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1. Summary.
The objects of this investigation are

1/ To derive the exact power functions of Wilcoxon's, van
der Waerden's and Terry's two-sample tests for small sample values
against parametric shift alternatives of exponential and rectangular

populations.

2/ To compare the power functions of these tests.

This is done for sample sizes of m=n=3,4,5,6 and various signi-
ficance levels. '

2. Introduction and literature.

Assume there are given two independent random samples
2
xlp xz,:.¢, xm and yl’ y2""’ yn( )

from two populations with continuous cumulative distribution functions
F(x) = P[x < x] and G(y) = P[y< y] respectively. We wish to test
the null-hypothesis :

H, : F(x) = G(x) (1)

against the alternative hypothesis

W T W e T e S S ERk wils BEE ame DU W A

(1) Report S331 of the Statistical Department of the Mathematical Centre,

Amsterdam.
Paper presented at the I.M.S. conference at Berne (14 th - 18 th Sep-

tember 1964).

(2) Random wvariables will-be distinguished from numbers (e. g. from values
they assume in an experiment) by italicizing their symbols.
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H, : F(x) # G(x) (2)

For this two-sample problem various distribution-free tests

are proposed. In this paper we shall consider three of these,
namely :

1/ Two-sample test of Wilcoxon (Mann-Whitney),
2/ v ' 1t van der Waerden (X-test),

3 1 " n 1 Terry (Fisher-Yates, Hoeffding).

We shall only be interested in the power of- each of these

three tests. For shifted Exponential and Rectangular alternatives
we shall evaluate their power functions :

BN )y B(Asa) and  B(A; a) (3)

respectively, with shift A and significance level a«a, for small
sample sizes (m=n=3,4,5 and 6).

In Savage [18] it is indicated that for the two-sample problem
with such alternatives as slippage, there do not exist optimum non-
parametric tests. Dwass [6] has studied the locally best rank order
statistic for testing H, : 8=0 against H, : 6 ''close' to zero,
if the samples are drawn from populations with density functions
fi(x,0) and 1f,(y,0) (if © =0 both density functions are identical).
Under certain regularity conditions it is possible to determine the
large sample power. o

Different investigations of the efficiencies and the powers of
the three tests, mentioned above, and comparisons with Student's
two-sample test have already been made. To get a rough idea of
the relative powers we shall give a brief survey of the literature
on this subject. We are mainly interested in the powers for small

samples, so our references, especially those to asymptotic results,

will be far from complete.

Pitman has proved in [17] that the Pitman asymptotic relative

efficiency of Wilcoxon's test against Student's test for the shifted
5 .

Normal distribution is equal to = In [10], Hodges and Lehmann
proved that for all distributions the efficiency is greater than or
equal to 0.864 for shift alternatives. Regarding the power efficiencies
of Wilcoxon's test for discrete populations relative to the most
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some numerical results for the power of Wilcoxon's test for equal
sample sizes of 4 and 6 and significance level 0.1 (k=2 and 3).

Eisenberg [7] has computed exact power values ol Wilcoxon's test

1 .
against Lehmann's alternatives (k = SRR, 4) for sample sizes

2<m<n<10 and several significance levels.

The tests of van der Waerden and Terry are under Student's
conditions asymptotically equivalent to the test of Studensz.

Some numerical calculations concerning van der Waerden's test

are made by van der Waerden [26] for m=n=3 and a Normal
slternative. For m =2 and n —>® he makes a comparison

between Student's and van der Waerden's tests for a shifted Normal
population. Van der Waerden [27] and [28] investigated the powers
of Wilcoxon's and van der Waerden's tests when two samples with
sizes 4 and 6 are drawn from populations with Rectangular distri-
bution functions with ranges (0,1) and (0,1 + p) respectively
(u > 0). The powers of both tests tend to 1 if u tends to infinity.
He proved that the power of Student's test does not tend to 1 if p
tends to infinity. In a seperate paper [29] he gives an example
where the power of Student's test can be made small, whereas the
power of van der Waerden's test does not change.

Noether [16] has given some examples where van der Waerden's
and Terry's tests do not always lead to the same decision. However,
when H, is true, he proved that the correlation-coefficient between
the two test statistics tends to 1 as m+n increases, and the
two tests are equivalent. The asymptotic equivalence of van der
Waerden's and Terry's tests was established for a wide class of
cases by Chernoff and Savage[2]. They proved that the test for trans-
lation based on Terry's statistic is at least as efficient as the t-
test, and Pitman's efficiency is 1 only if the underlying distribution

is Normal.

In 1963 Jean D. Gibbons [8] investigated the powers of
Wilcoxon's and Terry's test for sample sizes m,n< 6 and alter-
natives of the form : F(x)=1-(1 -H(x))* and G(x)=H(x)* (k = 2, 3,4)
where H(x) is a continuous, but arbitrary, distribution function,
and significance levels 0.01,0.05 and 0.10. She also gives some
numerical results against Normal alternatives differing only 1n

location.

Hodges and Lehmann [11] give the Pitman efficiencies of
Wilcoxon's test against the Normal Scores test (The two asymptotically
equivalent versions of this test are van der Waerden's and Terry's
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test) for various underlying distributions against shift alternatives.
In particular they found for the Exponential and Rectangular distri-
butions that the efficiency is zero. They stated that for bell-shaped
densities the efficiency of Wilcoxon's test relative to the Normal
Scores test seems to increase as the tails of the underlying
distribution grow heavier. This result was made precise by a
theorem due to van Zwet [35].

3. Determination of the power in general.

Let x,, x,,-..,x, and VY, VYp..., Y, Dbe two independent
random samples from populations with continuous cumulative dis-
tribution functions F(x)=Plx<x] and G(y)=Ply< y] respectively.
Null and alternative hypotheses will be of the form :

H, : F(x) = G(x) and H, : F(x) = G(x-A) (4)
respectively, where A 1is the shift of the distribution function of x.

Let X ;7 denote the i th order statistic of the x-sample and
Yy[;7 be the j th order statistic of the y-sample ({ =1,2,...,
m; j=1,2,...,n). Furthermore let 2z = (2,,2,,..., 2y+n) denote the
order statistics of the combined sample (x ,x,,...,¥%,). We define
the random vector ¢ = (t,t,...,%,..) where

O if 2z, belongs to the x-sample

i .
1 if Z; i 1! 1 \ e 1t

Under the null-hypothesis every wvalue of the vector t 1is
equally likely, under the alternative hypothesis they are not.

In order to compute the power functions of the tests of
Wilcoxon, van der Waerden and Terry for shift alternatives, one
has to compute the probabilities under H, of orderings =z Ilying
in the critical regions of each test. It is therefore sufficient to
compute integrals of the form :

mt ot ff .. TT dHz ;) (5)
i=1

et w<2 l<2 2<ﬁ .- I<zm+n<m

i

F(z.) if t, =1
H(Zi ; ti) = 5 t , z (6)

The sums of the probabilities under H; of those orderings
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which lie in each test's rejection region are the power functions of
the three tests, If the underlying distribution function is exponential
or homogeneous, it is possible to evaluate the integrals of form (5)

and hence, also the power functions.

4. Some remarks on the probabilities of orderings.

a. EXPONENTIAL DISTRIBUTION -

Let :
F(x) =1 - e-{x=A AL X< (0 < A ¢ o) (7)
= 0 X< A
and G(y) =1 - &7 0 < y<w (8)
=0 y <0

If x 1is a exponentially distributed random variable then we

know that

Plx < x+cl|x>cl] = Plx < x]

(9)

where ¢ 1is a positive constant. Hence it is easy to see that we

can draw the following conclusion :

CONCLUSION 1 : Random vectors t = (tl,tz, veest ) With t,=t,=...=1t,=0
and t,,, =1 have equal probabilities (m>1;k=0,1,...,n-1).

Proof : P[t = 1] = m! n! .. dH ; t
[foo TG, sy
“m<21<22<...<zm+n<m
=mint . f fl AGy (:)) dF (x )
=1
A Y T A P T R T

m! n! e"""‘l’lfﬁ . f Ik—[ dG(y[i]) dF(x[l] e ?

- A<x[1]

mﬁ dH(z. ; t.) =
j'k+2
(5 :

T dxp;y TTdy g
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-(Zxpz)+ I v[j])
The form e ? kvl is a symmetric function of xr;; and

yijp (12,3,..., m; j=k+1, k+2,...,n), so the order of the x[;i's

and yr;]'s in the sequence z,,,<2z,3<...< z,, does not mat-
ter, which proves the assertion. It is clear that this conclusion
gives a substantial reduction of the computations.

b. HOMOGENEOUS DISTRIBUTION -

Let
F(x) = 0 X < A (0 < A< 1) (10)
= X - A A< X < A +1
= 1 A+1<x
and G(y) = y <0
=Y 0<y«<l (11)
= 1 1l <y

From the fact that the density functions are constants, it is easy
to see that we can draw the following two conclusions

CONCLUSION 2 :Random vectors t=(t,t
and t,,, = 1,

t,.,) With t,=t,=... =t,=0

2,!'., m+n

t =0 and toencgel = Tmengep = = o+ = tpen = 1

m+n.-l

have equal probabilities

(k=0,1,...,n-2;1=0,1,..., m=-2).

Proof :
Pl(t =t] = m! n! mde(z.;t,):m!nl .. ﬁdx. ﬁd :
JI -] Gt Jf - of TTaxgy TTay,
-0 <2y <Zp< eee < 2., <O

where the domain of integration G is defined by :

G={ 0<¥yp,9<--- V) S Xp1< Zes2S v o < Zpypoga S V(1<% [nogea]<" * - <X <A+ 1

s A<X[1], YA < 1.

The integrand is 1, so the order of the x ]'s and y[,J’s (i=2,3,...,
j

[i
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m-~-1;j=k+1, k+2,...,n-1) inthe sequence =z
does not matter, which proves the assertion.

k +2 < Zk+3<' .+ < Zm-l-n-l-l

For reasons of symmetry the next conclusion is clear.

CONCLUSION 3 : If two random vectors t;=(t..,t.,,-.. ,ti,mn) (i=1,2) are
known to satisfy

tf :t* ﬂ#*i =t‘£,!’{‘£)m0 and ti,!"{‘l:,""'l - 1

t’;:ﬂ“"ﬂ-s‘i’ =0 and ti,m+n-51i)+l - ti,m+n-slil+2 - = ti,m-m =1

where r(l)=s(2)=k and r(2)=s(l)=1, then they are equally likely.

If m=n:%k=0,1,..., m-2 ;1 =0,1,...,n-2
m m>n : k=0,1, ,n-1;1=0,1,...,n -2
m m<n:k=0,1, ,ym-2 ;1=0,1,...,m-1).

5. Results.

We have determined the power functions for one and two
sided testing with exact significance levels «a 1in the neigbourhood
of 0.01 and 0.05 and sample sizes of m=n=3,4,5 and 6. It
turned out that only for m=n=6 in the case of one-sided testing
with significance level in the neighbourhood of 0.05 the power
function of Wilcoxon differs from that of van der Waerden and
Terry, whose power functions are the same in this case too.
To make a comparison between the tests possible we determined
the power function of Wilcoxon at exact significance level of

@ = -é%% (~ 0.0465) and the power function of van der Waerden (and
Terry) at exact significance levels of a«a = **9-%2-4“ (~ 0.0455) and of
a = -é%-i ~ 0.0519), while randomization was used to get the same

significance level as for Wilcoxon's test. Sometimes we denote the
tests of Wilcoxon, van der Waerden and Terry by W, X and T
respectively. The common power function of van der Waerden's and
Terry's test are denoted by BX,T.

a. EXPONENTIAL DISTRIBUTION -

The power functions are given as functions of A, the shift
parameter. (0 < A < ).
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Table 1

1

=
U

oo

Power functions ; m

By(Asa) = B (A5 a)

- Two-sided . 0

Table 2

Power functions : m =n = 4.
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One -sided

Two-sided

Two-sided
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Table 3

Power functions

=
5

m-=n-= 9.

A +§.§) (1-—&“)\ )3 o-2M 4 f)z (1 _e...?g)z e=3M 4
1
-l A I ¥ §
T 1286 ©
)Y e +§.}9 (1-e* )’ e-2r +g—2 (1-e™*)? e-3* +
T 1 s
- 4+ —
o7 (1-e ) 91 ©
(1 e-k )5+%(1 e-?\)’* e-)u .1._%_(12 (1—8“}”)3 e_zk +...é§.é (1_6-7\ )2 6”3)\4"
2 AY ath 4 b e
t 1o (1-e7) e + og e
(1-e™)5 + g" (1-e~2)% e-* + é—% (1-e2)3 e-2* + ;?- (1-e"M)2 e3> ¢+
10 2 |
oo (1 =N 4 4 L o5
A3 (l1-e-*) e 53 e
Table 4
Power functions ; m = n = 6
By(Asa) =B, (A;a)
(1-e-*)° +'g'$ (1-e)° e +%—2 (1-e-*)* e~ + g— (1-e-2) e-32 +
1 A2 eth L A ~5A S 5\
+ = (1- — (1
RS VLS -
See Table 5.
(1-e-*p +*1-.'7§' (1-e*) e +l.-7—5- (1-e*) e-2 +-§-"% (1-e) e3* +
2 ~A V2 ~HA 4 - ~5A 2 oA
+ = (1 - +— (1= £ o
A T AL Y Y
(1-6"7\‘)6 + g,?- (1-e‘7‘ )5 e"’"‘ +é-l_~7§- (1...9-7\)4 e-2l+ ___g% (1-8'}‘)3 e-3X 4+
o+ _‘:]9_ (1__ - )2 e—‘n\. +r_§_’?_ (l_e-)\.) e_ﬁ)_’_}_ __1.2_ 6"61‘

462
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Table 3

Power functions ; m = n = 6, one sided testing.

Power function

(1__e~l )6 +6(1_e—?\)5e—l +22885 (1‘_8-1 )"l' e-f)&. +__5_'_79 (1__6-7\ )3 e-37\+
37 A 12 'y 41 p 43
e - - J _ = -5A —_ ~bA
14(le)e 77(1e)e +9248
(1-e)° +6(1-e*)’ e +—-----—lff (1-e?) e-2A +-5—7-Q (1-e*)’ e-32+
37 2 41 1
e e - -A ~YA b — - -A - BN o -6
14(1e)e 7,7(1e ) e +22e
(1-e™)° +6(1-e*)p P +'"'""""""""""22885 (1-e™™ ) e 2 +'575' (1-e? ) e+
43 2\ 47 4
I ARRE N S S X AR SRy W SR )\
14(16 ) e 77(1e ) e +77e
23 (L-e>f +6(1-e>)° &> 4240 (1-e™*)" e-2A ‘*“""""‘“"‘"‘305 (1-e*) e-3*+
924 56 e 49 - e
+ ..1..2.. (1-6'7\ )2 e~ A +_,_§_ (1-—8"")‘) a-5A 4+ __4.._.3._ e~bA

7 11

The following table gives some values of the power functions
of Wilcoxon'!s, van der Waerden's and Terry's test, if we use ran-
domization to get the same significance level.

Table 6

Some power values.
One-sided testing, m = n = 6.
(randomization is used)

K O e e P P
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If we fix the significance level at e.g. 0.05 (two-sided) we
get different power functions because of the discrete character of
the distribution functions of the test statistics (m = n = 5) -

B, (A;.05) = B,,(K -6—2-5)

an (A;.05) BX,T()\' ; 126)-—-(1-—-e ) +35 (l-e™) e * 51 (1 -y e2* +
20 A2 2 25 T\ D _EA
58 (1-e ) e 56 (1-e™") e + 58 € -

Some numerical values may be found in the next table.

Table 7

Some power values by two-sided
testing with fixed significance level of . 05 ; m = n = 9.

A
nm 2 ‘ 5
O _
) |00 | s | s

b. HOMOGENEOUS DISTRIBUTION -

The power functions are given as functions of ), the shift
parameter (0 < A < 1).

b

Table 8

Power functions ; m = n = 3.

. By A s ) =B,  (Asa)

One -sided

-

Two-sided
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Table 9

Power functions : m = n = 4.

Two-sided 0
1 4 .2 4 8 5 8 .7
— 4+ = + - - —
35 D A 2 A O A 35 A

Table 10

Power functions ; m = n = 5,

Two=-sided
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Table 11

Power functions ; m = n = 6.

’ | . -

.. 1. 1 .,.5 3 .75 4.6 .5 - -6 . 15 g
- m— me— ma— s Se——— +*"""“" - — o o——— -
One -sided 132+11>\+2>\+3>@+287\ 7}\ 5 A° -6 A 4;\
D .9 95 .10 3967 .11 14447 .12
- — == - ——
s At A 77 Nt Toag A
43 '
_ ee Table 12 .
. | 30 4 12 .5 ¢ 48 .7 40 .9 916 .11
- — - - — - 4+ — -
Two-sided - N - N2 NS A o N+ S
10 5 90 .y 156 .5, ..6 228 255 g
- e -— e N = -
7 Nr g AT MEA - 5 A
2980 9 444 .10 654 21 9 12
-1 ANt AM -7 A o-g A
Table 12

Power functions ; m = n = 6, one-sided testing.

75 .« 174

43 39 31 2,85.3 75 ., 5 6 67
5o T M tTg MYorN g M- M 2L A - A A
2145 g 3725 .9 2139 .10 4531 .43y TT71 .12
e MmNt Y 924 "
1 40 16,2 30.3 45 .4 5 6 7
1 ZFY a4+ 22 227 = -
594 22+7,7 +7?\+7 14)\ 24 AN+ 10N +24 A +
1065 .8 1640 .9 1594 .10 7610 .11 2527 .1z
" 14 M- Ar e M- M T K
4 46 19 2,30 35 75 .4 204 _s5 s . 972 4
e | e o e ot i - - — -
924 |77 M7 MY Kegg AT MTR AT A
1380 ,s , 450 .9 397 .10 3854 .11 1723 .1,
- A+ - AN+ - N - = AT+ 54 A
rand. ' ' ' ' '
43 | 43 41 33 .2,.30 ,3 25 .4 174 .5 s 302
924 924'77“14""’77‘“77‘“7 }‘+97‘+7 AT
. 855 ,s 3875 3 2789 .10 6984 .n 2393 .1

28 21 14 T 154
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The following table gives some values of the power functions
of Wilcoxon's, van der Waerden's and Terry's test, if we use ran-
domization to get the same level of significance.

Table 13

Some power values. One-sided testing.
(randomization is used)

ﬂ---ﬂ- 40 --
F 3

If we fix the significance level at e.g. 0.05 (two-sided) we
get different power functions because of the discrete character of
the distribution functions of the test statistics (m = n = 5)

] 2
Be( N5 .05) = B, (N; 25

. = L9 ::......5__ 29 2 4 5 100 7 , 290 .8

8, (:.08)= B (Asmoz) = Toe +22 A+ 5A° -8 A0 - B2 4220
340 5 _ 1

-3 NTgh -

Some numerical values may be found in the next table.

Table 14

Some power values by two-sided testing with
fixed significance level of . 05 ; m = n = J.

B (?x 63) . 0317 |. 0353 | .0465| .0660 | .0949| . 186 . 498 |.686 |.850
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6. Conclusions.

In the case of m=n=6 (one-sided testing with significance
43
924
mized) power of both wvan der Waerden's and Terry's test 1is
better than that of Wilcoxon's test in the neighbourhood of the null-
hypothesis. For the Rectangular distribution the (randomized) power
of both van der Waerden's and Terry's test is constantly better than
that of Wilcoxon's test. These results are in agreement with the
result of Hodges and Lehmann [11]. For the Exponential distribution
the power of Wilcoxon's test increases more rapidly for larger A,
so that for A =.5 the power is already slightly larger than that
of van der Waerden's and Terry's test. If we use non-randomized

power of van der Waerden's and Terry's test with significance

levels in the neighbourhood of 23 we would draw the same con-

924

level of ~ .0465) and the Exponential distribution the (rando-

clusions.

As an illustration we give the following two tables with first
derivatives

EXPONENTIAL DISTRIBUTION HOMOGENEOUS DISTRIBUTION

Table 15 Table 16
One-sided testing, m =n =86. One-sided testing, m=n =6.
W 4 43
524 . 293 W S5 . 506
42
X and T o
f 994 . 519
1t -.24__8_
904 . 097
rand.

| -..“%._.3; 53
924 . 032
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