
STICHTING 

2e BOERHAAVESTRAAT 49 

AMSTERDAM 

• 

Und<llining random variables 
/ . 

J". Hemelrijk 

• 

1966 

• 

• 



Underlining random variables* 

by J. Hemet rijk **) 

Summary 

UDC 519.211 

This paper gives an exposition of the convention, introduced by D. VAN DANTZIG 

in 1947, of indicating randomness by underlining the relevant symbols .. This method 
of distinguishing between random variables ( or elements) and non-random ones 
serves a multiple purpose. It saves symbols and may be applied to symbols which 
have been introduced first in a non-random quality. It clearly marks the line 
between measure theory and probability theory and, in statistics, between descrip­
tive and stochastic models. This underlining notation has proved to be very useful 
during its nearly twenty years of use in Holland and many Dutch authors use it in 
their publications. The present description of the rules of this convention is meant 
to facilitate the reading of these papers and to deepen the understanding of the 
merits of this notation. 

1. Introduction 

Many Dutch statisticians and probabilists have contracted the habit of 
denoting random variables by underlined symbols: f, 1', etc. This notation was 
introduced by D. VAN DANTZIG (1947) as a variant of the other notations which 
distinguish between random and non-random variables. Two of these are: 
upper case symbols for random variables and lower case for their realizations: 
e.g. P (X = x), and Greek letters for random variables, Latin letters for non­
random ones; e.g. P (c; = x). The step to underlining, thus writing P (~ = x), 
seems only a small one and one would not expect that any misunderstanding 
about the meaning of this notation would arise. Thus VAN DANTZIG never 
deemed it necessary to publish a full exposition of the conve11tion he introduced. 
He was content to be able to save a complete alphabet in this way - he was 
always short of symbols as mathematicians often are - and to have a means to 
distinguish the random elements emp,hatically and easily from the non-random 
ones. Another evident advantage of his notations is that expressions with an 
already established notation, like S 2 = I (xi . x)2 and s2 = S 2/(n - 1), lead 
to conflicts in the other notations mentioned, but not in his system. If one wants 
to use upper and lower case symbols S2 would have to be random but s2 not, in 
VAN DANTZIG's notation S 2 and s2 are random but S 2 and s2 are not. The Greek -
and Latin symbols lead to complications in cases like x2, where VAN DANTZIG 
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;. could simply write P (~2 < x2), without getting into difficulties. Also _probabili­
ties themselves, and expected values, may be random; in VAN DANTZIG's nota­
tion the universally used symbols P and E may then be maintained: f and E. 
We return to this point later. We will also show that the underlining-convention 
distinguishes neatly between probability theory proper and measure theory. 

The notation has now been in use in Holland for nearly twenty years and it 
has developed somewhat. In some cases there have been differences of opinion 
about how it should be used. It therefore seems useful to give a description of 
some completeness of its rules and use, and to point out its character. For, 
although it does not involve any new theory and does not change the mathe­
matical model essentially, it still goes a little deeper than was thought originally. 

Section 2 contains the simple statistical case of sampling from a finite popula­
tion; the terminology is the naive statistical idiom. In section 3 the more 
sophisticated and more general propabilistic mode) is treated; the terminology 
there is more purely matl1ematical. 

2. The simplest case: a finite population 

Let n be a finite population consisting of N elements: 

(1) 

Let further x be a variable which has a well-defined real value for each element 
of rr. Then, if we sort out the population according to x, we obtain a frequency 
table of the form · 

value x 1 < x 2 < ··· < xk (k < N) 
relative freq. f 1 f 2 • • • fk (Efi = 1) 

(2) 

and this is a complete statistical description of rr as far as the distribution of x 
is concerned. 

Now consider the procedure of selecting one element from n at random. The 
practical side of this consists of constructing an unbiased randomizer (a ''true'' 
lottery). This may be a mechanical or an electronic device, a table of random 
numbers or there may be a ''natural'' randomizer at work. This is not the place 
to go into that matter, it is enough for our purpose to point out that a realization 
of the random procedure is an element of fl, pointed out by the randomizer and 
that the usual mathematical model will be 

• 

1, ···, k). (3) 

This model does not contain an explicit notation for the procedure of random 
selection itself, but only for the possible results and the corresponding probabili­
ties. In VAN DANTZIG's notation a new syn1bol, e, is introduced and called a -

• 

Statistica Neerlandica 20 (1966) no. I. 2 



random element on II. This then represents the procedure itself; the notation 
for the event that the procedure selects a given element e3 is 

(4) 

and, if A is any subset of n elements of fl, the event that an element of A is 
selected, is written as 

eEA. - (5) 

The probability of these events is, of course, the same as in (3) and is denoted 
by 

(j = 1, ·· ·, N); Pr (~EA) = n/ N, (6) 

where ''Pr.,, ·stands for ''probability''. 
As a matter of fact (6) can - but need not - be taken as a definition and then 

it provides a very elementary way to introduce probability on a non-axiomatic 
basis; many introductions to statistics follow this method, which seems fairly 
adequate if enough is said about the character of unbiased randomizers. 

Each realization of the procedure~ also points out a value of the variable x 
and this is expressed by the introduction of the random variable ~, which can 
now be defined as the x-value of (attacl1ed to)~- The probability of an event of 
the form 

• 
X = X· - ' (7) 

is then, according to ( 6) : 

Pr(~=xi)=fi (i=l,··•,k) (8) 

and, without ambiguity, the r can be dropped from Pr. 
Extension to more complicated events or more variables is simple and we will 

therefore skip any intermediaries and proceed to the completely general case. 

3. The general case: a probability space 

The general probabilistic model for an experiment or observation with uncer­
tain outcome consists of the well-known triple 

(Q, d, P), (9) 

where Q is a set with elements ru, d a sigma-field of subsets A of Q, and Pa 
normed measure on d. Sets A are called events and P (A) their probability. A 
measurable function x ( ·) on Q is called a random variable. 

The build-up of the model according to the underlining convention also starts 
from (9), but from then onwards it is a little different in conception, notation 
and terminology. 

The main new element in this build-up is the introduction of w, called a 
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random element on Q. This random element is used to form events, or more 

completely events for w, as follows 

Aed then we A is an eventfor w. (10) 

These events are then assigned probabilities Pr (weA) by means of the relation 

Pr (oJ EA) P (A). (11) 

This model as a whole is called a probability space. The transition from mea­
sure theory (where ro has no place) to probability theory is clearly in~icated by 
the appearance of underlinings. This also means that the model stands for a 
situation where some kind of randomizer, often a ''natural'' one, is at work. 

' 
The randomizer is, in general, not unbiased (as it was in section 2): its effect is ., 
represented by means of (I 1). 

Here, but also in the sequel, the term ''event'' will only be used if a probability 
has b·een assigned to this event. 

Now let f!l,' be an arbitrary set, with elements x, let PA be a sigma-field of 
subsets B of~ and let x (·) be a measurable mapping of Q into ff. The measura­
bility means that 

Be!14 > {colx(w)eB}ed. (12) 

The probability space on Q and the mapping x (·) induce a probability space 
on fl' in the usual way; the measure Pon Q is carried over, by means of x (·), 
to !!£. The description of this probability space on f!£ in our notation runs as 
follows. 

A random element ~ on Pl' is introduced, with events of the form 

~EB (BePA) (13) 

and the event :r e .Bis assigned the probability of the equivalent event on Q 

we{cv I x(ro.)eB}. (14) 

In order to indicate clearly how the random element ~ arises, the notation 

~ = x(w) 

is introduced and the event (13) is written as 

x(w)eB. 

The process of carrying over probability from Q into f1' is then given by 

Pr(~eB) = Pr(x(w)eB) (Bef!4), 

which indeed expresses the process clearly and concisely. 
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There is no need to keep on writing ''Pr'' if one does not want to. Usually the 
''r'' is dropped: P (~EB). The fact that P means probability follows from the 
underlining occurring between the brackets. 

If .er i (i = 1, ... , n), with elements xi, sigma-fields Bi and measurable mappings 
xi(·) from Q into fl'i are given, then n random elements Ji arise in the way 
indicated above. The n mappings considered 

X 1 ( • ), ..• ' Xn ( . ) (18) 

induce a new measurable mapping x (·) from Q into the product set 

(19) 

On this product set ~ = x (w) is a random element which, according to the 
underlining convention, can be written as 

(20) 
• 

~ 1, ••• , ~n are called the components of the composite random element ~- If, in 
a probabilistic model more than one underlined symbol occurs, every finite set 
of these symbols represents the components of a com_posite random element. 

A random element~ is called a random variable or, following M. G. KENDALL, 

a variate if .er = R, the real axis, and PA is the sigma-field of Borel sets. This also 
holds for w itself, if Q = R and d is the Borel sigma-field. 

If in (19) !1£i = R (i = I, ... , n), thus :!l' = Rn, then-dimensional Euclidean 
space, and if the PA i are Borel sigma-fields, then ~ is called an n-dimensional 
variate or a random vector or random point on Rn and a;1, ... , ~n., the (random) 
coordinates of~, have a joint probability distribution. This always holds for any 
finite set of variates occurring in a probability model. 

If f!£ is a set of real functions x (·) with real argument t, a measurable mapping 
of Q into f!£ must be indicated a little more explicitly, e.g. by 

(21) 

where x (·; w) is the element of PI corresponding to w. The random element 
induced on !!l is then written as ~ (·) or x (·; OJ) and it is a random function. The 
insertion of a fixed value t, giving t (t), is now, according to the underlining con­
vention, only allowed if a random element is obtained on R. For the values x (t) 
(x E f!E) are real numbers, and the underlining is only permissable to indicate a 
random element. Thus the notation a; (t) presupposes that the mapping x (t; w), 
for fixed t, of Q into R is measurable. If this mapping is Borel-measurable for 
every t ETC R then ~ (t) is, fort ET, a random variable and {~ (t); t e T} is 
a stochastic process. 

In this situation it may be desirable to substitute a random variable t ( on T) 
' 
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into J (t), thus obtaining~ (t). Again according to the convention, this can only 
be done if f and ~ (·) together form a composite random element (~ (·), t) on the 
product set .11f" x T. 

Up to this point~(·) is a random function and t and~ (t) are random variables. 
If x (·) is a Borel-measurable function then x (t) is also a variate. Under further 
conditions of regularity, which we will not go into, ~ (t) itself will also be a 
variate. 

Going still further one may examine expressions like J E Band P (J E B). The 
farmer one would be called a random event: B would be a random element on 
f1' and ~ on !!l' and they would, together, form a composite random element 
(:r, B) on fl' x fl. Regularity conditions, guaranteeing P (~ E B) to be defined, 
would have to be fulfilled. In practice it might easily occur that first a subset B 
of fl" is selected at random and then a random element of !!l' is taken. Random 
probabilities like P (~ E B), or even P (~ E B) may occur in a similar way; one 

• 

meets them in the theory of conditional probabilities. We omit the details. 

4. Neutralization of underlinings 

There are a number of operations which neutralize underlinings, i.e. which 
take away the random character. One of these we l1ave met already: P, which 
''changes'' an event into a number. Similarly the operator E (for expected value), 
o-2 or var (for variance), and other symbols for moments work upon variates and 
result in numbers (under condition of convergence). The underlining convention 
rules that only specifically probabilistic operators can have tl1is neutralizing 
property, not those, like integrals and differential operators, which are in general 
use in mathematics. 

Thus one has 
Ex - x(co) P(dw), (22) 

but one should not write for the right hand side 

~ (w) P(dw). 
Q 

Following the convention the latter expression would be a random expectation 
because of the non-neutralized underlining. 

Random expectations occur in the theory of conditional probability and the 
underlining notation is, in this case too, clarifying and versatile. Let (a;, y) have 
a two-dimensional distribution, then 

E (:r I }! y) 
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is an ordinary conditional expectation, depending on)'; we might write q> (v) 
for it. Then, in general, cp (y) would again be a random variable, but this can 
simply be written 

E (t I 1') (24) 

and this is in fact a random expectation, for tl1e £-symbol only neutralizes the 
underlinings which occur before the vertical bar. The same holds for P: 
P (~ < x I y) is a random probability and, in those cases where one wishes to 
indicate the condition behind the vertical bar measure-theoretically (i.e. without 
underlining) the random character should be indicated by underlining the E or P. 
So one may meet symbols like E (J \ fl), where fJ is a sigmafield; this is a random 
variable: the bar under~ is neutralized by the £, but the bar under E remains. 

5. Final remarks 

It has been pointed out as a disadvantage of the underlining convention, that 
the symbol x, if used to indicate realizations of the variate ~' cannot be used any 
more to indicate the function on Q which generates the variate; one has to use 
the complete symbol x (·) to indicate this function. This may, however, also be 
considered an advantage. 

Those who use the underlining convention often apply it to better understand 
papers of authors who do not use a notation which clearly distinguishes between 
random variables and others. Reading such papers they put in the underlinings 
themselves. This makes the reading much easier and if one does not succeed in 
placing the underlinings consistently one knows that either one does not under­
stand the author of the paper or the author does not work consistently with his 
probabilistic model. Cf. e.g. D. VAN DANTZIG (1957). 

Ack now 1 edge men ts. The author wants to thank Dr FABIUS for his 
persistance in criticizing the convention; this was the immediate cause for the 
writing of this paper. Discussions with him and with Prof. RuNNENBURG, who 
also read a first draft, clarified the sub~iect considerably. 
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