,..} is a stable sequence of events for every A e . This proves
that 7' is a stable tra,nsformatlon*

In particular, let P be a product measure with identical components. The
arguments of the last paragraph show that 7' is mixing. Conversely, assume that T’
is mixing for a symmetric measure P. Let 4 = C(&,, ..., E,) be a measurable finite
dimensional rectangle. It is easy to see that

Lim P(T“"AﬂT“"A) pPCE,, ... K, B .., E,)), k=12,...

N=—D O

The limit is independent of k. But the sequence {I'"4} is mixing. Hence, by
Theorem 2.2. we must have '

P(C(E,, ..., E,, Ey, ..., B,)) = PAC(#,, ..., E,,)).

As T'is mixing; this last relation holds for all measurable finite-dimensional rectangles.
Hence, by Theorems 5.2. and 5.3 in Hewitt and Savage (1955, pp. 477-78), P must
be a product measure with identical components. We have thus proved :

Theorem 4.1 : Let P be a symmetric probability on (Q, _«). Then T is a

 stable measure preserving transformation on (Q, A. P) and T 18 mixing ?,.f and only f
P is a product measure with tdentical components.

Example 3 : Let {x,, » = 0,1, ...} be a stationary, aperiodic Markov chain
with countable state space I. Hlements of I will be denoted by ¢ with or without
subscripts. Assume that the Markov chain is defined on the appropriate (unilateral)
sequence space (Q, _¢) and let 7' be the shift operator on (Q, _4). If P istherelevant
probability measure on (Q, «), T is a stable measure preserving transformation on

(Q, A, P).
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- To see that 7' is stable, let us note that it is sﬁﬁcient to demonstrate sta,bﬂity
of sequences of events {14, n = 1, 2, ...}, where 4 is a finite-dimensional rectangle
of the form (z, = 1,, ..., x,, = 1,,), the i’s being ergodic states belonging to the same
class. We have for fixed k£ and large »
—Fk —n — M. D, . . . pn—-m—Ek)y, . .,
PI*ANTA) = p; iy, - Pi i Piar Pigiy -+ Pi i
where p, denotes the stationary distribution, p,; the one-step transition probability and
p§P the n-step transition probability.

Remembering that lim p{ = 7, for j ergodic, we obtain
Ne—> O

i —K —H — Y. D). s . . R ¢ TR —
lim P(T-*A(IT"4) = D Dii, -+ Pi M; i Pici, - s k=1, 2, ...

n—> o m—1"m m—1"m’

Hence, by Theorem 2.2, 7'-"4 1s stable. This proves the assertion.

Example 4 : Let Q be a compact Abelian group, _¢ the o-field of Borel
subsets of Q and P normalised Haar measure on (2, 4). Let 71 be a continuous
automorphism of Q. Then 7T is measure preserving with respect to P (Halmos, 1956,

p.- 7).

Let C be the character group of Q, that is, U is the set of all continuous homo-
morphisms of Q into the circle group. Denote by U the unitary operator on
- LH(Q, A, P)induced by T'. U restiicted to C is an automorphism of the group C. IffeC,
by the orbit of f under U, we shall mean the set {U" f, n = 0, £=1,4-2, ...}. If the orbit
is finite, the least positive integer m such that U™f = f will be called the order of the
orbit. The order of the orbit of an invariant character f(i.e. f = U f) under U is-
clearly 1. We remark for later use that C forms a complete orthonormal set in
Lo(Q, A, P). (These facts may be found in Halmos (1956, p. 53)).

We want to characterise continuous automorphisms of () which are stable.

Theorem 4.2 : A conlinuous automorphism T of a compact Abelian group
Q s stable if and only if the induced automorphism U on the character group C has no
finite orbits of order m > 1.

Proof : Assume that 7 is stable and that there is a f € C such that the orbit

of f under U is finite and of order m > 1. Then, it is clear that lim sup (U,f, f) =1
N &0

and lim inf (U™ f, f) = 0, so that lim (U™, f) does not exist. We have thus arrived
Py O PymmaP OO '

at a contradiction.

Conversely, suppose that U has only finite orbits of order 1 or infinite orbits.

If f € C'is such that Uf = f, then it is easy to see that for every g ¢ C, lim (U"f, ¢) = (/, g)
- Ny OO

=0 or 1 according as ¢g+Jf or g=/f If the orbit feC under U is infinite,
32
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then clearly im (U" f,g) = 0 for every ge C. Hence, in either case, lim (U™ f, g)
N-—p O NPy O

= (B,f, g) for every f, g € C, where E, is the projection on the closed subspace of in-
variant functions in oC(Q, ¢, P). It now follows from the fact that C forms a complete

orthonormal set and the remark made after Theorem 3.3 that 7 is stable. This
completes the proof of Theorem 4.2.

Since a stable transformation 7' is mixing if and only if every invariant function

in £y 18 a constant, we can now characterise continuous automorphisms which are
mixing as follows : '

Corollary 4.1 : A continuous automorphism T of a compact Abelian group
Q s mizing if and only if the induced automorphism U on the character group C has only

infintte orbits, other than the trivial orbit {1} (here 1 stands for the function where value s
one everywhere on £2).

Example 5 : 1t is known that, under suitable assumptions on the measure

space, & measure preserving transformation can be expressed as a direct sum (direct
integral) of ergodic transformations (see, for instance, Halmos (1941)).

The question then naturally arises whether a stable measure preserving trans-
formation is always a direct sum of mixing transformations. We give an example

‘below which answers the question in the negative. (The reader is referred to Halmos
(1941) for a precise definition of the concept of direct sum).

Let X = Y = circumference of the unit circle, /¥, = ¥, = o-field of Borel
subsets of X = ¥, and P; = P, = normalised Lebesgue measure on _4; = _A>. Let
(Q, A, P) = (X, Ay, P)X(Y, Ay, P;). Q is then a compact Abelian group, the
group operation being coordinatervise multiplication, _«¢ is the o-field of Borel subsets
of Q and P is normalised Haar measure. We shall denote points of Q by ordered pairs
(,y), where x ¢ X, ye Y. We now define a transformation 7' of Q onto Q as follows :
Tz, y) = (x, zy) € Q. In fact, 1" is a continuous automorphism of Q and is, conse-
quently, measure preserving with respect to P. Now the character group C of Q is
easily seen to be the set of functions S, o(m, m =0, £1, 42, ...), where f,, (=, ¥)
= x™y", (x,y)eQ. It follows from a straightforward application of Theorem 4.2
that 7' is stable. Thus, we have proved that 7' is a stable measure preserving trans-
formation. |

We assert that 7 is a direct sum of transformations, none of which is mixing.
First note that the invariant o-field J of 7 is the o-field of sets of the form 4% Y,
A e A;. The atoms of J are of the form {#} XY, z¢ X. Wae shall denote atoms of
J by Y, Now, each Y, being invariant, 7' induces a transformation, say 7', on
each Y,. In fact, Ty = ay for (x,y) e Y, It is easy to see that 7' is a direct sum of
these transformations 7', z ¢ X. Now 7T, is a rotation on the circle group for every
x e X. Consequently, for each z ¢ X, T', is measure preserving with respect to Lebesgue
measure (Halmos, 1956, p. 7); furthermore, for all x, except for the countable number
of 2’s such that 2" = 1 for some natural number n, 7°, is ergodic (Halmos, 1956, p. 26).
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But for no z¢X is T, mixing (Halmos, 1956, p. 37). Thus we have shown that 7T
is a direct sum of ergodic measure preserving transformations, none of which is mixing.
It follows now, since the transformation 7', were defined on the atoms of 4, that T
cannot be expressed as a direct sum of mixing transformations.

Example 6 : We conclude with an example of a stable, non-singular trans
formation which 1s not measure preserving.

Let Q = [0, 1], ¥ the o-field of Borel subsets of Q and P Lebesgue measure
on ¥. Define a transtormation 7' of Q onto itself as follows :
22 it x€ [0, 3)
Tx = |
x i xzeld, 1]
T is clearly measurable.

Since for any set Ae_«g, P(T1)A4) < 2P(4), T is non-singular with respect to P.
ForAe_sand A[0, %),1tis clear that Iim P(T-"A4)=0,s0 that lim P(T-"A(B)=10

| | | i—p O NP O ‘
for every Be _4. Hence {I™4, n=1, 2,..]} is a stable sequence of events.
If Ae_sgand 4 C[4, 1), then 77”4 is a non-decreasing sequence of sets. Hence

o0

lim P(T"A () B) = P( \J 74 ﬁB) for every Be_g. Therefore {T-"4,n=1, 2, ...}

NP O —y O

is stable. It now follows that lim P(7-"A4 () B) exists for every A, Be_g. Thus T
NP OO
is a stable transformation.

But 7' is not measure preserving with respect to P; indeed, 7' is not measure
preserving with respect to any finite measure equivalent to P. To prove this, 1t suffices
to show that 7 is not conservative (Halmos, 1956, p. 84). Consider B = [}, }).
Then B,7T-' B,T—2B, ... are mutually disjoint and P(B) = . Hence 7' is not conser-
vative.

| This example shows that the assumption of conservativeness cannot be dropped
from Theorem. 3.5, 1if 7' is not invertible.
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