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There are many situations in industrial production where it seeffis reasonable to 
use a mathematical model containing a priori distributionso A well known example 
is the production of a sequence of batches, consisting of items which are either 
11 good'' or ''bad'' o In setting up a sa,n1pling inspection scheme for accepting or re­
jecting individual batches, one may try to incorporate an a priori distribution 
of the probability of producing a bad item, into the model. Most sampling in­
spection schemes are not based on this idea; they are derived from the theory of 
testing statistical hypotheses and are valid for any a priori distribution and 
even without assuming the existence of such a distribution at all. 

But if one wants to select an optimum scheme, e.go with regard to costs, one has 
to introduce an a priori distribution and if and when it is reasonable to do so 
it is also possible to use a priori information in the sampling inspection scheme 
itselfo Using reliable a priori information can, of course, only increase the 
efficiency of the inspectiono 

This means, however, that the a priori distribution under consideration has to be 
estimated from observations which will usually be inspection-data from the pasto 
It is this problem of estimation which led to the writing of this papero/Its aim 
is to draw the attention to a set of useful formulae, useful with respect to the 
problem indicated above and similar problems, but also with respect to

1 
a much 

wider field. The formulae are not new, but they seem to have escaped the attention 
of many statisticians who could use them to their advantage. They are expounded 
and explained in the following section and illustrated by means of examples in the 
third one. 

2. CONDITIONAL AND UNCONDITIONAL MOMENTS 

Notational convention: random variables are indicated by underlined symbols: 
x, i, v, :! etc o, and the same symbols, without bar, are used for values ass1"tmP.d; 
P (x = x) will denote the probability that the random variable x assumes the value 
x .. The expect_eq.~val ue (or mean) of a random variable X is denoted by Ex ( or oc­
casionally byflx , its variance byd 2 (x). 

Throughout this section the ideas and formulae will, for the sake of convenience, 
be explained for discrete probability distributions, but it all holds for the 
continuous case too. The moments and conditional distributions mentioned will all 

,:( 
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be supposed to exist and be finite. Measure-theoretical details are omitted. 

Now let v and w have a joint probability distribution, meaning that for every v 
and w the joint probability 

(1) P(v = v and w = w) 

existso Then the (unconditional) mean of vis given by 

( 2 ) Ey = ~ V P ( V = V ) 

where the suramation is over all values v which v can assume. This convention 
about summation holds throughout this paper. The condi}j~~al mean of~, given w = 

• 
W, l S 

(3) E(v w= - P(v = V 

where 

(4) P(v - = V w = w) = 
P v = v and w = w - -....--=.u.=---------·-

represents the conditional distribution of v under the condition w = Wo Of course 
this only has sense for values w with P(w = w) / O. It is clear from (3) that 
E(y I~= w) is a function of wand we therefore write 

(5) cp (w) = E(y ![ == w). 

Often this function ~(w) can easily be obtained and if we then substitute the 
random variable w into it we get a new random variable ~(w) which now leads 
easily to the unconditional mean Ev by means of the relation 

(6) Ev = E - 'P ( w) 

This can be seen as followso The relation between the (marginal) distribution of 
v and the joint distribution (1) of v and w is given by 

(7) P( V = V) = .8 p ( V = V and :! ;:: w) w 
and from (2) and (7) we have 

(8) Ev = ~ Ev P(_v = v and w = 
- V W 

w). 

Further (5), (3) and (4) respectively give 

w} = E <p (;!) = ~ cp(w)P(~ = 

= L' E(v w = 
w - -

w)P(w = - w) = 
=~ ~ vP(v = v 

WV -
w = w)P(w = w) = 

= Z ~ vP( v = v 
vw 

according to (8)0 Thia proves (6). Writing 

(9) E (v w) 
V -

and w = w) = Ev 

for 'P (~), where the subscript v indicates that the expected value is ta.ken over 
v but not over w, we obtain the first of our formulae: 

(10) Ev = EE (v ,_~) 
- W V 

' 

In words: in order to obtain the unconditional expectation of y one may first take 
I ; 

the condi tio .. nal e~pectati~n of .Y.~ 2 given 1f. 2 and then the ex,.E~ctation of the re-
sult with respect to the variabJe Jo The subscripts wand v can be omitted 
without causing ambiguity, but for clarity's sake we will maintain them, where 
this seems advisablea 

Using this formula others may be obtained for higher moments of v. 
For the variance 

(11) 

Proof. Starting 

(12) 

we apply (10) to 

( 13) 

we )rove 

d2(y) 2 + ci2 = E d V (:y ~) • 
w w 

from the ,vell 

o' 2 ( V) = Ev2 -
2 

v instead of - 2 
Ev - = E E 

WV 

known formula 

- (Ev )2 -
Vo This gives 

( v 2 w). -

~ 

E (v w} ► 

V -
' 
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Sir1ce (12) holds for every probability distribution (with finite second 
can also apply it to the conditional distribution of v, given Wo This 

moment) we 

( 14) 

and substituting this into (13) 

~) + 

we get 
2 2 

Ev = E d (v 
W V -

(15) E 
w 

In (12) the last term may, according 
then we obtain, by also substituting 

( 16) E 
w 

2 
Ev(~ ! ) . 

to (10), also be 
(15) into (12): 

-

• gives 

written as EE (v 
WV -

!! ) 

E E (v 
· W V -

1!) 
2 

• 

Recalling (5) we see that the term between squ~re brackets is nothing butihe 
variance of ¥J (~) (cf. (12) with <p(~) for v) and thus this term equals the 
last term of (11), which completes the proof. 

2 
and 

Formula (11) may be expressed in words as follows: in order to find the variance 
of JL one ~~X f,irst cq_mpute_ the con~,i,tion,al ~XJ?,ectation and vari~nce of y: 1 giyen 
l-ti and t,hen add the v~riance of the fo~mer to the expectation of the latte:r, ~oth 
with respect to ~o 

For the third-reduced moment 

(17) 

the following formula may 

(18) )<3(y) = E Ji.3' (v w ,v 

• 

be obtained in a similar way: 

E (v 
V 

w) + 3cov 
w 

The last term in this equation is the covariance of the random variables 

w) 

E (v w) both functions of the random variable wand 
V 

thus have a joint distribution. 

If we consider three random variables u, v and w the covariance of the first pair 
may be expressed in conditional moments with respect to was follows: 

( 19) cov (u, v) = E cov (u, v 
w u,v - - w) + -

+ cov 
w 

E (u w), E (v w) 
u-- v- -

The proof of (18) and (19) is left to the readero This proof, though a little more 
laborious than the above proof of (11), is of exactly the same character. It is 
easiest to prove (19) first and to use it in the proof of (18)D Formula (11) is 
a special case of (19), i.e. the case where u is identically equal to v. 
The examples in the next section are restricted to the formulae (10) and (11). 

3" LES 

Now for the application of these formulae to some examples. As a first example we 
consider the situation indicated in section 1. The model is as followsv For any 
batch of items the probability of an item being bad is equal top, but pis dif­
ferent from batch to batct; as a matter of fact pis a random variable with an 
unknown distribution, the a priori distribution in question. Taking a random 
sample of size n from a batch the number of bad items, x, in the sample has a 
binomial distribution with parameters n and p, where pis the value of p realised 
for this batch. Now applying (10) and (11) with 

we find from (10) 
v = x and w = p~ 

Ex = E E ( x £.) ; p X 

but, given p, the mean of xis np, thus 

Ex = E ( np) = n • Ep. p 

• In (11) we also meet the conditional variance p) = np(l - p), thus 



i."', 

- E.\ • 11 . . 
• 

·• n.E p 
ll J') 0 .. 

- 11 .,. E p. + n ""' ., d""" ( f) ~ 

,) . 2 
- n ,(£) 4 (Ef) 

•7) 

"~ r1 .. E p ( l -Ep) 't- n ( r1 - l ) • ~ (. p) . - -
() :r , w r· 1 t. 1 f!I ~ 

(20) 

i 1111 t ead of 
~ . . 2 

- •. , 
.Now x c&n be obser1red and tbua)L.1., and O".,(x) can be eetiaated from a. 
obae.rvat,icna of i in tb_, u•ual w·ay by means of tbe sample mean X a.nd 

t.J 1.LM11.,. 

sa•pl e of 
the sa.mple 

variance,~. Bat (20) eaa alao be written &8 

( 21 ) 
{) ;i\ 

# ... . 4-
:l\llt •·· I • . . • . . . . 

n n - l , 

, 
9 9 2 . 

~nd, aub~t-1,tuting Y fer"'". a.nd s- for C-.. (,x) we obta.ln eetis&tors of~.P and (J (p). 
Similarly (18) can be use¼ to @stimate the third reduced moment of p .. Note t,,ha.t 
the unconditional di•tribution of & is not a binomial one, it bas an extra term 
in its variance; note further that all observations of x have been assumed to be 
baaed on inspection samples of the s&aae size n. 

In tt1e case of unequal sample sizes the data are of 
k :samples of sir.es n 1 , .• ,. , n _ yield observations 
); •En, we f 1 nd bv aea.n• of ( 1 ) 

l "' , 

(22) EX• N.E R, 

the following form: 
x 1 , ... , ~k· With X and 

which mea.ns that X/N <'&n
0

be used as estim&tor for I'- __ · To estimate the vtt.riance of 

( •)".>) Gil 2 E { l)E 2 ... ,.J £.i X, ai. n, • p + Ili Il. - , · D • 
-1 l - 1 ..E.. 

Suaaation over i 

(24) 

gives, after some 
2 · 2 

E p a E (,EX. 
-1 

rea.rr&r11eme11 t 

- x,) /l:ni(ni - 1), 

which means that 
2 

X) ,/I:n. (n. - 1) can be used as estimator of E p . 
' l l , -

According to (12) this leads to 
,.. I) 

( 25 ). l: x':" - x x"" 
-1 

l · l 

as estimat.,or ford 2 (p). For equal samples (n. ll1lll n, N • kn) this reduces to the 
0 - 1 lo 

former ca.se if s" is def inad as k - ~( xi - j )~. 

A modification of this example is obt&ined if we do not consider the probability 
of a defective item as the para.meter with an a priori distribution, but the number 
of defective i tem.s in & batch. If the size of a batch is denoted by N, the number 
of bad items it contains by A and the number of bad items in a sample without 
repl&cemer1t by a, then the conditiona.l distribution of a, given A, is a hyper­
eoaetrir distribution and this leads to the following result, corresponding to 
20); 

n 
N ,.UA 

• a'w(a) ~ ----
~(N - 1) A A 

n ( n - l ) 
+ 

N (n - 1) 
(!). 

The proof of this ia completely analogous to the proof of (20). The elaboration of 
the case when the sa.mples are of unequal size is left to the reader. It may be 
point,ed out, however, that in this model t,he hatches must be of equal size N, for 
otherwise there is no sense to one a priori distribut,ion of A for a.II batches 
considered; in the first model there is no need for thls, the batch-size does not 
matter at all, provided p may be assumed to be constant during the production of 
every bat~h separately. 
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As it second example, which has nothing to do with a priori distributions but whi& 
is meant to show the wider scope of the method, we consider the sum of a random 
11umber of random variables: 

(2C) • • • t X ' . n 

,vhere, given n, the terms .!l, ...• , x 0 f~rm a random sample of size ~- Let the 
mean and variance of the X· and n respectively be denoted by llx andd (x) and by 

-1 'T µ and c,'2(n) respectively, then we want to find the mean and tne variance of X .. 
T~is situation occurs in decision problems: if n is, e.g. a random number of 
customers buyjng quantities x 1 , x2, o•• of a certain commodity, then Xis the 
total quantity sold (if the stock holds out); n may also be the number of claims 
for damage paid during a year by an insurance company and xi, ~2, ••e the amounts 
of the claims, thus X being the total amount paid. 

We now take w = n and v = X in (10) and (11). This gives 

and 

thus 

The result is 

(27) 

hX =EX= E ➔ (X n) = E (n ) = U. r n ·-- n /n 

2 n) = n. d (x), 

= E 
2 2 

n.(1 (x) +er n (n~·x) = 
2 2 2 

o d ( x) -rf' x . ($ ( n). 

2 2 
and tr (X) = )',n ., (f (,!) 

2 
+j,l X 

2 
.($ (n). 

This means that the mean of Xis just the product of the means of 
that the variance of X consists of two terms: the first is of the 
as when n is fixed but the second does not occur in that case and 
be very large. To see this better we express (27) in coefficients 
This gives 

(28) v2 
X 

2 = V /µ -
X n 

v2 
n ' 

n and x, but -same structure 
this term may 
of variation V. 

where the second, additional, term in the right hand member has denominator 1 and 
may, therefore, by far be the most important of the two. 

As our last example we consider the effect of observational errors which are 
proportional to the value to be observed. robe more precise let x be a positive 
random variable of which we want to estimate the moments. This variable cannot 
be observed without error; the error w ·has zero expectation but its standard 
deviation is proportional to the value x to be observed, i.e. for every x> O 

(28) 

An observation 

(29) 

and we can now 

thus 

and 

thus 

E ( w x ) = 0 ; a' ( w x ) ::; ex • 

l has the form 

y == X t- w -
apply (10) and ( 11 ) . This 

E (y 
y 

Ey = 

2 

x) = E (x + w x) 
w 

E 
X 

x) 

--

--

--

E (y 
y -

x) = Ex· 
' -

2 = d (w 2 2 x) = C X 

E (c 2 x2 ) 2 
+tf (x) = 

X X 
2 <52(x) (Ex)2 C + 

(1 2 2 (:x) + C ) c,' + 

• gives 

= X' 

, 

2 
+ t$ (x) 

c2(Ex)2. 

Together, "'vi th U instead of E: 

--

• 
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(30) 

If a sample of 
estimated, but 
known. If tliis 
respect to the 

KS 

= u . 
I X ' 

2 2 2 2 
C )<1 (x) + C )'X. 

-

this does not 1 ead to an estimator of )A. and d ( x) unless c 
is not the case one would e.g. need dupficate observation_s, 
same value of x, in order to estimate c too. -

be 
• 
1S 

with 

Many more examples of the method in different fields of application can be given. 
One field which seems especially appropriate is the theory of sampling; (10), (11) 
and (19) can e~g. be found in the book of M.H. HANSEN, W.H. HURWITZ and WoG.MADOW 
(1953), ''Sampling Survey Methods and Theory'', part II, with applications to 
stratified sampling etc. The author has not tried to find out when and where the 
formulae were published first; (10) is fundamental in probability theory and is 
therefore found in many textbooks, but (11), (18) and (19) are usually not mentimed.. 
The author met (11) for the first time in the university lectures of D. VAN DANTZiq 
given in 1947. 

' • 
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