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1. INTRODUCTION

There are many situations in industrial production where it seems reasonable to
use a mathematical model containing a priori distributions., A well known example
1s the production of a sequence of batches, consisting of items which are either
"good" or "bad". In setting up a sampling inspection scheme for accepting or re-
jecting individual batches, one may try to incorporate an a priori distribution
of the probability of producing a bad item, into the model . Most sampling in-
spection schemes are not based on this idea; they are derived from the theory of
testing statistical hypotheses and are valid for any a priori distribution and
even without assuming the existence of such a distribution at all.

But 1f one wants to select an optimum scheme, e.g. with regard to costs, one has
to introduce an a priori distribution and if and when it is reasonable to do so

it 1s also possible to use a priori information in the sampling inspection scheme
itself. Using reliable a priori information can, of course, only increase the

efficiency of the i1nspection.

This means, however, that the a priori distribution under consideration has to be
estimated from observations which will usually be inspection-data from the past.
It is this problem of estimation which led to the writing of this paper./Its aim
is to draw the attention to a set of useful formulae, useful with respect to the
problem indicated above and similar problems, but also with respect to a much
wider field. The formulae are not new, but they seem to have escaped the attention
of many statisticians who could use them to their advantage. They are expounded
and explained in the following section and illustrated by means of examples in the

third one.

2. CONDITIONAL AND UNCONDITIONAL MOMENTS

Notational convention: random variables are indicated by underlined symbols:

X, ¥, V, w etc., and the same symbols, without bar, are used for values assumed;

P (x = x) will denote the probability that the random variable x assumes the value
x. The expected value (or mean) of a random variable X is denoted by EE (or oc-—

casionally by/ux ;, its variance bydz(}'_) . o

Throughout this section the ideas and formulae will, for the sake of convenience,

be explained for discrete probability distributions, but it all holds for the
continu?us case too. The moments and conditional distributions mentioned will all
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be supposed to exist and be finite. Measure-theoretical details are omitted.

Now let v and w have a joint probability distribution, meaning that for every v
and w the joint probability

(1) P(v =v and w = w)
exists. Then the (unconditional) mean of v is given by
(2) Ev = £v P(v = v)

where the summation 1s over all values v which v can assume. This convention

sl

about summation holds throughout this paper. The conditional mean of v, given w =
w, 18
(3) E(_}r_‘?_r=w)==§-vP(v--=v

where
B 3 _Ply=v and w = w)
(4) P(E—VI_E-W)“'L“WTJY—__)

represents the conditional distribution of v under the condition w = Of course

W .
this only has sense for values w with P(w = w) # 0. It is clear from (3) that
E(Xl w = w) is a function of w and we therefore write

(5) ‘P(W)ZE(E!E*W)-

Often this function ¢(w) can easily be obtained and if we then substitute the
random variable w into it we get a new random variable ¢(w) which now leads
easily to the unconditional mean Ev by means of the relation

(6) Ev = E ¢ (w)

This can be seen as follows. The relation between the (marginal) distribution of
v and the joint distribution (1) of v and w 1is given by

(7) P(_Y_ =v) = éP(y_ =v and w = W)
and from (2) and (7) we have
(8) EE“—“%%‘TV P(y_xvandy_mw).

Further (5), (3) and (4) respectively give

:Esz(v = vl w o= w)P(w = w} =
WV - - —
:§%vp(i =v and w = w) = Ev
according to (8)c Thia proves (6). Writing
(9) B (v| )

for 9a(g), where the subscript v indicates that the expected value is taken over
v but not over w, we obtain the first of our formulae:

(10) i

In words: in order to obtain the unconditional expectation of y one may first take
the conditional expectation of v, given w, and then the expectation of the re-

P ———) R T AW

sult with respect to the variable wWw. The subscripts w and v can be omitted

without causing ambiguity, but for clarity's sake we will maintain them, where
this seems advisable.

Using this formula others may be obtained for higher moments of v.
For the variance we

Proof. Starting from the well known formula

(12) o%(y) = Bv” - (By)®
2

we apply (10) to v instead of v, This gives
2 2
(13) Byv" = EE (v | ¥).

il
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Since (12) holds for every probability distribution {with finite second moment) we
can also apply it to the conditional distribution of v, given w. This gives

2 L2 ’ l 2
(14) B (v* | w) =o2(x|w) + {&,(x|w}
and sukstituting this into (18) we get
2 2 2
(15) Ev” = E 3 (¥ l w) + E_ {Ev(zl }z)}

In (12) the last term may, according to (10), also be written &Si{EE (Xlﬂ)} 2
then we obtain, by also substituting (15) into (12): v

18)  F@ = m el c(E {5 G0} f - o) ]

Recalling (5) we see that the term between square brackets is nothing but the

variance of g:(w) (ef. (12) with ga(w) for v) and thus this term equals the
last term of (11), which completes the proof.

Formula (11) may be expressed in words as follows: in order to find the variance
of x one may first compute the conditional expectation and variance of v, ¢ Y, given

w, and then add the variance of the former to the expectation ctation of the latter, both
with respect to w.

For the third reduced moment

(17) My () = B(zx - Ev

)3

the following formula may be obtained in a similar way:

~ ~ ~ 2
(08)  Ayw) = B & (v w) & e (v |w)} - seov, (B (v ] ¥)io,(x | w)}
The last term in this equation 18 the covariance of the random variables

EV(EJ_E) and.di(g 'g), which are both functions of the random variable w and

thus have a joint distribution.

If we consider three random variables u, v and w the covariance of the first pair
may be expressed in conditional moments with respect to w as follows:
(19) COoV (E, _x_r_) = Ewcovu’v (E’ X‘E/ +

+ cov_ {EH(EJ W), Ev(zl 3)}

The proof of (18) and (19) is left to the reader. This proof, though a little more
laborious than the above proof of (11), is of exactly the same character. It is
easiest to prove (19) first and to use it in the proof of (18) Formula (11) is

a special case of (19), i.e. the case where u is identically equal to ¥.

The examples in the next section are restricted to the formulae (10) and (11).

3. EXAMPLES

Now for the application of these formulae to some examples. As a first example we
consider the situation indicated in section 1. The model is as follows. For any
batch of items the probability of an item being bad is equal to p, but p is dif-
ferent from batch to batck; as a matter of fact p is a random variable with an
unknown distribution, the a priori distribution in question, Taking a random
sample of size n from a batch the number of bad items, x, in the sample has &

binomial distribution with parameters n and p, where p is the value of P realised
for this batch. Now applying (10) and (11) with

v = x and w = p,

we find from (10)
Ex = EE Lx|p)s
but, given p, the mean of x is np, thus

Ex = Ep(n_g) =n. Ep.

In (11) we also meet the conditional variance ¢ri(§ lp) = np(l — p), thus



e US et 1@ am@nt O f P- “é@ te that
onal distribution of X is not a binomia it has an extra term
s variance; note further that all observations of X h ave been assumed to be
based on Inspection samples of the san ;

“é) /znl(nl - l}a

fEni(ni ~ 1) can be used as estimator of E pg.

ples {n = n, N = kn) this reduces to the
is defined as k IZ(X,, u-:x)

qﬂ & E 28

A modification of this example 18 obtained if we do not consider the probability
of a defective item as the parameter with an a priori distribution, but the number
of defective i1tems in a batch. If the size of a batch is denoted by N, the number
of bad i1tems 1t contains by A and the number of bad items in a sample without
replacement by a, then the conditional distribution of a, given A, is a hyper-
distribution and this leads to the following result, corresponding to

L 20 )

(20%)

The proof of this is completely analogous to the proof of (20). The elaboration of
the case when the samples are of unequal size is left to the reader. It may be
p@int@d out, however, that in this model the batches must be of equal size N, for
otherwise Lhere 18 no sense to one a priori distribution of A for all batches
eanmd@red, in the first model there is no need for this, the batch-size does not

matter at all, provided p may be assumed to be constant during the production of
every batch separately.
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As a second example, which has nothing to do with a priori distributions but whid
is meant to show the wider scope of the method, we consider the sum of a random
number of random variables:

e X = X, + Xa + ... + X
(2¢) X=-x ¢ x x
wvhere, given n, the terms x3, ...., Xn form a random sample of size n, Let the

mean and variance of the_gi and g_respectively be denoted by/ux &ndtjg(é) and by
A andcyz(g) respectively, then we want to find the mean and the variance of X.
Tﬁﬁs situation occurs in decision problems: if n is, e.g. a random number of
customers buying quantities x;, x2, ... of a certain commodity, then X is the
total quantity sold (if the stock holds out); n may also be the number of claims
for damage paid during a year by an insurance company and X}, X9, ... the amounts

of the claims, thus X being the total amount paid.
X in (10) and (11). This gives

{

We now take W = n and_g

/ax = BX = En EX(..X_ ‘ n) = En (9-/":‘(_) :/uﬂ’/‘fx_
and
o‘i@_i_l n) = n. &°(x),

thus > o o
c (X) =Eng (x) +o_ (npe, ) =

P-4

U, 87 (x) p .6 ().

2
X
The result is

2 2 2
(27) My =y - by endo(X) =4 L 07(x) tuy o

2
(n).

This means that the mean of X is just the product of the means of n and x, but

that the variance of X consists of two terms: the first is of the same structure

as when n is fixed but the second does not occur in that case and this term may

be very large. To see this better we express (27) in coefficients of variation V.
This gives

2 2 2
(28) Vy = v}_ /,ui -V,

where the second, additional, term in the right hand member has denominator 1 and
may, therefore, by far be the most important of the two.

As our last example we consider the effect of observational errors which are
proportional to the value to be observed. I'o be more precise let x be a positive
random variable of which we want to estimate the moments. This variable cannot
be observed without error; the error w has zero expectation but its standard

deviation is proportional to the value x to be observed, i.e. for every x > 0

(28) E(y_lx)mo; c‘(_vg__ix)r-cx.
An.observationijz has the form
(29) Vy = X + W

W PRRES

and we can now apply (10) and (11). This gives
Ey (Z!x)wEw (x +z‘x)mx,

thus
By = B, By (g 1%) = Bx;
and 5
oy (¥ |x)

[

“
S —

Together, with&tinstead of E:
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2

5 0 (3) =0 ) e(x) » o ul

e

(30) /uy = U

If a sample of observations of y is given, the parameters}%x gndcrg(z) can be
estimated, but this does not lead to an estimator of 4 and ¢ (x) unless ¢ is
known. If this 1s not the case one would e.g. need duﬁ*ic&te observations, with
respect to the same value of x, in order to estimate ¢ too.

4. REMARKS

Many more examples of the method in different fields of application can be given.
One field which seems especially appropriate is the theory of sampling; (10), (11)
and (19) can e.g. be found in the book of M.H. HANSEN, W.H. HURWITZ and W.G.MADOW
(1953), "Sampling Survey Methods and Theory", part II, with applications to
stratified sampling etc. The author has not tried to find out when and where the
formulae were published first; (10) is fundamental in probability theory and 1is
therefore found in many textbooks, but (11), (18) and (19) are usually not mentimed.

The author met (11) for the first time in the university lectures of D, VAN DANTZIG
given 1n 1947,



