MATHEMATISCH CENTRUM

STICHTING

2e BOERHAAVESTRAAT 49 AMSTERDAM

<u>SP 82</u>

(S338)

On stable transformations

A. Maitra

·,

•

19

*

· ·

1965

.

•

35th SESSION OF THE INTERNATIONAL STATISTICAL INSTITUTE

ON STABLE TRANSFORMATIONS

.

•

•

.

.

by

ASHOK MAITRA

Stichting Mathematisch Contrum, 'Amsterdam

x.

by

ASHOK MAITRA

Mathematisch Centrum, Ansterdal.

Summary. Let T be a measure preserving transformation of a probability space (Ω, \mathcal{A}, P) into itself.

We will say that T is a <u>stable</u> transformation if for every A, BeO, lim $P(T^{-n} A \cap B)$ exists.

Stable transformations are investigated in this article with the aid of Rényi's results on stable sequences of events. The concept of a stable transformation generalises that of a mixing transformation.

1. Introduction

Let (n, c, P) be a probability space.

Let T be a measurable transformation (not necessarily one to one) of Ω into itself. Assume further that T is measure preserving, that is, $P(T^{-1} A) = P(A)$ for every A **.** \mathcal{A} . Following Rényi [5], we will say that T is <u>stable</u> if for every A **.** \mathcal{A} , $\{T^{-n} A, n = 1, 2, ...\}$ is a stable sequence of sets, that is, for every A, B**.** \mathcal{A} , lim $P(T^{-n} A AB)$ exists. The purpose of this article is to study such transformations.

The concept of stability generalises that of mixing. It will be shown that a stable transformation T is mixing if and only if the σ -field of invariant sets is trivial. [A measurable set A is said to be <u>invariant</u> if $T^{-1} A = A$].

As the present investigation relies heavily on the results proved in [5], we will for the sake of completeness give a resume of these in section 2. In section 3 the analogues of results for stable sequences of sets will be proved for stable transformations. Examples of stable transformations will be given in section 4.

*) Report S_338 of the Statistics Department, Mathematisch Centrum,

Amsterdam.

56 _____1 ___

•

2. Resume of results on stable sequences of events

Let $(\Omega, \mathcal{A}, \mathcal{P})$ be a probability space and let $\{A_n, n = 1, 2, ...\}$ be a

sequence of events. We will say that $\{A_n\}$ is a stable sequence of events if for every B $\epsilon \circ \epsilon$

$$\lim_{n \to \infty} P(A_n B) = Q(B)$$

exists.

Theorem 2.1. If $\{A_n\}$ is a stable sequence of events and Q is as above, then Q is a measure on (Ω, \mathscr{A}) and is absolutely continuous with respect to P. Denote by a the Radon-Nikodym derivative of Q with respect to P. a is said to be the local density of the stable sequence of sets $\{A_n\}$. A sequence of events $\{A_n, n = 1, 2, \dots\}$ is said to be mixing if there exists β , $0 \leq \beta \leq 1$ such that for every B $\mathfrak{G} \mathfrak{A}$ $\lim_{n \to \infty} P(A_n \cap B) = \beta P(B)_{\circ}$

B is called the density of the mixing sequence $\{A_n\}$.

measure on (Ω, σ, ρ) , absolutely continuous with respect to P. Then $\{A_n\}$ is stable on (Ω, σ, ρ^*) with local density α .

- 2 ---

3. Some general theorems on stable transformations

Let T be a stable transformation on $(\Omega, \mathcal{M}, \mathcal{P})$, that is, T is measure preserving and lim $P(T^{-n} A \cap B)$ exists for every A, Book The limit is easy to find. $n \rightarrow \infty$

Theorem 3.1. Let T be a stable transformation. Then

$$\lim_{n \to \infty} P(T^{-n} A A B) = \int_{B} P(A/S) dF$$

for every A, BGOOP Here I is the invariant σ -field and P(A/J) is the conditional probability of A given 3.

<u>Proof</u>. By definition, the sequence $[T^{-n} A, n = 1, 2, ...]$, where $A \in \mathcal{O}_{A}$ is stable. Hence lim $P(T^{-n} A \cap B)$ exists for every $B \bullet \mathcal{A}$, But by the Individual Ergodic Theorem, we have:

 $\frac{1}{n}\sum_{k=0}^{n-1} I_T - k_A \text{ converges almost surely to } P(A/\mathbf{A}), \text{ where } I_C \text{ is the indicator}$ of the set C. Hence if BeOL, $\frac{1}{n} \sum_{r=0}^{n-1} I_{T} = k_{A}$, I_{B} converges almost surely to P(A/) • I_B. Apply the Dominated Convergence Theorem. We get:

 $\lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} P(T^{-k} A \cap B) = \int_{B} P(A/J) \, dP, \text{ that is, the sequence } \{P(T^{-n} A \cap B)\}$ is Cesaro-summable to $\int_{B} P(A/J) \, dP.$ The result now follows from the remark made at the beginning of the proof.

Remark. Denote by α_A the local density of the stable sequence $\{T^{-n} A\}$, A GOL, What we have proved then is that $\alpha_A dP = P(A/J) dP$ for every Bell But α_{Λ} and P(A/J) are *C*-measurbale functions. Hence $\alpha_{\Lambda} = P(A/J)$ almost surely. Therefore the local density of $\{T^{-n} A\}$ is simply P(A/J).

In order to check if a mesure preserving transformation T is stable, it is in fact sufficient to verify that $\lim P(T^{-n} A \cap B)$ exists for $A = B \in \mathcal{A}$

 $n \rightarrow \infty$

Theorem 3.2. A measure preserving transformation T is stable if and only if lim $P(T^{-n} A \cap A)$ exists for every $A \in \mathcal{O}_{L}$ $n \rightarrow \infty$

Proof. The "only if" part is trivial. Consider now the sequence $[T^{-n} A, n = 1, 2, ...], A \in \mathcal{O}_{0}$. We want to show that $[T^{-n} A]$ is stable. Note that since T is measure preserving, $P(T^{-k} \wedge nT^{-n} \wedge n) = P(T^{-k}(T^{-(n-k)} \wedge nA)) =$

= $P(T^{-(n-k)}A \cap A)$, where n > k. But by the hypothesis, lim $P(T^{-(n-k)}A \cap A)$ exists and so lim $P(T^{-k} A \cap T^{-n} A)$ exists, k = 1, 2, ..., hence, by Theorem2.2., $\{T^{-n} A\}$ is stable. This completes the "if" part of the proof.

A measure preserving transformation T is mixing if for every A COL the sequence of events $\{T^n A, n = 1, 2, ...\}$ is mixing with density P(A), that is, if for every A. B & OK

$$\lim_{n \to \infty} P(T^{-n} A \cap B) = P(A) \circ P(B).$$

Clearly a mixing transformation is stable. When is the converse true?

Corollary 3.1. In order that a stable transformation T be mixing, it is necessary and sufficient that J, the o-field of invariant sets, be trivial under P.

Proof. Suppose that J is trivial under P, that is, if Ac J then P(A) = 0 or 1. By Theorem 3.1., since T is stable, we have

$$\lim_{n \to \infty} P(T^{-n} A A B) = \int_{B} P(A/J) dP$$

for every A, BEON. But as J is trivial, P(A/J) = P(A) almost surely for every A $\in \mathcal{O}_{L}$ Hence lim $P(T^{-n} A \cap B) = P(A) \cdot P(B)$ for every A, B $\in \mathcal{O}_{L}$ so that T is mixing. Conversely, assume that T is mixing. Let Ass. Then $T^{-n} A = A$ for $n = 1, 2, \ldots$. But $\{T^{-n} A, n = 1, 2, \ldots\}$ is mixing. Hence for every BOOL, $P(A \cap B) = P(A) \cdot P(B)$, that is, P(A) = 0 or 1. Therefore, 3 is trivial, which concludes the proof.

Let us now turn to the functional form of stability. Let $\mathcal{L}_{\mathcal{I}}(\Omega, \mathcal{A}, \mathcal{P})$ be the class of complex-valued random variables f on (Ω, \mathcal{A}, P) such that $|f|^2 dP < \infty$. Identify all functions in d_2 which differ on a set of measure zero. Then $\mathcal{L}_{\mathcal{I}}$ is a Hilbert space over the field of complex numbers with inner-product $(f,g) = \int f g dP$ (here x is the complex-conjugate of x) and norm $||f|| = (\int |f|^2 dP)^{\frac{1}{2}}$. If T is a measure preserving transformation of Ω into itself we can define a transformation U of ℓ_2 into itself as follows: $Vf = f \circ T$, $f \in \mathcal{L}_{2}$. Then U is an isometry, that is, U is a bounded linear transformation such that ||Uf|| = ||f|| for every $f \in \mathcal{L}$ (see [2], page 14). Denote by U^n the n-th iterate of V. Call a function f_{4} , invariant if $Vf = f_{6}$ Denote by E the projection

on the closed subspace of invariant functions in \mathbb{Z}_2° . We can now characteris stability of T as follows.

Theorem 3.3. A measure preserving transformation T is stable if and

only if lim $(\mathcal{V}^n f, g) = (\mathcal{E}_{O} f, g)$ for every $f, g \in \mathcal{R}_{2}$ that is, \mathcal{V}^n converges to \mathcal{E}_{O} in the weak operator topology.

<u>Proof.</u> The proof depends on the remark that the conditional expectation of f given d is almost surely equal to E_0 f. If f and g are indicators of sets F and G respectively, then the functional form simply reduces to the set-theoretic definition of stability. To go the other way, use a double approximation process as follows: let g be a fixed indicator in \mathcal{L}_2 . The result holds for simple functions f \mathcal{L}_2 and so by \mathcal{L}_2 - approximation holds for functions f \mathcal{L}_2 . Now let f be a fixed function in \mathcal{L}_2 and a similar argument about g yields the result.

In the case of mixing, f is trivial so that all invariant functions in f_2 are constants. Hence $E_0 f = (f, 1)1$ for every $f \in f_2$, where 1 stands for the function which is equal to one everywhere.

Corollary 3.2. A measure preserving transformation T is mixing if

and only if $\lim_{n\to\infty} (U^n f, g) = ((f, 1)1, g) = (f, 1)(1, g)$ for every $f, g \in \mathbb{Z}_2$. We may add here that if T is stable, then U^n converges to E_0 in the strong operator topology only in a rather trivial and uninteresting case. In fact, U^n converges to E_0 in the strong operator topology if and only if every function $\inf_{n\geq 2} f$ is invariant. To prove this statement, note that since U^n converges weakly to E_0, U^n will converge strongly to E_0 if and only if $\lim_{n \to \infty} ||U^n f|| = ||E_0 f||$ for each $f \in \mathbb{Z}_2$. But $||U^n f|| = ||f||$. Note also that for any $f \in \mathbb{Z}_2$, $||f||^2 = ||E_0 f||^2 + ||f - E_0 f||^2$ by the Decomposition Theorem. Hence $||E_0 f|| = ||f||$ for each $f \in \mathbb{Z}_2$ if and only if $E_0 f = f$ for each $f \in \mathbb{Z}_2$. This completes the proof. The property of stability is preserved if the underlying measure is replaced by a measure absolutely continuous with respect to it. Explicitly we have:

Theorem 3.4. Let T be a stable transformation on $(\Omega, \mathcal{O}, \mathcal{P})$. Let Q be a probability measure on (Ω, \mathcal{O}) such that \mathcal{I} is absolutely continuous with respect to P. Assume further that Q is preserved by T. Then T is stable on $(\Omega, \mathcal{O}, \mathbb{Q})$ and for every $A \in \mathcal{O}$, P(A/g) = Q(A/g) almost surely [Q]. <u>Proof</u>. Consider the sequence of sets $\{T^{-n} A, n = 1, 2, ...\}, A \in \mathcal{O}$

Since Q is absolutely continuous with respect to P, by Theorem 2.3., $\{T^{-n} A\}$ is stable with respect to Q. Hence T is stable on (Ω, \mathcal{A}, Q) . Furthermore, by Theorem 2.3., $\lim Q(T^{-n} A \cap B) = \int_{B} P(A/\mathcal{G}) dQ$ for every A, Back. Hence by Theorem 3.1 we have: $\int_{B} Q(A/\mathcal{G}) dQ = \int_{B} P(A/\mathcal{G}) dQ$ for

every A, Book. This proves the second assertion of the theorem.

<u>Corollary 3.3.</u> Let P and Q be probability measures on (Ω, \mathcal{Q}) . Assume that T is stable for both P and Q. Then, if P = Q on \mathcal{J} , P = Qon \mathcal{Q} .

<u>Proof.</u> Let $\mu(A) = \frac{1}{2} P(A) + \frac{1}{2} Q(A)$, A $\in \mathscr{C}_{L}$ It is easy to verify that T is stable for μ . Note that P, Q are absolutely continuous with respect to μ . Furthermore, $\mu = P = Q$ on \mathscr{G} . By Theorem 3.4, $\mu(A/\mathscr{G}) = P(A/\mathscr{G})$ almost surely [P] for every A $\in \mathscr{C}_{L}$. Note that the exceptional set above is \mathscr{G} measurable and so must have μ -measure zero as well. Again, as $P(A/\mathscr{G})$, $\mu(A/\mathscr{G})$ are \mathscr{G} -measurable functions, we have:

$$\mu(A) = \int \mu(A/g) \, d\mu'' = \int P(A/g) \, dP'' = P(A)$$

for every $A \in \mathcal{A}$. Here μ , P' denote the restrictions of μ , P, respectively to j. This proves the corollary.

<u>Corollary 3.4.</u> Let T be a mixing transformation on (Ω, \mathcal{A}, P) . Let Q be <u>a probability measure on (Ω, \mathcal{A}) . Assume that Q is absolutely continuous</u> with respect to P and that it is preserved by T. Then $P = Q_0$

Proof. Follows directly from Theorem 3.4.

Corollary 3.5. Let P and Q be probability measures on (Ω, \emptyset) for which T is a mixing transformation. Then either P = Q or P and Q are mutually singular.

<u>Proof</u>. Suppose $P \neq Q$. Then by Corollary 3.3, there exists a set $A \in J$ such that $P(A) \neq Q(A)$. But, since T is mixing for both P and Q, either

P(A) = 1 and Q(A) = 0 or P(A) = 0 and Q(A) = 1. In either case, P and Q

are mutually singular.

4. Examples of stable transformations

A. Let T be the identity transformation on a probability space

 (Ω, \mathcal{O}, P) , that is, T $\omega = \omega$, $\omega \in \Omega$. Then $\mathcal{J} = \mathcal{O}$ and T is stable. If \mathcal{O} is non-trivial, we get an example of a stable transformation that is not mixing.

B. Let (Ω, \mathfrak{G}) be a countably infinite product of a measurable space (Ω_0, \mathfrak{G}) . Denote by ω_n (n = 1, 2, ...) the n-th coordinate of a point ω in Ω . We will use the following notation for finite dimensional rectangles: (i_1) (i_n) $C(E_1, \ldots, E_n)$ is the set of all ω such that $\omega_i \in E_k$, $k = 1, \ldots, n$. If $i_k = k$, k = 1, ..., n, we will write $C(E_1, \ldots, E_n)$. Let T be the shift operation on Ω , that is, T $\omega = \omega^1$, where $\omega_n^1 = \omega_{n+1}$, $n = 1, 2, \ldots$. Consider a symmetric probability measure P on (Ω, \mathfrak{G}) , that is

$$(i_1)$$
 (i_n) (j_1) (j_n)
 $P(C(E_1, \dots, E_n^n)) = P(C(E_1, \dots, E_n^n))$

for all $n = 1, 2, ..., all E_1, E_2, ..., E_n \mathcal{O}_n$ and all sequences of positive

integers i₁, ..., i_n and j₁, ..., j_n (i's all distinct and j's all distinct). Then T is a stable transformation on (Ω, \mathcal{M}, P) . To see this, first note that T is measure preserving. Now let B be a measurable $\{1, \ldots, m\}$ -cylinder, that is $B = A \times \Omega_0 \times \Omega_0 \times \ldots$ where A is a measurable subset of $\Omega_0 \times \Omega_0 \times \ldots \times \Omega_0$ (m times). Consider the sequence of sets $\{B_k, k = 1, 2, \ldots\}$ where $B_k = T^{-k} B$, $k = 1, 2, \ldots$. It is clear that B_k is a $\{k+1, \ldots, k+m\}$ cylinder with base B. Hence, as P is a symmetric measure, for n large $P(B_k \Lambda B_n) = P(C)$, where C is the $\{1, \ldots, 2m\}$ -cylinder B $\times B \times \Omega_0 \times \Omega_0 \times \ldots$ Hence lim $P(B_k \Lambda B_n)$ exists for $k = 1, 2, \ldots$. Therefore, by Theorem 2.2, $T^{-k} B^{n+\infty}$ is stable. But for every set A**£** and $\varepsilon > 0$, there exists a $\{1, \ldots, m\}$ cylinder B (for some m) such that $P(A \land B) < \varepsilon$. It is easy to see that the stability of the sequence $\{T^{-n} A\}$ follows from that of $\{T^{-n} B\}$.

In particular, let P be a product measure with identical components. Then it is well known that T is mixing (see [6], page 110). Conversely, assume that T is mixing for a symmetric measure P. Let $A = C(E_1, \dots, E_m)$ be a measurable finite-dimensional rectangle. It is easy to see that

.

$$\lim_{n \to \infty} P(T^{-k} A \wedge T^{-n} A) = P(C(E_1, \dots, E_m, E_1, \dots, E_m)), k = 1, 2, \dots$$

The limit is independent of k. But the sequence {T⁻ⁿ A} is mixing. Hence, by Theorem 2.2, we must have

$$P(C(E_{1}, ..., E_{m}, E_{1}, ..., E_{m})) = P^{2}(C(E_{1}, ..., E_{m})).$$

As T is mixing, this last relation is true for all measurable finitedimensional rectangles. Hence, by Theorems 5.2 and 5.3 in [3] (see pages 477-478), P must be a product measure with identical components. Hence we have

Theorem 4.1. Let P be a symmetric probability measure on (2,00. Then T is stable and T is mixing if and only if P is a product measure with identical components.

C. Let $\{x_n, n=0,1,\ldots\}$ be a stationary aperiodic Markov chain with countable state space I. Elements of I will be denoted by i with or without subscripts. Assume that the Markov chain is defined on the appropriate (unilateral) sequence space (Ω, Ω) and let T be the shift operator on (Ω, Θ) . If P is the relevant probability measure on (Ω, Θ) , T is stable on $(\Omega, \mathcal{O}, \mathcal{O}, \mathcal{P})$.

To prove this, let us note that it is sufficient to demonstrate stability of sequences of events {T⁻ⁿ A, n = 1,2,...}, where A is a finite-dimensional rectangle of the form $(x = i_0, \dots, x_m = i_m)$, the i's being ergodic states belonging to the same class. We have for large n

$$P(T^{k} A n T^{n} A) = p_{i} p_{i}$$

where p. denotes the initial distribution, p., the one-step transition probability and $p_{ij}^{(n)}$ the n-step transition probability. Clearly since $\lim_{i j \to i} p_{ij}^{(n)} = \pi_{ij}$ for j ergodic, $\lim_{n \to \infty} P(T^{-k} A n T^{-n} A) = p_i p_{i_1} p_{i_2} p_{i_3} p_{i_1} p_{i_1} p_{i_2} p_{i_3} p_{i_3} p_{i_4} p_{i_5} p_{i_$

k = 1, 2, 000

Hence by Theorem 2.2, $\{T^{-n} A\}$ is stable. This proves the assertion.

--- 8 ----

D. We conclude with an example of a measure preserving transformation which is not stable.

Let $\Omega = [0,1]$, Ot the σ -field of Borel subsets of Ω , P Lebesgue measure on \mathcal{A}_{ω} Let T be an invertible, both ways measurable measure preserving transformation of Ω onto Ω , which has strict period m (m > 1)

at almost all [P] points of Ω .

According to a result of Halmos (see [2], page 70), there exists a set E e^{n} such that P(E) = 1/m and E, $T^{-1}E$, ..., $T^{-(m-1)}E$ are pairwise disjoint. It follows that limsup $P(T^{-n} E A E) = 1/m$ and liminf $P(T^{-n} E A E) = 0$, so that the sequence $\{T^{-n} E, n = 1, 2, ...\}$ is not stable. Hence T is not stable.

References

~

[1] Halmos, P. (1950): Measure Theory, D. van Nostrand, Princeton, N.Y.

[2] Halmos, P. (1956): Lectures on Ergodic Theory, The Mathematical Society of Japan.

[3] Hewitt, E. and Savage, L.G. (1955): Symmetric Measures on Cartesian

Products, Trans. Amer. Math. Soc., 80, 470-501.

- [4] Rényi, A. (1958): On Mixing Sequences of Events, Acta Math. Acad. Sci. Hung., 9, 349-389.
- [5] Rényi, A. (1963): On Stable Sequences of Events, Sankhýa, Series A, 25, 3, 293-302.

[6] Rosenblatt, M. (1962): Random Processes, Oxford Univ. Press, New York.

<u>Résumé</u>. Soit T une transformation, conservant la mesure, d'un espace de probabilité $(\Omega, \mathcal{A}, \mathcal{P})$ dans lui-même. On dira que T est <u>stable</u> si, pour tout A, B**e** \mathcal{A} , il existe lim P(T⁻ⁿ AAB). L'investigation des transformations stables est fondée sur des résultats de Rényi concernant les suites stables d'événements. La notion de transformation stable est une généralisation de celle de transformation melangée.

