ON STABLE TRANSFORMATIONS¹

By ASHOK MAITRA2

Mathematisch Centrum, Amsterdam

SUMMARY. Let T be a measure preserving transformation of a probability space (Ω, \mathcal{A}, P) into itself. We shall say that T is a stable transformation if for every A, $B \in \mathcal{A}$, $\lim_{n \to \infty} P(T^{-n}A \cap B)$ exists. Stable transformations are investigated in this article with the aid of Rényi's results on stable sequences of events. The concept of a stable transformation generalises that of a mixing transformation.

1. Introduction

Let (Ω, \mathcal{A}, P) be a probability space. Let T be a measurable transformation (not necessarily one to one) of Ω into itself. Assume further that T is measure preserving, that is $P(T^{-1}A) = P(A)$ for every $A \in \mathcal{A}$. Following Rényi (1963), we shall say that T is stable if for every $A \in \mathcal{A}$, $\{T^{-n} A, n=1, 2, ...\}$ is a stable sequence of events, that is, if for every $A, B \in \mathcal{A}$, $\lim_{n \to \infty} P(T^{-n}A \cap B)$ exists. The purpose of this article is to study such transformations.

The concept of stability generalises that of mixing. A mixing transformation is, of course, always stable. It will be shown that a stable transformation T is mixing if and only if the σ -field of invariant sets is trivial (a measurable set A is said to be invariant if T^{-1} A = A).

As the present investigation relies heavily on the results proved in Rényi (1963), we shall for the sake of completeness give a résumé of these in Section 2. In Section 3 the analogues of results for stable sequences of events will be proved for stable transformations. Examples of stable transformations, including a counter-example to disprove a reasonable conjecture, will be given in Section 4.

2. RESUME OF RESULTS ON STABLE SEQUENCES OF EVENTS

Let (Ω, \mathcal{A}, P) be a probability space and let $\{A_n, n = 1, 2, ...\}$ be a sequence of events. We shall say that $\{A_n\}$ is a *stable* sequence of events if for every $B \in \mathcal{A}$

$$\lim_{n\to\infty} P(A_n \cap B) = Q(B)$$

exists.

Theorem 2.1: If $\{A_n\}$ is a stable sequence of events and Q is as above, then Q is a measure on (Ω, \mathcal{A}) and is absolutely continuous with respect to P.

Denote by α the Radon-Nikodym derivative of Q with respect to P. α is said to be the *local density* of the stable sequence of events $\{A_n\}$.

¹Report S338 of the Statistics Department, Mathematisch Centrum, Amsterdam. ²Now with Indian Statistical Institute.

A sequence of events $\{A_n, n = 1, 2, ...\}$ is said to be mixing if there exists β , $0 \leq \beta \leq 1$, such that for every $B \in \mathcal{A}$

$$\lim_{n\to\infty} P(A_n \cap B) = \beta P(B).$$

 β is called the density of the mixing sequence $\{A_n\}$.

Corollary 2.1: If $\{A_n\}$ is a stable sequence of events with local density α , then $\{A_n\}$ is mixing if and only if α is a constant almost surely.

Theorem 2.2: The sequence of events $\{A_n, n = 1, 2, ...\}$ is stable if and only if $\lim_{k \to \infty} P(A_k \cap A_n) = Q_k, \quad k = 1, 2, ...$

exists. If, in addition, $P(A_k) > 0$, k = 1, 2, ..., set $q_k = Q_k/P(A_k)$, k = 1, 2, ..., and $q_0 = \lim_{n \to \infty} P(A_n)$. Then $\{A_n\}$ is mixing if and only if the q_k 's (k = 0, 1, 2, ...) are all equal..

The property of stability is preserved if the underlying probability measure P is replaced by a probability measure absolutely continuous with repect to it. More explicitly we have the following theorem.

Theorem 2.3: Let $\{A_n, n = 1, 2, ..., \}$ be a stable sequence of events with local density α on the probability space (Ω, \mathcal{A}, P) . Let P^* be a probability measure on (Ω, \mathcal{A}) , absolutely continuous with respect to P. Then $\{A_n\}$ is stable on $(\Omega, \mathcal{A}, P^*)$ with local density α .

3. Some general theorems on stable transformations

We shall now prove some theorems about stable transformations.

Theorem 3.1: Let T be a stable measure preserving transformation on (Ω, \mathcal{A}, P) .

Then

$$\lim_{n \to \infty} P(T^{-n}A \cap B) = \int_B P(A/\mathcal{I})dP$$

for every A, $B \in \mathcal{A}$. Here \mathcal{I} is the invariant σ -field and $P(A/\mathcal{I})$ is the conditional probability of A given \mathcal{I} .

Proof: By definition, the sequence $\{T^{-n}A, n = 1, 2, ...\}$, where $A \in \mathcal{A}$, is stable. Hence $\lim_{n \to \infty} P(T^{-n}A \cap B)$ exists for every $B \in \mathcal{A}$. But by the Individual Ergodic

Theorem, we have : $\frac{1}{n} \sum_{k=1}^{n-1} I_T - k_A$ converges almost surely to $P(A/\mathcal{J})$, where I_C is the

indicator of the set C. Hence, if $B \in A$, $\frac{1}{n} \sum_{k=0}^{n-1} I_T - k_A$. I_B converges almost surely to $P(A/\mathcal{I}) I_B$. Apply the Dominated Convergence Theorem. We get

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} P(T^{-k}A \cap B) = \int_{B} P(A/\mathcal{J}) dP$$

that is, the sequence $\{P(T^{-n}A\cap B)\}$ is Ĉesaro-summable to $\int_B P(A/\mathcal{J}) dP$. The result now follows from the remark made at the beginning of the proof.

Remark: Denote by α_A the local density of the stable sequence $\{T^{-n}A\}$, $Ae\mathcal{A}$. What we have proved then is that $\int_B \alpha_A dP = \int_B P(A/\mathcal{I}) dP$ for every $Be\mathcal{A}$. But α_A and $P(A/\mathcal{I})$ are \mathcal{A} -measurable functions. Hence $\alpha_A = P(A/\mathcal{I})$ almost surely. Therefore the local density of $\{T^{-n}A\}$ is simply $P(A/\mathcal{I})$.

In order to check if a measure preserving transformation T is stable, it is in fact sufficient to verify that $\lim_{n\to\infty} P(T^{-n}A \cap B)$ exists for $A = Be \mathcal{A}$.

Theorem 3.2: A measure preserving transformation T is stable if and only if $\lim_{n\to\infty} P(T^{-n}A \cap A)$ exists for every $A \in \mathcal{A}$.

Proof: The "only if" part is trivial. Consider now the sequence $\{T^{-n}A, n=1, 2, \ldots\}, A \in \mathcal{A}$. We want to show that $\{T^{-n}A\}$ is stable. Note that since T is measure preserving, $P(T^{-k}A \cap T^{-n}A) = P(T^{-k}(T^{-(n-k)}A \cap A)) = P(T^{-(n-k)}A \cap A)$, where n > k. But by hypothesis, $\lim_{n \to \infty} P(T^{-(n-k)}A \cap A)$ exists and so $\lim_{n \to \infty} P(T^{-k}A \cap T^{-n}A)$ exists, $k = 1, 2, \ldots$. Hence, by Theorem 2.2, $\{T^{-n}A\}$ is stable. This completes the "if" part of the proof.

A measure preserving transformation T is mixing if for every $A \in \mathcal{A}$, the sequence of events $\{T^{-n}A, n = 1, 2, ...\}$ is mixing with density P(A), that is, if for every A, $B \in \mathcal{A}$

$$\lim_{n\to\infty} P(T^{-n}A\cap B) = P(A). P(B).$$

Clearly a mixing transformation is stable. When is the converse true?

Corollary 3.1: In order that a stable transformation T be mixing, it is necessary and sufficient that \mathcal{I} , the σ -field of invariant sets, be trivial under P.

Proof: Suppose that \mathcal{I} is trivial under P, that is, if $A \in \mathcal{I}$, then P(A) = 0 or 1. By Theorem 3.1, since T is stable, we have

$$\lim_{n \to \infty} P(T^{-n}A \cap B) = \int_B P(A/\mathcal{I})dP$$

for every A, $B \in \mathcal{A}$. But as \mathcal{J} is trivial, $P(A/\mathcal{J}) = P(A)$ almost surely for every $A \in \mathcal{A}$. Hence $\lim_{n \to \infty} P(T^{-n}A \cap B) = P(A)$. P(B) for every A, $B \in \mathcal{A}$, so that T is mixing. Conversely assume that T is mixing. Let $A \in \mathcal{J}$. Then $T^{-n}A = A$ for n = 1, 2, ... But $\{T^{-n}A, n = 1, 2, ...\}$ is mixing. Hence for every $B \in \mathcal{J}$, $P(A \cap B) = P(A)$. P(B), that is P(A) = 0 or 1. Therefore, \mathcal{J} is trivial, which concludes the proof.

Let us now turn to the functional form of stability. Let $\mathcal{L}_2(\Omega, \mathcal{A}, P)$ be the class of complex-valued random variables f on (Ω, \mathcal{A}, P) such that $\int |f|^2 dP < \infty$. Identify all functions \mathcal{L}_2 which differ on a set of measure zero. Then \mathcal{L}_2 is a Hilbert space over the field of complex numbers with inner product $(f, g) = \int f \bar{g} dP$ (here \bar{x} is the complex conjugate of x) and norm $||f|| = (\int |f|^2 dP)^{\frac{1}{2}}$. If T is a measure preserving transformation of Ω into itself, we can define a transformation U of \mathcal{L}_2 into itself

as follows: $Uf = f \cdot T$, $f \in \mathcal{L}_2$. Then U is an isometry, that is, U is a bounded linear transformation such that ||Uf|| = ||f|| for every $f \in \mathcal{L}_2$ (see Halmos, 1956, p. 14). Denote by U^n the n-th iterate of U.

Call a function $f \in \mathcal{L}_2$ invariant if Uf = f. Denote by E_0 the projection on the closed subspace of invariant functions in \mathcal{L}_2 . We can now characterise stability of T as follows.

Theorem 3.3: A measure preserving transformation T is stable if and only $if \lim_{n\to\infty} (U^n f, g) = (E_0 f, g)$ for every $f, g \in \mathcal{L}_2$, that is, U^n converges to E_0 in the weak operator topology.

Proof: Straightforward.

Remark: Let $\{f_j, j \in J\}$ be a complete orthonormal set for \mathcal{L}_2 . Then a measure preserving transformation T is stable if and only if $\lim_{n \to \infty} (U^n f_i, f_j) = (E_0 f_i, f_j)$ for all $i, j \in J$. This follows directly from the linearity and continuity of U.

In the case of mixing, \mathcal{J} is trivial so that all invariant functions in \mathcal{L}_2 are constants. Hence $E_0 f = (f, 1)1$ for every $f \in \mathcal{L}_2$, where 1 stands for the function which is equal to one everywhere.

Corollary 3.2: A measure preserving transformation T is mixing if and only if $\lim_{n\to\infty} (U^n f, g) = ((f, 1) 1, g) = (f, 1)(1, g)$ for every $f, g \in \mathcal{L}_2$.

We may add here that if T is a stable measure preserving transformation, then U^n converges to E_0 in the strong operator topology only in a rather trivial and uninteresting case. In fact, U^n converges to E_0 if and only if U is the identity. To prove this statement, note that since U^n converges weakly to E_0 , U^n will converge strongly to E_0 if and only if $\lim_{n\to\infty} \|U^nf\| = \|E_0f\|$ for each $f \in \mathcal{L}_2$. But $\|U^nf\| = \|f\|$ for $n=1,2,\ldots$ Note also that for any $f \in L_2$, $\|f\|^2 = \|E_0f\|^2 + \|f - E_0f\|^2$ by the Decomposition Theorem. Hence $\|f\| = \|E_0f\|$ if and only if $E_0f = f$. It follows that U^n converges strongly to E_0 if and only if Uf = f for each $f \in \mathcal{L}_2$.

The property of stability is preserved if the underlying measure is replaced by a measure absolutely continuous with respect to it. More explicitly, we have the following theorem.

Theorem 3.4: Let T be a stable measure preserving transformation on (Ω, \mathcal{A}, P) . Let Q be a probability measure on (Ω, \mathcal{A}) absolutely continuous with respect to P on \mathcal{J} . Assume further that Q is preserved by T. Then T is stable on (Ω, \mathcal{A}, Q) and for every $A \in \mathcal{A}$, $P(A/\mathcal{J}) = Q(A/\mathcal{J})$ almost surely [Q].

Proof: (1) First we prove that Q is absolutely continuous with respect to P on \mathcal{A} . Let $A \in \mathcal{A}$ and P(A) = 0. Since T preserves P, $P(\limsup T^{-n}A) = 0$. But $\limsup T^{-n}A \in \mathcal{I}$. Hence $Q(\limsup T^{-n}A) = 0$. It now follows from the fact that Q is preserved by T and the Recurrence Theorem (Halmos, 1956, p. 10) that Q(A) = 0.

(2) Now consider the sequence of events $\{T^{-n}A, n = 1, 2, ...\}$, $A \in \mathcal{A}$. Since Q is absolutely continuous with respect to P on \mathcal{A} , by Theorem 2.3, $\{T^{-n}A\}$ is stable with respect to Q. Hence T is stable on (Ω, \mathcal{A}, Q) . Furthermore, by Theorem 2.3, $\lim_{n\to\infty} Q(T^{-n}A\cap B) = \int_B P(A/\mathcal{J}) dQ$ for every A, $B \in \mathcal{A}$. Hence, by Theorem 3.1., we have $\int_B Q(A/\mathcal{J})dQ = \int_B P(A/\mathcal{J})dQ$ for every A, $B \in \mathcal{A}$. This proves the second assertion of the theorem.

Corollary 3.3: Let P and Q be probability measures on (Ω, \mathcal{A}) . Assume that T is stable and measure preserving with respect to both P and Q. Then, if P = Q on \mathcal{A} .

Proof: Let $\mu(A) = \frac{1}{2}P(A) + \frac{1}{2}Q(A)$, $A \in \mathcal{A}$. It is easy to verify that T is stable and measure preserving with respect to μ . Note that P, Q are absolutely continuous with respect to μ . Furthermore, $\mu = P = Q$ on \mathcal{J} . By Theorem 3.4, $\mu(A/\mathcal{J}) = P(A/\mathcal{J})$ almost surely [P] for every $A \in \mathcal{A}$. Note that the exceptional set above is \mathcal{J} -measurable and so must have μ -measure zero as well. Again, as $P(A/\mathcal{J})$ and $\mu(A/\mathcal{J})$ are \mathcal{J} -measureble functions, we have

$$\mu(A) = \int \mu(A/\mathcal{I}) d\mu^{\mathcal{I}} = \int P(A/\mathcal{I}) dP^{\mathcal{I}} = P(A)$$

for every $A \in \mathcal{A}$. Here $\mu^{\mathcal{I}}$, $P^{\mathcal{I}}$ denote the restriction of μ , P, respectively to \mathcal{I} . This proves the corollary.

Corollary 3.4: Let T be a measure preserving mixing transformation on (Ω, \mathcal{A}, P) . Let Q be a probability measure on (Ω, \mathcal{A}) . Assume that Q is absolutely continuous with respect to P on \mathcal{I} and that it is preserved by T. Then P=Q.

Proof: Follows directly from Theorem 3.4.

Corollary 3.5: Let T be measure preserving and mixing with respect to probability measures P and Q on (Ω, \mathcal{A}) . Then either P = Q or P and Q are mutually singular.

Proof: Suppose $P \neq Q$. Then, by Corollary 3.3., there exists a set $A \in \mathcal{J}$ such that $P(A) \neq Q(A)$. But since T is mixing for both P and Q, either P(A) = 1 and Q(A) = 0 or P(A) = 0 and Q(A) = 1. In either case, P and Q are mutually singular.

In the rest of this section, we shall investigate stable transformations which are not necessarily measure preserving. As before, we shall say that a measurable transformation T on (Ω, \mathcal{A}, P) is stable if $\lim_{n\to\infty} P(T^{-n}A \cap B)$ exists for every $A, Be \mathcal{A}$. Under certain additional assumptions, we shall prove that stability of a transformation makes it potentially measure preserving. Before making this last statement precise, we need a couple of definitions.

We shall say that a measurable transformation T on (Ω, \mathcal{A}, P) is non-singular if P(A) = 0 implies $P(T^{-1}A) = 0$. We shall call T conservative if $A, T^{-1}A, T^{-2}A, ..., (A <math>\in \mathcal{A}$), mutually disjoint implies P(A) = 0.

We are now in a position to state our theorem.

Theorem 3.5: Let T be a stable, non-singular, conservative transformation on (Ω, \mathcal{A}, P) . Then there exists a probability measure Q on (Ω, \mathcal{A}) with the following properties:

- (i) P and Q agree on I,
- (ii) T is a stable, measure preserving transformation on (Ω, \mathcal{A}, Q) ,
- (iii) P and Q are equivalent, i.e. they vanish on the same sets,
- (iv) $\lim_{n\to\infty} P(T^{-n}A \cap B) = \int_B Q(A/\mathcal{I}) dP$ for every $A, B \in \mathcal{A}$.

Proof: Define $Q(A) = \lim_{n \to \infty} P(T^{-n}A)$, $A \in \mathcal{A}$. The existence of the limit is guaranteed by the stability of T. It follows from the Vitali-Hahn-Saks Theorem (Halmos, 1950, p. 170) that Q is a probability measure. (i) is obvious. Clearly, $Q(A) = Q(T^{-1}A)$ for every $A \in \mathcal{A}$. Furthermore, non-singularity of T (with respect to P) implies that Q is absolutely continuous with respect to P. Now we can use Theorem 2.3. to conclude that T is stable with respect to Q. Thus (ii).

Now let Q(A) = 0. Since Q is preserved by T, $Q(\lim \sup T^{-n}A) = 0$. But $\lim \sup T^{-n}A \in \mathcal{I}$, so that P ($\lim \sup T^{-n}A) = 0$ by (i). Since T is conservative we can invoke the Recurrence Theorem for conservative transformations (Sucheston, 1957, p. 445) and conclude that P(A) = 0. We have already shown that P(A) = 0 implies Q(A) = 0. Hence (iii).

(iv) now follows from (iii), Theorem 2.3. and the remark following Theorem 3.1. This completes the proof of Theorem 3.5.

Remark: Conservativeness of T was used to prove that P is absolutely continuous with respect to Q. If T is invertible and both ways measurable, then the assumption of conservativeness can be dropped from the preceding theorem. For now $\bigcup_{n=-\infty}^{\infty} T^n A$ plays the role of $\limsup_{n=-\infty} T^{-n}A$.

4. Examples of stable transformations

Example 1: Let T be the identity transformation on a probability space (Ω, \mathcal{A}, P) . Then T is a stable measure preserving transformation. If \mathcal{A} is non-trivial, we get an example of a stable transformation that is not mixing.

Example 2: Let $(\Omega_0, \mathcal{A}_0)$ be a measurable space and let $(\Omega_n, \mathcal{A}_n) = (\Omega_0, \mathcal{A}_0)$, $n = 1, 2, \ldots$ Let $(\Omega, \mathcal{A}) = \prod_{n=1}^{\infty} (\Omega_n, \mathcal{A}_n)$. Denote by ω_n $(n = 1, 2, \ldots)$ the n-th coordinate of a point ω in Ω . We shall use the following notation for finite dimensional rectangles: $C\left(E_1^{(i_1)}, \ldots, E_n^{(i_n)}\right)$, where $i_1 < < i_2 < \ldots < i_n$, is the set of all ω such that ω_{i_k} ϵE_k , $k = 1, \ldots, n$. If $i_k = k$, $k = 1, \ldots, n$, we shall write

 $C(E_1, \ldots, E_n)$. Let T be the shift operator on Ω , that is, $T \omega = \omega^1$, where $\omega_n^1 = \omega_{n+1}$, $n = 1, 2, \ldots$. Consider a symmetric probability measure P on $(\Omega, \mathcal{A},)$, that is, P satisfies the following condition:

$$P(C(E_1^{(i_1)}, ..., E_n^{(i_n)})) = P(C(E_1^{(j_1)}, ..., E_n^{(j_n)}))$$

for all n = 1, 2, ...,all $E_1, ..., E_n \in \mathcal{A}_0$ and all sequences of positive integers $i_1, ..., i_n$ and $j_1, ..., j_n$ (i's all distinct and j's all distinct).

Then T is a stable, measure preserving transformation on (Ω, \mathcal{A}, P) . Clearly T is measure preserving. Let B be a measurable $\{1, \ldots, m\}$ -cylinder, that is, $B = F \times \Omega_{m+1} \times \Omega_{m+2} \times \ldots$, where F is a measurable subset of $\prod_{k=1}^m \Omega_k$. Let $B_k = T^{-k} B$, $k = 1, 2, \ldots$. It is clear that $B_k = \Omega_1 \times \ldots \times \Omega_k \times F \times \Omega_{k+m+1} \times \Omega_{k+m+2} \times \ldots$, that is, B_k is a $\{k+1, \ldots, k+m\}$ -cylinder with base F. Hence, as P is a symmetric measure, for all large n and fixed k, $P(B_k \cap B_n) = P(D)$, where D is the $\{1, \ldots, 2m\}$ -cylinder, $F \times F \times \Omega_{2m+1} \times \Omega_{2m+2} \times \ldots$. Therefore, $\lim_{n \to \infty} P(B_k \cap B_n)$ exists for every $k = 1, 2, \ldots$ Consequently, the sequence of events $\{T^{-k} B, k = 1, 2, \ldots\}$ is stable by virtue of Theorem 2.2. Now any set $A \in \mathcal{A}$ can be approximated arbitrarily closely by a measurable $\{1, \ldots, m\}$ -cylinder B (for some m), from which it follows that $\{T^{-n}A, n = 1, 2, \ldots\}$ is a stable sequence of events for every $A \in \mathcal{A}$. This proves that T is a stable transformation.

In particular, let P be a product measure with identical components. The arguments of the last paragraph show that T is mixing. Conversely, assume that T is mixing for a symmetric measure P. Let $A = C(E_1, ..., E_m)$ be a measurable finite dimensional rectangle. It is easy to see that

$$\lim_{n\to\infty} P(T^{-k}A\cap T^{-n}A) = P(C(E_1, ..., E_m, E_1, ..., E_m)), \quad k = 1, 2,$$

The limit is independent of k. But the sequence $\{T^{-n}A\}$ is mixing. Hence, by Theorem 2.2. we must have

$$P(C(E_1, ..., E_m, E_1, ..., E_m)) = P^2(C(E_1, ..., E_m)).$$

As T is mixing, this last relation holds for all measurable finite-dimensional rectangles. Hence, by Theorems 5.2. and 5.3 in Hewitt and Savage (1955, pp. 477-78), P must be a product measure with identical components. We have thus proved:

Theorem 4.1: Let P be a symmetric probability on (Ω, \mathcal{A}) . Then T is a stable measure preserving transformation on (Ω, \mathcal{A}, P) and T is mixing if and only if P is a product measure with identical components.

Example 3: Let $\{x_n, n=0, 1, \ldots\}$ be a stationary, aperiodic Markov chain with countable state space I. Elements of I will be denoted by i with or without subscripts. Assume that the Markov chain is defined on the appropriate (unilateral) sequence space (Ω, \mathcal{A}) and let T be the shift operator on (Ω, \mathcal{A}) . If P is the relevant probability measure on (Ω, \mathcal{A}) , T is a stable measure preserving transformation on (Ω, \mathcal{A}, P) .

To see that T is stable, let us note that it is sufficient to demonstrate stability of sequences of events $\{T^{-n}A, n = 1, 2, ...\}$, where A is a finite-dimensional rectangle of the form $(x_0 = i_0, ..., x_m = i_m)$, the i's being ergodic states belonging to the same class. We have for fixed k and large n

$$P(T^{-k}A \cap T^{-n}A) = p_{i_0} p_{i_0 i_1} \dots p_{i_{m-1} i_m} p_{i_m i_0}^{(n-m-k)} p_{i_0 i_1} \dots p_{i_{m-1} i_m},$$

where p_i denotes the stationary distribution, p_{ij} the one-step transition probability and $p_{ij}^{(n)}$ the *n*-step transition probability.

Remembering that $\lim_{n\to\infty} p_{ij}^{(n)} = \pi_{ij}$ for j ergodic, we obtain

$$\lim_{n\to\infty} P(T^{-k}A \cap T^{-n}A) = p_{i_0}p_{i_0i_1} \dots p_{i_{m-1}i_m}\pi_{i_mi_0}p_{i_0i_1} \dots p_{i_{m-1}i_m}, \ k=1, 2, \dots$$

Hence, by Theorem 2.2, $T^{-n}A$ is stable. This proves the assertion.

Example 4: Let Ω be a compact Abelian group, \mathcal{A} the σ -field of Borel subsets of Ω and P normalised Haar measure on (Ω, \mathcal{A}) . Let T be a continuous automorphism of Ω . Then T is measure preserving with respect to P (Halmos, 1956, p. 7).

Let C be the character group of Ω , that is, C is the set of all continuous homomorphisms of Ω into the circle group. Denote by U the unitary operator on $\mathcal{L}_2(\Omega, \mathcal{A}, P)$ induced by T. U restricted to C is an automorphism of the group C. If $f \in C$, by the orbit of f under U, we shall mean the set $\{U^n f, n = 0, \pm 1, \pm 2, \ldots\}$. If the orbit is finite, the least positive integer m such that $U^m f = f$ will be called the order of the orbit. The order of the orbit of an invariant character f(i.e. f = U f) under U is clearly 1. We remark for later use that C forms a complete orthonormal set in $\mathcal{L}_2(\Omega, \mathcal{A}, P)$. (These facts may be found in Halmos (1956, p. 53)).

We want to characterise continuous automorphisms of Ω which are stable.

Theorem 4.2: A continuous automorphism T of a compact Abelian group Ω is stable if and only if the induced automorphism U on the character group C has no finite orbits of order m > 1.

Proof: Assume that T is stable and that there is a $f \in C$ such that the orbit of f under U is finite and of order m > 1. Then, it is clear that $\lim_{n \to \infty} \sup (U_n f, f) = 1$ and $\lim_{n \to \infty} \inf (U^n f, f) = 0$, so that $\lim_{n \to \infty} (U^n f, f)$ does not exist. We have thus arrived at a contradiction.

Conversely, suppose that U has only finite orbits of order 1 or infinite orbits. If $f \in C$ is such that Uf = f, then it is easy to see that for every $g \in C$, $\lim_{n \to \infty} (U^n f, g) = (f, g)$ = 0 or 1 according as $g \neq f$ or g = f. If the orbit $f \in C$ under U is infinite,

then clearly $\lim_{n\to\infty} (U^n f, g) = 0$ for every $g \in C$. Hence, in either case, $\lim_{n\to\infty} (U^n f, g) = (E_0 f, g)$ for every $f, g \in C$, where E_0 is the projection on the closed subspace of invariant functions in $\mathcal{L}_2(\Omega, \mathcal{A}, P)$. It now follows from the fact that C forms a complete orthonormal set and the remark made after Theorem 3.3 that T is stable. This completes the proof of Theorem 4.2.

Since a stable transformation T is mixing if and only if every invariant function in \mathcal{L}_2 is a constant, we can now characterise continuous automorphisms which are mixing as follows:

Corollary 4.1: A continuous automorphism T of a compact Abelian group Ω is mixing if and only if the induced automorphism U on the character group C has only infinite orbits, other than the trivial orbit $\{1\}$ (here 1 stands for the function where value is one everywhere on Ω).

Example 5: It is known that, under suitable assumptions on the measure space, a measure preserving transformation can be expressed as a direct sum (direct integral) of ergodic transformations (see, for instance, Halmos (1941)).

The question then naturally arises whether a stable measure preserving transformation is always a direct sum of mixing transformations. We give an example below which answers the question in the negative. (The reader is referred to Halmos (1941) for a precise definition of the concept of direct sum).

Let X=Y= circumference of the unit circle, $\mathcal{A}_1=\mathcal{A}_2=\sigma$ -field of Borel subsets of X=Y, and $P_1=P_2=$ normalised Lebesgue measure on $\mathcal{A}_1=\mathcal{A}_2$. Let $(\Omega,\mathcal{A},P)=(X,\mathcal{A}_1,P_1)\times (Y,\mathcal{A}_2,P_2)$. Ω is then a compact Abelian group, the group operation being coordinatervise multiplication, \mathcal{A} is the σ -field of Borel subsets of Ω and P is normalised Haar measure. We shall denote points of Ω by ordered pairs (x,y), where $x\in X, y\in Y$. We now define a transformation T of Ω onto Ω as follows: $T(x,y)=(x,xy)\in\Omega$. In fact, T is a continuous automorphism of Ω and is, consequently, measure preserving with respect to P. Now the character group C of Ω is easily seen to be the set of functions f_m , $_n(m,n=0,\pm 1,\pm 2,\ldots)$, where f_m , $_n(x,y)=x^my^n$, $(x,y)\in\Omega$. It follows from a straightforward application of Theorem 4.2 that T is stable. Thus, we have proved that T is a stable measure preserving transformation.

We assert that T is a direct sum of transformations, none of which is mixing. First note that the invariant σ -field $\mathcal I$ of T is the σ -field of sets of the form $A \times Y$, $A \in \mathcal A_1$. The atoms of $\mathcal I$ are of the form $\{x\} \times Y$, $x \in X$. We shall denote atoms of $\mathcal I$ by Y_x . Now, each Y_x being invariant, T induces a transformation, say T_x , on each Y_x . In fact, $T_x y = xy$ for $(x, y) \in Y_x$. It is easy to see that T is a direct sum of these transformations T_x , $x \in X$. Now T_x is a rotation on the circle group for every $x \in X$. Consequently, for each $x \in X$, T_x is measure preserving with respect to Lebesgue measure (Halmos, 1956, p. 7); furthermore, for all x, except for the countable number of x's such that $x^n = 1$ for some natural number n, T_x is ergodic (Halmos, 1956, p. 26).

But for no $x \in X$ is T_x mixing (Halmos, 1956, p. 37). Thus we have shown that T is a direct sum of ergodic measure preserving transformations, none of which is mixing. It follows now, since the transformation T_x were defined on the atoms of \mathcal{I} , that T cannot be expressed as a direct sum of mixing transformations.

Example 6: We conclude with an example of a stable, non-singular transformation which is not measure preserving.

Let $\Omega = [0, 1]$, \mathcal{A} the σ -field of Borel subsets of Ω and P Lebesgue measure on \mathcal{A} . Define a transformation T of Ω onto itself as follows:

$$Tx = \left\{ egin{array}{ll} 2x & ext{if } x \in [0, rac{1}{2}) \ x & ext{if } x \in [rac{1}{2}, 1] \end{array}
ight\}$$

T is clearly measurable.

Since for any set $A \in \mathcal{A}$, $P(T^{-1})A) \leq 2P(A)$, T is non-singular with respect to P. For $A \in \mathcal{A}$ and $A \subset [0, \frac{1}{2})$, it is clear that $\lim_{n \to \infty} P(T^{-n}A) = 0$, so that $\lim_{n \to \infty} P(T^{-n}A \cap B) = 0$ for every $B \in \mathcal{A}$. Hence $\{T^{-n}A, n = 1, 2, ...\}$ is a stable sequence of events. If $A \in \mathcal{A}$ and $A \subset [\frac{1}{2}, 1)$, then $T^{-n}A$ is a non-decreasing sequence of sets. Hence $\lim_{n \to \infty} P(T^{-n}A \cap B) = P\left(\bigcup_{n \to 0}^{\infty} T^{-n}A \cap B\right)$ for every $B \in \mathcal{A}$. Therefore $\{T^{-n}A, n = 1, 2, ...\}$ is stable. It now follows that $\lim_{n \to \infty} P(T^{-n}A \cap B)$ exists for every $A, B \in \mathcal{A}$. Thus T is a stable transformation.

But T is not measure preserving with respect to P; indeed, T is not measure preserving with respect to any finite measure equivalent to P. To prove this, it suffices to show that T is not conservative (Halmos, 1956, p. 84). Consider $B = [\frac{1}{4}, \frac{1}{2})$. Then B, T^{-1} $B, T^{-2}B$, ... are mutually disjoint and $P(B) = \frac{1}{4}$. Hence T is not conservative.

This example shows that the assumption of conservativeness cannot be dropped from Theorem 3.5, if T is not invertible.

ACKNOWLEDGMENT

I am grateful to the referee for some valuable suggestions.

REFERENCES

Halmos, P. (1941): Decomposition of measures. Duke Math. Journal, 8, 386-392.

_____ (1950): Measure Theory, D. Van Nostrand, Princeton, N. J.

_____ (1956): Lectures on Ergodic Theory, The Mathematical Society of Japan.

Hewitt, E. and Savage, L. J. (1955): Symmetric measures on Cartesian products. Trans. Amer. Math. Soc., 80, 470-501.

Rényi, A. (1958): On mixing sequences of events. Acta Math. Acad. Sci. Hung., 9, 215-228.

____ (1963): On stable sequences of events. Sankhyā, Series A, 25, 293-302.

Sucheston, L. (1957): A note on conservative transformations and the recurrence theorem. Amer. Jour. of Math., 79, 444-447.

Paper received: January, 1965.

Revised: November, 1965.