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summary. Let T be a measure preserving transformstion of =

PR SRS SRR .S
probability space (R,8,P) into itself.

We will sey that T is a stable transformation if for every
A, Ba® lim P(T™" ANB) exists.

Stable transformations are investigated in this article with the

aid of Rényi's results on stable sequences of events. The concept

of a stable transformaetion generalises that of a mixing transformation.

0L P) be a probability space.

Let T be a measurable transformation (nct necessarily one to one) of Q@

into itself, Assume further that T is measure preserving, that 1is,

-1

P(T™" A) = P(A) for every Aeff. Following Rényi B] . we will say that T
is stable if for every Aedt, {T™ A, n = 1,2,...} is a stable sequence
of sets, that 1is, for every A, Bgff, 1lim P(‘.‘f“n ANB) exists.

The purpose of this article i1s to stuaﬂ;msuch transformations .

The concept of stability generalises that of mixing. It will be

shown that a stable transformation T is mixing if and only if the o~field

of invariant sets is trivial. [:A measureble set A is said to be
ir T A = A).

As the present investigation relies heavily on the results proved 1in

Eﬁ] , we will for the sake of completeness give a resumé of these in section

2. In section 3 the analogues of results for stable sequences of sets will

be proved for stable transformations. Examples of stable transformations

will be given in section L.
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Let (Q,#,P) be a probability space and let I‘An’ n = 11,2500 g} be a

sequence of events. We will say that {An} 1s a stable sequence of events

1f for every B& o¢

exists,

Theorem 2.1, If {A } is & stable sequence of events and Q is as above,

then Q is & measure on (Q,/) and is absolutely continuous with respect to P.

Denote by a the Radon-Nikodym derivative of Q with respect to P. o 18

sald to be the of the stable sequence of sets {An}c

11

A sequence of events {Aﬂ, n = 1,2”“} 1s sald to be mixin,

-

there exists B, O < B <1 such that for every B «&%

1lim P(AnnB) = B P(B).

T} ~ R

%)

8 is called the density of the mixing sequence {An}

An) = Q’ki = 1£23$&9

exists. If, in addition, P(A ) >0, k = 1,2,..., set

4
b k
k = 1,2,c00) gnd gy = lim P(A_). Then {a_} is mixing

only 1if the qk’s (k = 8;’?,2,”4) are all egual.
The property of stability is preserved if the underlying probability

megsure P 1s replaced by a probability measure absolutely continuous with

respect to P, More explicitly, we have

Theorem 2.3. Let {A_, »n = 1,2,...} be a stable
: % » N
%,P). Let F— Dbe & probability

ST e g g e e 2

measure on (2,00, sbsolutely continuous with respect to P. Then {A_} is =




Let T be a stable transformstion on * that is, T is measure
The limit is

preserving and lim P(‘I‘W‘(l AQB) exists for every A, Ba&bl

. 4 B e
easy to find.

Theorem 3.1. Let T be & stable transformation. Then

lim P(T"" AAB) = ] P(A/2) aP
B

L ki =
Dy

conditional probability of A given ¢.

Proof. By definition, the sequence {T"n A, n=1,2,...}, where Ae Ok
is stable. Hence lim P(T™" AMAB) exists for every Be®, But by the

Individual. Ergodigﬁ'ﬁ?ﬂheerem, we have:

n-1
-i-- ) I ~k, converges almost surely to P(A/}), where In 1s the indicator
k=0 ne-1
of the set C. Hence if Belf, il Z I.-k,. I_ converges almost surely to
D =0 T A~ "B 7
P(A/Y) - IB“" Apply tlie Duminated Convergence Theorem. We get:
N1
. -k : -
lm-%- ) P(TT AQB) = j P(A/J) dP, that is, the sequence {P(T™" AOB)]
n =0 B

is Cesaro-summable to J P(A/$) dP. The result now follows from the
B *
remark made at the beginning of the proof.

A the local density of the stable sequence {T“ﬁ A},

Remark. Denote by a
A0, What we have proved then is that J &, ar = I P(A/d) aP for every
' B B

BeOl But a, and P(A/g ) are Ol-measurbale functions., Hence o, = P(A/§)

almost surely. Therefore the local density of {T“n A} is simply P(A/S).
In order to check if a mesure preserving transformation T 1s stable,
it 1s in fact sufficient to verify that lim p(T™ ™ ANB) exists for A = Bed

n*-)-m ‘
transformation T is stable if and

Theorem 3.2. A measure preserving
only if lim P(C(.‘mrt ANYA) exists for every A&,

I}~»00
Proof. The "only if" part is trivial. Consider now the seguence

{T‘n A, n = ‘1,2,91“}, A&lf. We want to show that {T”n A} 1s stable, Note
= AﬂT“ﬂ A) = P(T"k(T“(n“k)AnA)) =

that since T is measure preserving, P(T

_— 3 —



~{n-k ) z{n=-k)

= P{T AiA), wvhere n > kK. But by the hypothesis, 1im P(T AAA)
2xists and so lim P(T"k' A) ex18t8, k = 1425500 ?éﬁenceg by Theorem
2.20, {T77 A} £s stable. This completes the "if" part of the proof,

the

A measure preserving transformation T is mixing if for every Ae &

sequence of events {Tmn A, n = 1,2,00.} is mixing with density P(A), that is,

1f for every A, Be O

lim P{(T"2 ANB) = P(4a) » P(B).

I~

Clearly a mixing transformation is stable. When is the converse true?

ssary and sufficient that§ , the o-field of invarient sets, 1

In order that a stable transformation T be mixing, 1t

trivial under P.

Proof. Suppose that & is trivial under P, that is, if A€ then

P(ﬁ;) = 0 or 1. By Theorem 3.1., since T i‘s,sta.ble, we have'

lim P(T™" AAB) = J P(A/d) ap
B

-

for every A, B&d. But as 4 is triviel, P(A/J) = P(A) almost surely for
every A &0l Hence lim P(T™" ANB) = P(A).P(B) for every A, Be®, so that

T is mixing. Ccnvézz}‘g;ly, assume that T is mixing. Let A&S . Then T 0 A = A
for n = 1,24.0» o But {T“n A, n = 132,&9.@} 18 mixing. Hence for every

¢, P(AAB) = P(A):P(B), thet is, P(A) = 0 or 1. Therefore, §

which concludes the proof.
Let us now turn to the functional form of stability. Let £ *fé._

"be the class of complex-valued random varisbles f on (Q,&,P) such that

j 1£]€ 4P < =, Tdentify all functions ind 5

~is a Hilbert space over the field of complex numbers with

which diff’er'on a se‘b of measure

Zerc., Then4:2
inper-product {(fyg) = Jf‘ g dP (here x is the ccmplex—-con'zuga’ce of x) and
noym Hi‘” J Ifl2 cﬂz’)%.a If T is a measure preserving transformatlon of

Q into 1tself we cen define a transfomatlonu off into 1tself as follows:
Vf=foT, fs£2 Then &/ is en isometry, that 18, U 18 & bounded linesar
transformation such that HUfH Hf” for every fdfa (see [_2], page 14).

Denote by Y " the n-th iterate of U, |
Call a function fgfg invariant if Uf.= f. Denote by Eo the projection

— 4 —



5 We can now characteris

on the closed subspace of invariant functions in &
stability of T as follows.

Th A v ion 18 S ei 1
2 ¥ * T s -b
eorem ® )0 neasure preserving transi
Elnitai amael gy wa e A ik R ot ot il PEERE eIy o B i, g :E."g:i:":‘;.,'?_:.‘:__‘ rar e SRR T A Lk R R, -;.._..7__,___.;'_?-:1,; phrisir e - 1‘-:::":1-’:- o e AT o = ak ;l“._..l,-,.-_::a._,__ W N LR, it ot T R T.A.:'E;:-_.-:l:::.-'-Ai;iil-ﬂ'—':a "t P = i '3::5;';;-'.1.1'\5:'- Ny BB i B Sy S :‘-"‘E_::f—"i:-‘:: pcSialbmpedy ey z -—'—1-;-5.-"-'.!;{* g e B g ¢y COE RS NIRRT} et i P S N i T e s e T N —=":'J=-:'::.""'"31-E s, 7 j YAk W

J £, g) = (E_ £, g) for every converges

= Lm ’

Froof. The proof depends on the remark that the conditional expectation

. & - -
J 1s almost surely equal to Eo fo If f and g are 1ndicators of
sets F and G respectively, then the functional form simply reduces to the

set-theoretic definition of stability. To go the other way, use a double

holds for functions fe Kga Now let f be a fixed function in

similar argument about g yields the result.

5 8re constants. Hence Eo £f = (f,1)1 for every £&§

for the function which 1s equal to one everywhere.

n>e

We may add here that 1f T 1is stable, then u- converges to Eo 1n the

strong operator topology only in a rather trivial and uninteresting case.

In fact,Un converges to EQ in the strong operator topology 1if and only

if every function inf . is invarisnt. To prove this statement, note that

since u‘w:1 converges wealzcly to Eo* Un will qonverge strongly to Eo if and
only if lim ]]Un f” = HEQ f|| for each fe&&.. But HUn £l] = |lg]].
Not alsdo that for any " Hf|12 = | [E_ £ 1+ || - E £ |2 by the ,
Decomposition Theorem. Hence HEO £l]| = Hf“ for each fe&,. if and only

- 1f Eo £ = f for each f&é 5

The property of stability is preserved 1f the underlying measure 1§

2
. This completes the proof.

repleced by a measure absolutely continuous with respect to it. Explicitly

we have:

Theorem 3.4. Let T be a stable transformation on (2,84P). Let Q be

a probability measure on (Q,00 such that 1 is absolutely

respect to P. oreserved by T. Then T is stable

1

Assume further that Q is_

—



) = Q(A/g

#Q) and for every o, P(A/Y

Proof. Consider the sequence of sets {T"n Ay, m = 142,500,

Since Q 1s absolutely continuous with respect to P, by Theorem 2.3.,
-1 : : o :
{T A} 1s sStable with respect to Q. Hence T is stable on (Q,8Q)-
Furthermore, by Theorem 2.3., 1lim Q(T™" ANB) = j P(A/Y) dQ for every
B

16 B e
A, B&§/. Hence by Theorem 3.1 we have: f Q(A/S) aq = I P(ALS) 4Q for
B B

&d. This proves the second assertion of the theoremn.

Corollary 3.3. Le: P and Q be probebility measurcs on (2,&

Then, ifPf—QE_‘x}_J,PW-Q

Proof. Let u(a) = 3 P(A) + z Q(A), Ae®l It is easy to verify that
T 1s stable for u. Note that P, Q are absolutely continuous with respect
to u, Furthermore, n = P = Q ond . By Theorem 3.4, (AL ) = P(A/§) almost

lNote that the exceptional set above is$ -

surely [P] for every A€6i.
measureble and so must have p~measure zero as well. Again, as P(A/S),

U(Afj) ared -measurable functions, we have:

§

L(A) = [ a(0/9) af = j p(a/g) ar® = p(a)

for every A e&&, Here ng, Ps denote the restrictions of u, P, respectively
to§ . This proves the corollary.

ng transformation on (Q,&P). Let O be

E o

pect to P and that it is p

Proof. Follows directly from Theorem 3.4.

5. Let P and Q be probability measures on (Q,8) for whic!
Then either P = '

Proof. Suppose P # Q. Then by Corollary 3.3, there exists a set Aed
| such that P(A) # Q(A). But, since T is mixing for both P and Q, either
P(A) = 1 and Q(A) = 0 or P(A) = 0 and Q(A) = 1. In either case, P and Q

are mutually singular.



A, Let T be the ldentity transformation on a probability space
(Q,04P), *hat is, T w = w, w&N. Thend =00 and T is stable. If & j

non-trivial, we get an example of a stable transformstion that is not
MiX1Ng.

B: Let (R,8% be a countably infinite product of a measurable space

& ). Denote by W (n = 1,2,004) the n-th coordinate of & point w in .

We will use the following notation for finite dimensional rectangles:
(i) (1 )
. lg .

C(E1 s oooy L = ) is the set of all w such that wi & E
& k

Il

If ik = kg k == Tg Cav g n, WE Will Write C(E‘!’

1 1
w , Where w_ =

operation on 2, that is, T w

(1)) (i ) (3 ;) (3.}
P(C(E1 s 000 g En )) = P(C(E1 s

for all n = 1,2,¢00.4 811 E,, E and all sequences of positive

1 T2
n andjj, sosp jn (i's all distinct and j's all distinct).
Then T 1s a stable transformation on (.8

integers 119 cuog 1

. P). To see this, first note

that T is measure preserving. liow let B be a measurable {1, cco, m}~-cylinder,

that 18 B = A X QO ~ % ... Where A 1s a measursable subset of

QO
QG X Qc X cou X QO (m times). Consider the sequence of sets {Bk, Kk = 1,29..ﬁ}
where B, = T™° B, k = 1,2,... » It is clear that B_ is a {k+1, ..., k+n}-

cylinder wigh base B. Hence, as P 1s a symmetric measure, for n large
P(B{[TBH) = P(C), where C is the {1, co., 2m}=cylinder B x B x QXX e
Hence 1im.P(Bk(§Bn) exists for kK = 1,2,.., « Therefore, by Theorem 2.2,

‘I‘mk B™7is stable, But for every set A€&8land € > 0, there exists a ﬁ‘l,a“,m}
cylinder B (for some m) such that P(A &4 B) < . It is easy to see that the
stability of the sequence {Tfn A} follows from that of {T"n B}&

This proves that T is a stable transformation.

In particular, let P be a product measure with identical components.
Then it is well known that T is mixing (see [E], page 110). Conversely,
assume that T 1is mixiﬁg for a symmetric measure P. Let A = C(EPQM,EE) be

a measurable finite~dimensional rectangle. It 1s easy to see that

— 7 -



A) = P(c(E,WM,Em, E ’”“Em))’ K = 1,25000 o

1

- ™ - o " X e n » 2 @ |
The limat 1s independent of k. But ithe sequence ?T -A} 1s mixing. Hence,

by Theorem 2.2, we must hove

“{

F Y

P(C(EPMWEW, E1“w,Em)) = P ﬂ(E”H”Em))@

As T iz mixing, this last relation is true for all measurable finite-
dimensional rectangles. Hence, by Theorems 5.2 and 5.3 in Iﬁ] (see
pages LT7T7-hT78), P must be a product measure with identical components.

Hence we have

Theorem L.1.Let P be a symmetric probability measure on (2,&

Then T is steble end T is mixing if and only if P 1s a |

RN

A I TR

Ceer e *",'.:-qu..-_.ﬂ':

C. Let {xn, n=0,1,...| be a stationary eperiodic Markov chain with
countable state space I. Elements of I will be dencted by 1 with or
without subscripts. Assume that the Markov chain is defined on the
and let T be the shift

appropriate {(unilateral) sequence space (Q,60

To prove this, let us note that it is sufficlent to demonstrate

stablility of sequences of events iTMn A, n = 1,2,..0}, Where A is a

finite~dimensional rectangle of the form (xG =1 secesX = i ), the i's

being ergodic states belonging to the same class. We have for large n

P(t{"""’“‘k

where p, denotes the initial distribution, p; . the one~step transition

N
probability and p&?) the n-step transition probability.
: .t (n) _ : :
Clearly since lim p..” = w.. for J ergodic,
e 1 i
1im P(T™° AAT™ ) = Pi Py 4 o Py 473 1 Pi i oo Py 4
I >0 o o 1 m-1"m "m o o3 m-1"m

1{& %q?goﬂu B

Hence by Theorem 2.2, {T " A} is stable. This proves the assertion.

— 8§ —



| D. We conclude with an example of a measure preserving transformation
which is not stable.

Let @ = [0,7], Olthe o-field of Borel subsets of 2, P Lebesgue
measure on&. Let T be an invertible, both ways measurable,
preserving transformetion of  onto Q, which has strict pericd m (m > 1)
at almost all EP] points of Q. '

measure

According to a result of Halmos (see [2] , page T0), there exists
a set E4O such that P(E) = 1/m and E, THE, cuuyp T_(m“1)E are
palrwise disjoint. It follows that limsup P(T"" EFAE) = 1/m and
liminf P(T"" ENE) = 0, so that the Sequence {’I‘“n\ E, 0= 1,2,000}

}
i§+§0t stable, Hence T is not stable.
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R€sumé. Soit T une transformetion, conservant la mesure, d'un

espace de probabilité (Q,MP) dans lui-m€me. On dira que T est stable
si, pour tout A, BaPM, il existe lim P(T™" ANB). L'investigation des

transformations stables est fond‘égﬂ?ur des resultats de Rényi concer-

nant les suites stables d'événements. La notion de transformation

stable est une généralisation de celle de transformation melangée,
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