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1 ©

The connection between one-~parameter mixtures and generslizations
(iceo y-fold R convolutions, with a randamiz) given by GURLAND (1957),
is used to derive some simple properties of both, parfiy found with
different proofs in TEICHER (1960). The possible types ofnéﬂmixture of
continuous singular components are discussed, The general one-parameter
mixture is compared with a representstive component, and the generali-
zation with & representative fixed convolution. Examples of mixtures
and generalizations are listed in Appendix 1., Appendix 2 is a specifica-

tion of the distributions used in the paper.

2. Definitions

A random variable has a compound Poisson distribution if it has a
Poisson distribution with a parameter that is not a positive constant
but a random variable assuming positive real values, A generalized
Poisson distribution is the n-fold convolution of an arbitrary distri-
bution, where n has a Poisson distribution. These definitions introdu-
ced by FELLER (1943) have been extended by GURLAND (1957) and TEICHER
(1960) to the Definitions 1 and 2 given below. As some authors, e.g.
FELLER (1957), use “compound” for what is here called ''generalized",

we shall henceforth replace "compound” by the less ambiguous "mixed”.,

Definitiom 1., If Fe(a) is a distribution function for each parameter

o ‘ : |
value’ae§T<:R1s such that Fe(x) 1s Borel measurable on-T x R , and H 1s
g distribution function which assigns probability 1 to T, then the

H-mixture of F. is the distribution function Fefe\. H given by

(1) (Fo JLu)(x) = [ F (x) an(e).

We shall denote by the random veriable with distribution function F8

Zg

1)

Random variables are underlined.



end by x, the random variable with distribution function Fg 7

This is a special case of TEICHER's definition of m-parameter

mlxtumsa In this report the distribution function H is always Onéw

dimensional, though F, mey have more than one parsmeter, The extra ©
under the slgn fi" ig convenient in this case. Sometimes we shall

write F ¢ H, though we could have included the constant c in the

digstridbution f’unctlon H. The symbol °

distributions. Several well-known mixtures are listed 1in Appendix 1,

't

Two examples of mixtures are
Binomial (n,p) J} Poisson (u) = Poisson (up);
(2) ‘
Poisson (ku) /} Poisson (1) = Neyman A(A,u).
We shall call a mixture non-trivial if neither H nor all Fg
are degenerate distribution functions. For degenerate H the mixture
is just one Fe, any distribution H could be written as a mixture by

taking F (x} = g(x - 8)3)
It is obvious that for example the characteristic function and

the moments about zero (if existing) are mix-linear with respect to
(worot,) Fe./;\ H, 1.e. if ¢ is the characteristic function of F8 and

Co(t) = [ ¢ (t) an(e);

(3)

T dH(6).

2, If the, random variable x has distribution function F

e th@ nonmnegat ive integer-valued ra.ndcm variable y has d4i stribution
foniction G, the Ge-g
function denoted by F‘(}».B is the distribution of

eneralized F-distribution, with distribution

6. We have preferred to use another not etion,

GURLAND uses FAH and x
more suggestive of the u.s.d.erlying idea and avoiding the possibly
confusing suggestion of symmetry.

¢ denotes the unit stepfunction.



(L)

vhere the X, are independent and have common distribution function F.

If the characteriﬁ’gic function ¢ of F is such that {Mt)}y 18 &

uniquely defined characteristic f

uriction for all values y in the
of G, we extend the definition to arbitrary

distribution

functions G with G(0=) = 0 and define and Fo by their characteris-
tic function

(5) def ¥ \

5 gle(t)) "= [ {8(t)} ac(y).

This clearly includes the definition by (4). GURLAND (1957) uses

the notation yyx, and GV F, end defines it, for non-negative x and y,

by steting thet its generating function is g(f{(z)), vhere f£(z) = €27
and g(z) = ézla In GURLAI

D's examples, where F is infinitely divisible,
g{f{z)) is always a generating function, but this is not correct in all
ceses with F(0=) = 0 and G(0-) = 0, A counterexample is £(z) = pz + ¢

and g(z) = zag Compared with GURLAND's definition, our definition admits

negative values for x but excludes the cases where {¢(t)}y ig not a

characteristic function for some y in the carrier of G. In the 1list of

examples in Appendix 1 we have always a non-negetive integer-valued y
or &n

infinitely divisible x with a non-negative y; in both cases x&

is defined.

) Determine {¢(t)}y = exp {y log ¢(t)} by selecting & branch of the

logarithm, In every zero of ¢ one may switch from one branch to-
another. If one such selection gives & characteristic function,
this selection is unique when ¢ is infinitely divisible and also
when ¢ is regular on an open interval containing 0 (use {¢(O)}Y = 1
and the extension theorem, LOEVE (1963) p. 212). Whether the
selection 18 unique under other circumstances seems to be unknown.

5)

The carrier of a distribution function G 18 the set of all values ¥y
for which € > 0 implies G(y + €) = G(y = €) > 0,



Definition 3. The family { F 6 i 0 & T} of distribution functions 18
- closed (woro.t. ©) if we have, for all 8, n g

(6) 6 +né& T and Fy(x) * Fn(x) z F6+”(x)a

It is strongly edditively closed if there exists a distribution function

F‘i with characteristic

function ¢, independent of @ such that for each
. o 8
8&T the charscteristic function ¢e of F6 18 ¢e(t) e {¢1(t)} o

If T consists of the positive integers or rationals the two notions
coincide; if T = (0,~) an additively closed family is strongly additively
closed if is & continuous function of 8 or if ¢,(t) is real-valued
for real t (see TEICHER (195k4), where also additively closed families in
more than one parameter are .inveatigated), PYKE (1960) has shown for
additively closed families with T = [0,=) that ¢e(t) = {¢1(t)}e exp {itc(ei}},
vhere the resl-valued function ¢(@) on [0,=) has ¢c(8) = O for a1l rational
6 and c(8) + ¢(n) = c(® + n) for all 6 > 0 and n > O, For a strongly

additively closed family with for T the positive reels or rationals, ¢
is of course infinitely divisible. -

1

Ir ¢1 18 not degenerate, the parameter of a strongly additively

clogsed family can aasume only non-negative values, otherwise |¢9(t)| =
= H.t(t)ie would assume values larger than 1,
6)

A few exemples of strongly additively closed families are -
Normal (Ogaa) Woloto 02 (6 > 0)3

Normal (uﬁgﬂzﬁ) Worot, O (6 > 0);

Poisson (8) woret. 8 (8 > 0);:

Binomial (n,p) wereto n  (integer nm > 0)3

Pascal (y,p) woroto v (v > O, or integer vy > 0);

in all cases the parsmeter value O corresponds to the degenerate

distribution in 0 and may be included.

A specification of the distributions is given in Appendix 2.



(7) (BEHT™ = g(G )» and (F, ﬁ.Gn)

in all cases where the distributions are defined.

Proof, If both sides of the first formulas are meaningful, then

F{(O=) = 0 and G(0=) = 0 and f(g(z)) must be a generating function
Tt
)

(corresponding to G ). Now if ¢(t) is the characteristic function
of H, then by (5) both sides have characteristic function f(g{¢(t))).
For the second formula, one finds from TULCEA's theorem (LOEVE (1963),

P 137)

(8) [[ Fo(x) ac (o) aH(n) = [ % (x) & [ ¢ (&) aH(n).

Remark, It is trivial that for a two-parameter family {Fe n} wve have

(9) (F fe\.G),{‘lH = (Fe.njn\ H) {lsa

Ben

This might be extended by splitting any two-dimensional distribution

of 8 and n in the two possible ways in conditional and marginal dig-
tributions.

The following basic lemma is a slightly modified form of a theorem
by GURLAND (1957):

Lemma 2, If {Fe | 6 €T} is strongly additively closed and H assigns pro-
bability 1 to T, then

Hoe
(10) Fe_é\,H - F1 o

‘ I o . o » 5 8
Proof, On both sides the characteristic function 1is f {¢r1(t)} du{e),
It is not necessary to assume 1T, as ¢1 and F

, are défined by

Definition 3 6

Several relations of the type (10) are found in Appendix 1.



As an example we mention

} G sAepreela ( qu

-1 .
Pasecal (Yap) = Polsson (;\) :._.um, (Pq 97) s {POlBBGﬁ (?)

('§1} F.‘ = (F1 ) 2 (F8
By lemma 2, each mixed Poisson distribution Poisson (6) H is also
. . . . Poisson®
{Pcissan (1)}}{“0 Some generalized Poisson distributions G gre at

the same time mixed Poisson (e.g. Neyman A and Pascal). MACEDA (1948)
. . . . /L Polisson
proves that all distributions of the form (Poisson J{ H) are both

generalized Poisson and mixed Poisson. This is now a consequence of

lemma 3, as we have

. . %
(12) (Poisson ﬂ, H)Po:\.sson* = Poigson A(HPQJ.SBGD ) o

Lemma L4, One-sided distributivity of generalizing and mixing with respect

to convolution holds in the following sense: whenever both sides are
defined we have

(13)

and
(1k) Fefe‘»(H »

i1f {Fe} is strongly additively closed.

Proof. If H has characteristic function ¢, both sides of (13) have
characteristic function £{¢(t)) g{(é{(t)). From (13) and lemma 2 follows (14).

(14) was already proved by TEICHER (1960), by writing out the

integrals, For Fo = Poisson (8) it is mentioned by FELLER (1943) and
MACEDA (1948). The last author proves also



. A
Poisson (u)=) _ ;" 71"*"2) poisson (A+u)

(15)  {g Foisson () T
+i

2

Only the special form of the Poisson characteristic function makes
extension of (13) to different H, possible.

One can easily see that the other two distributive laws

(H™) » () = (& = &)™ ang (F, = e )

hold only in the trivial cases where at least one of the distributions
is degenerate,

emme 5. If G is infinitely divisible, then so is H®® for each H, and

.t G for each strongly additively closed family'{Fe}a

Proof. For each positive integer n there is a distribution function Qn
8  a
such that Gnn = G, Thus by lemmas 4 and 2

(G n*)-n- G e
(16) B =g » = (g 2 )&
and
G v
Ge n nsw | ne
(17) Fo G = F.%" = (7, 2 )™ = (7, L ).

The second half of lemma 5 is stated by TEICHER (1960), with a
different proof,

As stated by TEICHER (1960), any mixture of absolutely continuous
distributions is absolutely continuous, while a mixture of discrete

‘distributions can have any type (take Fe(x)\m e(x = 8), where £ is*the
unit stepmnction)a From TEICHER's .remark that Fe fQ\H is disceontinuous
in xo_if and only if the 6-set for which F6 iz discontinucus in X has
positive H-measure, we see immediately that a mixture of continuous
distributions has no discrete part. The problem for & mixture of contie

nuous singular distributions, suggested by Dr. Maitra, is settled in the
following lemma,



Lemma 6, (i) A mixture of continuous singular distributions is again
continuous singuler if the mixture is countable (i.e, if the mixing

distribution H is discrete), (ii) It can be continuous singular or

absolutely continuous or a mixture of both if the mixture is non-

countabl e,

fo (i) If X denotes Lebesque measure, and u, the measure corres-

ponding to a continuous singular distribution Fi.» then there exists
t ] A = — Y .
a se Ak with (Ak) 0 and uk(Ak) 1, while uk( {x}) = 0 for all x

Now the countable mixture Zoka is continuous singular, since

AMua) = o, zakuk(u A ) =1 and Za u {x}) = 0 for all x.
(ii) Let F
carrier contained in [0,‘!] , and let F, denote the same digtribution
shifted over & positive distance 6 to the right but modulo 1, i.e.
Fo(x) = F (1 + x = 8) - F (1 = 8) if 0 < x < 6 and F (x) = F (x - 6) +

+1«F,(1-8)if 8 < x < 1. If for fixed p (0O < p < 1) we choose

r 0 "'1";’
w2 A

denote any continuous singular distribution with

H(8) = p €(8) + (1 « p) U(8), where U denotes the uniform distribution

on [0,1] » then

(18) | Fo(x) aH(e) = pF (x) + (1 = p) U(x),

If F, does not modify the location of FO’ but distributes the

mass 1 in a&a way depending on 6 over the same set A with Fo-mea.sure 1
and A(A) = O, one obtains a non-countable mixture that is again

continuous singular.

For the investigation of the moments of the random variable X,

(with distribution function F‘e fe‘. H) we introduce

def
m, = Ex, = [ x dFa(Jt)i

(19)
82 dgf 02(

5 x.) = | (x = me)2 aF o (x) 3

_—



we shall assume that all moments mentioned exist., By well-known
formulae we have

(20}

Let us assume that F‘e has expectation m, = 6 | then 6356 = éi

8
2 2 2 . s
and © (xe) o (8) + Es gc If Fy is non-degenerate for some set of

U

f-values assumed with positive probability, then the variance of Xq
is larger than the variance of 8: In the special case Fg = Poisson (9)
we have also 828 = 6 and, as proved by FELLER (1943),

2 . . .

o (-}56) = 52(2) + £ Xgo: the variance of a non-trivial mixture of

Poisson distributions is always larger than its expectation.

Another special case 1is F8 fe\Poissan (A), Here it is not very

realistic to assume my = 0, as in most mixtures the expectation of

Fo will not be integer-valued for all 8, If m, = k0 for some constant
k and integer €, then

2 .2 2 -
(21.) U(_{e)"kki‘gsibkl“g%;

provided we have k > 1, This proviso is not necessary for a Poisson-
mixture of di_'.stributions Fe with expectation k8 to have larger
variance than expectation. The Poisson Pascal distridbution

Pascal (y6,p) /S\Poisscn (A) has expectation Ykpc,{'1 and variance

Ylpqﬂg(yp + 1); here the variance always exceeds the expectation

1

even if the constant k = ypg is < 1,

6, Comparison between a mixture and one of its components

Ifé 0 = f 8 dH(6) exists and is an admissible parameter value,
it is interesting to compare the mixture Fq @H with the single
component F g o When the expectation me“of F, is proportional to 8,



omparison of the mixture to the component with the
+ing-point is the result of FELLER (1943) that

2
for each non=trivial Poisson (6‘J9~H we have larger O (x), larger

Pix = 9? and smaller P X = ?} / P{i = 0} than for the Poisson
distribution with the same expectation. Two possible extensions ar

lemmas.

game expectation. Stax

stated in the followilng

gt Hy where £ @ is an admissible

7. For a non-trivial mixture Fg /g
> conditions is sufficient for

{ {K o ma)‘? dFB(X) i8 a convex 7) function of 3;

(b) Fy is Binomial (n,®) for fixed n.

We have 62(5_{_8) > 62(556) if {(a) holds with strictly convex sg, or if

(b) holds with n > 1, or if we add to (a) that mg agt [ x dF,(x) has

positive variance.

Proof. In case (a) we have

(22) 02(_1_3) = 02(32) + EBE ::82530

by Jensen’s inequality and the fact that the first term is non-

negative. In case (b) ’me = nb, sg = no(1 = 6), and

(23) g,,,2‘(_;,5“.?“) = n°0°(8) + n£8 - n€£6° > n€6 - n(£6)° = 3239

2 2
because (n~ - n)o"(8) > O, The statements on strict inequality follow
directly.

R d N1 R R, k & Tha l ot FEEPRS
strictly concave function of 6. Cases (a) and (b) together cover all

holds for Binomial (n,6) though its variance is a

mixtures listed in Appendix 1.

7) As usual "convex" includes "linear"; a function £ is called "strictly

convex" when f{ax + (1 =« A)y) < af(x) + (1 « A)f(y) for all x end y
in the interval vhere f is defined and all A &(0,1).

— 10 —



A functional v mapping a class of distribution fur

into the real numbers is mix-concave w.rot., F,JLH, if it is defined
at least for F

(24)

e

g" JLH and all F gs 8nd sat isfies

H) > f v(F 5 ) daH(e).

It is
if we have equality in (24). Th

strictly mix-concave if we have strict inequality and mix-linear

 x-convex is analogous.

and all real a and b functionals like V( F) =
= ?{5 = g | F} and v(F) = P{a <X <D | F} are mix-=linear. The expecta~
tion is mix-linear; as we have proved o-(x.) = Gz(me) + €55, the

=g R
variance is always mix-concave, and for any non-trivial mixture it is

Exem

plesg., For all mixtures

strictly mix-~concave unless m, has zero variance.
Lenm:

ma Let Fe/e\ H be & non=trivial mixture and £ 0 an admissible para-
meter value, If the functional v is mix=concave wo.r.t. F f\H and
v(F ) is & convex function of 8, then v(F n H) > V(FE e) The last

:mequa.lz.ty 18 strict as soon as v is str:z.ctly mix-concave or strictly

convex in 6,

Proof. v(Fg A H) > f v(Rr,) aH(8) > v(F _,).

ES
Pascal (Y QP) = Polsson ( 6) 191 Gamme

ol 2 L % ®
The variance s g = O 18 linear 1in 8, s0 lemms

-

Exam (pa ;7)o

T is applicable. In fact

the variance ypq“a for Pascal (v,p) is larger than the variance of

Poisson (68)3 vhich is E, 9 = qu““a

V(F ) = PL = i 1) } = e ig strictly convex in 6 and mix-linear,

8 is applmablea In fact P{_:_g = 0} = q_Y for Pascal '('r,p); this
is larger than exp («-»mq"") for Poisson (£ 6) as we have vy log (1 = p) >
> = yp(1 = p)~

v(F) s P{x = 1 | F} / P{x = 0 | F} can be shown to be strictly mix-
convex and v Fe) = @ 18 linear, 80 by an obvious modification of

BO l Py PRV B0

lermns 8

(25) v(Pgg) = [ v(Fy) an(e) > v(ry A1),
namely

(26) ypq~ = £9 > o



/L Beta (r,s).
P

emma 7, the variance of the Polya distribution must exceed for

(n,r/{r+s)). In fact we have

n > 1 that of Binomial

(r+8)2(r+s+1)  (r+8)°

(27)

V(FP) - P{x = 0 | FP} m (1 = p)n is convex in p (strictly so for
n > 1), and mix-linear, In fact P{x = 0f equals

(s+n-1)(8+n~2) o000 8 _
P+3+ﬂm2 | coo (T8

and ( e )n

(28)

for Polya (n,r,s) and Binomial (n,r/(r+s)) respectively. They are
clearly equal for n = 1 and for n > 1 the Polya distribution has
larger P L’E = O]Q

fous results for g

We shall compare the sum ,‘I" of a random number of independent

(Ey)= "

x. with the sum x of a fixed (not necessarily integer) number

of X.; we assume that all moments mentioned in the following exist.
Let x have characteristic function ¢, and suppose that, for some real
a > 0, ¢" is a characteristic function. From the expansion of

log ¢°(t) in powers of t it is clear that, also for non-integer a,

(29) E_:;‘* = 8, 535_ and ae(xs‘*) = aacz(i)a
In analogy to (20) we have
EXL = Ey. E(X | y) =Ey . €x;
(30) °(L) = E”L” | ) + A(EGLE" | y)) =

= E(z_az(y) + 02(15_:5) ﬂgzcoe(i) + 62(1).::55,«:



Lemma 9. If both generalizations are deflne " has the same

£ )
expectation and na smaller variance th&n IT : the wvariance

is larger unless O (1) = 0or £x = 0,

Lenma 10. If P{x > O} = 1 and 0 < py %€ P{x = 0} < 1, =nd the

distribution of y is non-degenerate, then if both generalizations

are defined we have

(31 ) P{ - 0} S P{ .;:".‘.‘.t.( El)% - 0} .

Proofs., Lemma 9 follows from (29) and (30), For lemma 10 note that

poy is & strictly convex function of y and apply Jensen's inequality

to P :xc(Ei)Wz o} = Poez and PLK.;r =0} = | P{;’Eyﬁ = 0] aG(Y) = Epox'

Remark 1. We have equality in (31) if Py = 0y Py = 1 or y is

degenerate.

Remark 2. With lemmsa 2 we could translate lemmas 9 and 10 into results
for strongly additively closed {F }, requ:x.r:.ng P{_e > 0 = 1 in the
case of lemma 10. But then o (_;_:_e) = 80° (x ) is linear :m 8 and the

variance is mix=concave, while P{_e = 0} = (P{__1 = 0}) 18 convex

and Pix = 0} is mix-linear, If o (6) > 0 and §

# 0 the variance
is strictly mix-concave; if 0 < p{_1 = o} < 1 ana o (e) > 0 we have

strictly convex P{ Xo = O}

Thus the results follow already from the (stronger) lemms 83 1
and 10 could also have been derived in this way.

ammas 9

I want to thank Professor Hemelrijk and Dr. Van Zwet for some helpful

suggestions,

— 13 —



Appendix 1

List of mixtures and generalizations

For the definitions of the distributions see Appendilx 2.

Thig list gives some well=known examples; it is far from being

ccmplete,

As usual, q denotes 1 = po.

, "' A )se
Neyman A(A,u) = Poisson (ku) J;}Poisson (A) = [Poisson (14)]93155‘7"'n (A),

/{ Poisson (up 1)] Poigsson ()

= [Binomial (n,p)

“
Pascal (y,p) = Poisson (X) QGamma. (pc;f"ﬁ"'1 ,Y) = [Pcisson (”]Gama (pa 'Y)*m

~1)7Gamna (1,y)% ]Poisson (=Y log q)*

 Log (p)

-

= [Poisson (pq

Poisson Pascal (A,yv,p) = Pascal (ky.p) /l Poisson (X)) =

k
Poisson (A)%

= {:Pascal (v,

Poisson Binomial (A,n,p) = Binomial (kn,p)/ { Poisson (1) =

= [Binomial (n’P)chlason (A )se

Pascal (cy,p) [} Gamma (B,y) = ELGS (PT]

= |[Pascal {c,p)]Gma (Byy)s

Poisson (up) = Binomial (n,p) @Poisson () = [Binomial {“p)jPelsson (u)

Polya (n,r,s) = Binomial (n,p) /gBeta (r,s)

m'g o cm
s Y+J) Apasce,l (vy1=a 1)

Garma (A,1) = [Gamma (kp“‘g,‘i)] 1 + Pascal (1,q)}u.

Gamma (1,7) = Gamma {(a

Beta (a,B) = Polya (n,a,8) f\ Poisson (u) =

= (Binomial (nap)/é Beta (a,B8)) /;;\*Poiason (u)

Gurland (a,8,u) = Poisson (up)

Laplace (1) = Normal (0,62) AE Gamma (1,1)
30

~— 14 —



Appendix 2

List of distributions

It will be obvious what is mee

rmal (W,0%) or Poisson ()). The other distributions used s re listed

here .

ANCE »
" 8

Beta (r,s) - S . 7 A <x < _ —
r > ('_'ja g > 0 | (I"*:f'l)(ﬂ"i‘S)

Wy

G ZX4rE] ﬂ. ( ﬁ $ Y )
B >0, vy>0

Gurland (a,B8,u)

@ >0, B>0, u>0 (at+B+1)(a+8)”

1F1(m,a+6,u(elt-!))

Laplace (B8)
B > 0

ILeg (p)
O <p <1

Neyman A(A 9 11)
A >0, u>0
Pascal (Yap)m)
Y 0, 0 <p <1

B o R i e T B e e e L e T e el ga Ze, vee oo VR A . I P i :

- For arguments not mentioned the value is zero.

9)
10)

Recurrence relations for PEE = x] are given by GURLAND (1958).

This is the negative binomial, but we prefer the shorter name., For
integgﬁ y it is the distribution of the number of successes preceding
the y = failure,

— 3h



8)

NAME DENSITY OR PROBABILITIES EXPECTATION; VARIANCE;:

RESTRICTIONS CHARACTERISTIC FUNCTION
@ o @ ' m)\ 2 2

Poisson Binomial (A . n.,p) e Anps An p + Anpq;

A > 0, integer n > O, exp(k{(PeIt*Q)n"1}}

0 <p <1 (x =
) 11) | o

Poisson Pascal (lgvip) (x = 0, 1, _— YApq 3 YApg (Yp+§)§

A >0, Y>0,0<p<1 exp(A{qY(1-pe*) =1}

nr nrs{n+r+s)

T T —

Polya (n,r,s) —

(r+s)2(r+s+1)
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RESUME

Comme 1'a d€montrd GURLAND (1957), il existe une relation entre le
mélange de fonctions de ré&€partition 3 un paramdtre, et la gé&nfralisation
d'une distribution (c'est & dire la convolution de ¥ facteurs idmtiques,
ot Y est une variable al8atoire). Avec cette relation, gquelques ‘
propriétés simples du m&lange et de la g8n&ralisation sont d&rivées,

Une partie de ces résultats a &t& obtenue déji par TEICHER (1960), avec
une démonstration différente. Quelques observations sont faites sur le

type d'un m&lange dont toutes les composantes sont singuli®res,

Le m&lange g€néral 3 un paramdtre est comparé avec une composante
reprdsentative, et la généralisation est comparée avec une convolution

d'un nombre fixe de factauirs. Dans deux appendices on trouve des exemples

et une liste des distributions mentionnes.
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